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Maximizing the Functional Yield of Wafer-to-Wafer
3D Integration

Sherief Reda,Member, IEEE Gregory Smith and Larry Smith

Abstract—3D integrated circuit technology with through-silicon vias
offers many advantages include improved form factor, increased circuit
performance, robust heterogenous integration and reducedcosts. Wafer-
to-wafer integration supports the highest possible density of through-
silicon vias and highest throughput; however, in contrast to die-to-wafer
integration, it does not benefit from the ability to bond only tested
and diced good die. In wafer-to-wafer integration, wafers are entirely
bonded together, which can unintentionally integrate a baddie from
one wafer to a good die from another wafer reducing the yield.In
this paper we propose solutions that maximize the yield of wafer-to-
wafer 3D integration, assuming that the individual die can be tested on
the wafers before bonding. We exploit some of the available flexibility
in the integration process, and propose wafer assignment algorithms
that maximize the number of good 3D ICs. Our algorithms rangefrom
scalable, fast heuristics to optimal methods that exactly maximize the
yield of wafer-to-wafer 3D integration. Using realistic defect models and
yield simulations, we demonstrate the effectiveness of ourmethods up to
large numbers of wafer stacks. Our results demonstrate thatit is possible
to significantly improve the yield in comparison to yield-oblivious wafer
assignment methods.

I. I NTRODUCTION

3D integrated circuit (IC) technology with through siliconvias
(TSVs) is a new technology that allows the vertical stackingand
interconnecting of multiple die into one 3D IC [14], [10]. There
are a number of benefits and motivations for developing 3D ICs,
including (1) a better form factor realized from the increased density
from vertical integration [3]; (2) increased performance due to the
improvement in interconnect delay because of short TSV length;
(3) heterogenous integration where different functional die, such
as memory, logic and sensors, are fabricated separately andthen
integrated together; and finally (4) cost as 3D technology might
offer an alternative cheaper path to increase semiconductor integration
without the need to resort to prohibitively expensive 2D lithographic
geometric shrinking. Examples of 3D ICs include 3D sensors,3D
memory (Flash or DRAM), 3D processors and 3D FPGAs.

There are a number of integration methods used in 3D IC fabri-
cation: wafer-to-wafer (WTW), die-to-wafer (DTW) and die-to-die
(DTD). These methods play an important role in determining the
final yield of 3D ICs [1], [14], [10], [2]. In wafer-to-wafer integration
entire wafers are directly bonded together. WTW offers the highest
throughput, and allows for the thinnest wafers. Since the minimum
TSV diameter is limited by the via’s aspect ratio, WTW supports
TSVs with the smallest via diameters, as it has the thinnest wafers,
which in turn allows for greater TSV density. However, WTW can
incur a serious yield loss as there is no way to separate the good die
in advance. With WTW integration, a bad die from one wafer can
end up integrated with a good die in another wafer yielding anoverall
bad 3D IC. Die-to-Wafer and Die-to-Die integration can improve the
yield of 3D ICs as they allow the die to be diced and tested in advance
and use only the good ones during the 3D integration process.DTD
and DTW also allow the use of different wafer and die sizes. This
flexibility, however, comes at additional test and bonding costs [11],
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lower throughput and lower TSV density. Yield loss can be mitigated
through the use of redundancy as in the case of 3D DRAM ICs,
or 3D multi-core processors [10]. Furthermore, some applications,
especially in high-end systems, require a small pitch that is only
attainable through WTW, irrespective of the yield.

The objective of this paper is to develop techniques that improve
the yield of WTW integration. As a wafer lot typically contains
many wafers (typically 25), one way to improve the yield of WTW
integration is to first test the wafers in the different waferlots, and
then match the wafers together during integration so as to increase
the number of good 3D ICs. Fundamentally, we should match wafers
from different lots to reduce (or avoid at best) the chance that a
good die from one wafer ends up integrated with a bad die from
another wafer. In this paper, we thoroughly investigate this flexibility
and develop optimal methods that maximize the yield of WTW 3D
integration. The contributions of this paper are as follows.

• We formulate the yield maximization problem in wafer-to-wafer
3D integration technology. We provide hardness results forthis
problem and show special cases where it can be solved optimally
in polynomial time.

• We propose a number of effective heuristic and optimal solutions
to solve the problem. Our algorithms offer a graceful tradeoff in
terms of quality of results as measured by yield and scalability
as measured by runtime and memory requirements.

• Using realistic defect models and yield analysis simulations, we
provide comprehensive experimental results that demonstrate the
effectiveness of our proposed algorithms in improving the yield
of wafer-to-wafer 3D integration for large numbers of wafer
stacks.

• Our results demonstrate that our proposed optimal integration
techniques can improve the yield (reaching up to 25%) in
comparison to yield-oblivious integration strategies.

The organization of this paper is as follows. Section II provides a
brief overview of the related research. In Section III, we formulate
the main problem of maximizing the yield of wafer-to-wafer
integration and propose a number of solutions. Section IV provides
a comprehensive set of experimental results and conclusions that
demonstrate the effectiveness of our proposed approaches.

II. PREVIOUSWORK

Despite the importance of the yield on the cost-effectiveness of
3D technology [1], [10], there are few works that directly address
the yield problem [1], [10], [5], [12], [11]. Yield loss in WTW
integration can happen either due to defects in the individual wafers
that constitute the stack, or defects that result from the 3Dintegraton
process (e.g. during TSV creation or bonding). The defects that
impact the individual wafers result from typical random defect
mechanisms that impact 2D ICs. Generally, the larger the diearea,
the larger the chance it includes one or more defects, thus wafers
with large die printed on them will have a lower die yield than
wafers with small die. If two types of wafers are made in the same
fabrication process then they are subject to the same defectdensity. If
the wafers are made with different fabrication processes, apossibility
with 3D ICs, then they are likely to have different defect density.
Defects impacting different wafers are typically uncorrelated, and
the modeling of such defects have been researched to maturity in the
past [8], [13], [7]. For example, the negative binomial distribution
[13] is typically used as a good model for the distribution ofdefects
on semiconductor wafers.

To address yield loss in 3D ICs, a few techniques have been so
far proposed. Patti [10] suggests incorporating redundantresources
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into the 3D IC to make potential stacked devices (such as memories
and FPGAs) repairable in the presence of defects. More recently,
Ferri et al. [5] suggest improving the parametric yield of DTW and
DTD integration by carefully matching the speed of the die that are
integrated in the 3D stack, and Smithet al. [12] suggest matching
the wafers in WTW integration to improve the yield. Finally,Smith
et al. [11] investigate the implications of 3D IC yield on the cost of
WTW, DTW and DTD integration methodologies.

III. PROBLEM FORMULATION AND PROPOSEDSOLUTIONS

The defect wafer map of some waferWi can be represented as a
string of 0s and 1s where a 1 indicates a good die and a 0 indicates
a bad die. LetG(·) be a function that returns the number of good
die in a given wafer map.G(Wi) basically counts the number of
1s in the wafer map stringWi. If two wafers with mapsWi and
Wj take part in a 3D integration stack, then the wafer map of the
resultant stack isWi ·Wj, which is formed by bitwise ANDing of the
stringsWi and Wj. A wafer lot is a batch of a number of wafers.
Let Li denotes the set of wafer maps that belong to wafer loti. The
problem of yield maximization in wafer-to-wafer 3D integration can
be formulated as follows.

Functional Yield Maximization in Wafer-to-Wafer 3D
Integration. Given K wafer lots {L1, . . . ,LK}, where each lot
consists of|Li = {W i

1, . . . ,W
i
N}| = N wafer maps, find an assignment

function that (1) assigns each wafer map to exactly one 3D wafer
stack (that is composed ofK wafers) and (2) maximizes the
functional yield as measured by the total number of good 3D ICs
resulting from theN 3D wafer stacks.

Note that the list of wafer maps that compose a 3D stack can be
represented by a tuple(W 1

i1 ,W
2
i2 , . . . ,W

K
iK ). There areNK possible

wafer tuples, and there are(N!)K−1 ways to chooseN tuples from
the possibleNK tuples without repetition. Solving the functional yield
maximization problem mounts to finding theN tuples that maximize
the total functional yield such that each wafer participates in exactly
one tuple.

It is easy to show that for the general case ofK ≥ 3, the classical
NP-hard 3D matching problem (one of the original six NP-hard
problems considered by Garey and Johnson [6]) is reducible to the
functional yield maximization problem. While this result diminishes
the possibility of finding optimal solutions for increasingN and
K in a feasible runtime, we will later show that it is possible to
obtain optimal solutions forK = 2 in polynomial time, and we will
demonstrate in the experimental results section (Section IV) optimal
results for up toK = 4 wafer stacks. The hardness result also points
out the importance of developing heuristic solutions that scale in
performance, runtime and memory requirements for general values
of N and K.

A. Greedy Heuristic

As discussed earlier there areNK possible different 3D integration
stacks. In an attempt to find the bestN wafer stacks that maximize
the total yield, it is possible to devise a greedy heuristic to solve
the yield maximization problem. A greedy heuristic first forms a
list of all possibleNK wafer stacks. Then for every wafer stack the
heuristic calculates the number of resultant good 3D ICs after taking
into account the distribution of good die on each wafer as given by
the wafers’ defect maps. The heuristic then sorts the list indescending
order according to the number of good 3D ICs of each stack. Thelist
is then traversed in order where a wafer stack is chosen as long as

Fig. 1. Optimal integration of two wafer lots.

none of its constituent wafers participated in an earlier chosen wafer
stack. Figure 2 gives a summary of the greedy algorithm. Notethat the
runtime complexity of the algorithm is equal toO(KNK logN), and
the memory requirement is equal to at least(K +1)NK bytes needed
to store the list of possible wafer stacks for sorting purposes. As our
experimental results later show, the memory requirement turns out to
be a limiter toward the application of the greedy algorithm for wafer
stacks with large numbers of wafersK > 5. For example, forN = 25
(industrial lot size for 300mm wafers) andK = 6, the algorithm would
require at least 1.7GB of memory and 48GB of memory forK = 7.

B. Iterative Matching Heuristic (IMH)

To understand the proposed iterative matching heuristic, we first
consider the special case whereK = 2, i.e., where there are only
two wafer lots{L1,L2}. This special case can be solved optimally
using a graph-theoretical framework as follows. First, we construct
a bipartite graph composed of 2N vertices andN2 edges as shown
in Figure 1. The first set ofN vertices corresponds to wafer maps
of the first lot L1 and the second set ofN vertices corresponds to
the set of wafer maps of the second lotL2. Each edge is labeled by
the number of good die produced from integrating the wafers at its
end points. In this case finding an optimalmatching or assignment
that maximizes the total yield as measured by the edge labelscan be
achieved in polynomial time inO(N3) using the Hungarian algorithm
[9]. We will use a left-precedence operator⊙ to denote the optimal
matching operation on two wafer map lots, thus the set of wafer maps

Input: K ·N wafer maps corresponding toK lots each withN
wafers.
Output: A mapping from wafers to 3D integration stacks.

1. “unlock” all wafers in all lots.
2. for each stack in theNK stacks: calculate the number
of good 3D IC resulting from the stack.
3. sort theNK wafer stacks in descending order
according to the number of good die they produce.
4. for i = 1 to Nk:

5. if all the wafers that constitute wafer stacki
are unlocked then add wafer stacki and lock
all its constitute wafers.

Fig. 2. Outline of the greedy heuristic algorithm.
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Input: K wafer lots mapsL = {L1, . . . ,LK} each withN wafers.
Output: A mapping from wafer to 3D integration stack.

// start with the first lot as the “seed” lot
1. let Ls = L1
2. let L = L−{L1}
3. while |L| > 1:

// gbest holds the number of good die
4. let gbest = 0
5. for eachL j ∈ L:

// calculate the number of good die from
// optimally matching lotsLs and L j
6. let g j = G(L j ⊙Ls)
7. if g j ≥ gbest then

// b j is the index of the best lot
8. let gbest = g j

9. let b j = j

10. let Ls = Ls ⊙Lb j

11. let L = L−{Lb j
}

Fig. 3. Iterative matching heuristic.

resulting from optimally integrating lotsL1 andL2 can be expressed
by L1⊙L2.

We propose to extend the matching algorithm heuristically by
applying it iteratively. Given a set of wafer lotsL = {L1,L2, . . . ,LK},
the final wafer map can be iteratively calculated as follows:Li1 ⊙
Li2 ⊙·· ·⊙LiK . One issue that needs to be considered is to find a good
iteration order, i.e., the values ofi1, . . . iK , to carry out the matching
iteratively. To resolve this issue, at any iterationj our algorithm picks
the lot Li j that gives the largest number of good die when optimally
matched to the wafer mapsL1⊙·· ·⊙Li j−1 resulting from the previous
j−1 iterations. The first wafer lotLi1 can be chosen either randomly
or according to the number of good die. The algorithm description
is formally described in Figure 3. The runtime of the algorithm is
O(K2N3) (assuming the Hungarian algorithm is used for pair-wise
lot matching) and the memory requirement isO(N2). We stress that
IMH is guaranteed to be optimal for only two wafer lots (K = 2).
For more than two lots, IMH is no longer guaranteed to be optimal
and is only a heuristic. Our experimental results in SectionIV show
that it provides very close to optimal results. Note that theorder of
wafer lot integration in the algorithm has no relationship whatsoever
with the order of integration of the actual wafers during fabrication.
The final output of the algorithm is the assignment of each wafer to
a wafer stack. The integration of the wafers that belong to a wafer
stack will be carried out in order during 3D fabrication.

C. Optimal Integration Using ILP

To find the optimal integration strategy for general values of K,
we propose an integer linear program (ILP) that maximizes the
number of good 3D ICs yielded from 3D wafer-to-wafer integration.
Let xi1,i2,...,iK denote a binary variable that is true when wafer
i1 ∈ {1, . . . ,N} from lot 1, waferi2 ∈ {1, . . . ,N} from lot 2, . . ., and
wafer iK ∈ {1, . . . ,N} from lot K are integrated into a 3D wafer
stack. LetYi1,i2,...,iK = G(W 1

i1 · · ·W
K
iK ) denote the number of good die

resulting from integrating thei1, i2, . . . , andiK wafers. GivenK wafers
each withN die, the functional yield maximization problem can be
formulated as follows,

max
N

∑
i1=1

· · ·
N

∑
iK=1

Yi1,i2,...,iK ×xi1,...,iK , (1)

such that there are exactlyN produced wafer stacks

N

∑
i1=1

. . .

N

∑
iK=1

xi1,...,iK = N, (2)

and each wafer in any lot participates in exactly one 3D waferstack

∀i1 ∈ {1, . . . ,N} : ∑N
i2=1 · · ·∑N

iK=1 xi1,...,iK = 1 (3)

∀i j ∈ {1, . . . ,N} :
N

∑
i1=1

· · ·
N

∑
i j−1=1

N

∑
i j+1=1

· · ·
N

∑
iK=1

xi1,...,iK = 1 (4)

∀iK ∈ {1, . . . ,N} : ∑N
i1=1 · · ·∑N

iK−1=1 xi1,...,iK = 1 (5)

The ILP requiresNK variables with a sparse constraint matrix of
(K + 1)NK non-zero (essentially 1) entries out of a total of(K ×
N + 1)NK entries and an objective function vector ofNK entries.
While the computational runtime complexity incurred from using ILP
solvers can be significant, memory will turn out to be the reallimiter
as specifying the the indices and values of the non-zero entries of
the sparse constraint matrix requires 3× (K +1)NK bytes.

D. Upper Bounds to the Optimal Solution

An upper bound to the optimal solution can be found by relaxing
the ILP and allowing the program variablesxi1,i2,...,iK to take fractional
values. In this case the 0≤ xi1,i2,...,iK ≤ 1 constraint is added for each
variable in the program, and then the program is solved usingstandard
linear programming techniques (e.g., the Simplex method orInterior
Point Methods). Standard linear programming solvers are typically
quite fast; however, in our case the main bottleneck will be the
memory needed to specify the constrain sparse matrix, especially as
K andN increase in value and as explained in the previous subsection.

IV. EXPERIMENTAL RESULTS

In this section we demonstrate the effectiveness of the proposed
algorithms in maximizing the functional yield of wafer-to-wafer
3D integration through a set of comprehensive experiments.The
following settings apply to all of our experiments.

• The classical negative binomial distribution [13] is used to
generate defect wafer maps, where the yield of an individual
wafer is given by(1+ AD0

α )−α, whereα is the defect clustering
ratio, D0 is the defect density andA is the area of the die. We
use anα = 4 for the defect clustering ratio in all experiments.
We assume 300mm wafers with 3mm edge exclusion on the
periphery. The gross number of die per wafer is given by
πR2

e f f

A −2π Re f f√
A

+π [4], whereRe f f is the effective wafer radius.
For all experiments but one we assume a standard wafer lot size
of 25 wafers. We vary the die area, defect density and number
of wafers in the 3D stack depending on the experiment.

• All proposed algorithms are implemented in C++ and compiled
with -O3 optimizations. The basic Hungarian algorithm is im-
plemented to compute the optimal matching of wafers in two
wafer lots, and the GNU linear programming kit (LPK) is used
to compute the solution to the integer linear program together
with the solution to the relaxed linear program1.

1It is likely that using a commercial ILP solver like CPLEX will speed
our calculations. The GNU manual mentions that GNU LPK is slower by
10−100× compared to CPLEX.
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method Yield per wafer
30% 50% 70% 90%

3D IC yield 3D IC yield 3D IC yield 3D IC yield

random 2.54% 1.000 12.37% 1.000 34.24% 1.000 72.88% 1.000
greedy 4.07% 1.600 14.75% 1.192 36.61% 1.069 73.90% 1.014
ILM 4.07% 1.600 14.75% 1.192 36.95% 1.079 74.41% 1.021
ILP 4.24% 1.667 15.08% 1.219 37.29% 1.089 74.41% 1.021
UB 4.24% 1.667 15.08% 1.219 37.29% 1.089 74.41% 1.021

TABLE I
IMPACT OF DEFECT DENSITY PER WAFER ON THE YIELD.

• All experiments are carried out on a workstation equipped with
an Intel Core 2 Duo Extreme edition processor running at
2.93GHz with 2GB of dynamic memory. All reported results
are an average of 5 random seeds.

• For comparison purposes, we have implemented a yield obliv-
ious assignment strategy where wafers from different lots are
randomly integrated together. Such assignment is oblivious to the
flexibility offered by having individual wafer test information.
The final 3D IC yield in this case is expected to be equal to
the multiplication of the yield of the individual wafers. For
example, if the yield per wafer is 90% then the expected yield
of a 3D wafer stack composed of three wafers is equal to
0.9×0.9×0.9 = 73%.

Impact of Defect Density. In the first set of experiments we
investigate the impact of the defect density per wafer on thefinal
yield of the produced 3D ICs. We compare the performance of the
proposed integration algorithms at different defect densities. The die
area is assumed to be 1cm2, which gives aboutN = 590 die per wafer
for a 300mm wafer. We set the number of wafers in the 3D stack
to be equal toK = 3 and vary the defect density to result in yields
from 30% to 90% per wafer. In Table I, we report two values for
each integration algorithm: (1) the overall yield of 3D ICs,and (2)
the number of produced good 3D ICs normalized to the number of
3D ICs produced from random assignment. The latter value gives the
advantage of deploying our techniques over a yield-oblivious random
assignment integration. Furthermore the normalized valuegives the
direct increase in revenue from using our algorithms.

The results show that the proposed integration algorithms con-
sistently lead to an improved overall yield compared to a random
yield-oblivious assignment. The defect density and hence the yield
per wafer is a factor of the design, the process technology and
the fabrication facility. Thus for a given wafer yield dictated by
these factors, the proposed techniques result in quite significant
improvements. For example, at 50% yield per wafer, the optimal
technique (ILP) gives a 21.9% improvement over random assignment,
i.e., the revenues will be multiplied by 1.219. The results also show
that the upper bounds calculated through relaxing the ILP are quite
close to the optimal solution.

One may wonder if the random assignment technique might give
comparable results to the proposed algorithms if differentrandom
assignments are simulated and the best one is picked and applied
during integration. To test that possibility we executed 10000
different random integration assignments for the case at yield=50%.
The different simulations give results around the reportedaverage
of 12.37% with a standard deviation of 0.206 and a maximum
of 13.02%; these results are far from the optimal yield value15.08%.

Impact of Die Area. Increasing the die area decreases the number of
produced die per wafer and also reduces the yield as a defect would
destroy a larger portion of the wafer as the die are larger. Tostudy
the performance of the proposed algorithms under various die sizes,
we choose a defect density of 0.4 defects/cm2 and vary the die sizes
from 50 mm2 to 250 mm2. We assume the number of wafers in the

3D stack is equal toK = 3 The results are reported in Table II. As
expected, the yield decreases as the die area increases; however, the
improvements in yield from using the proposed integration strategies
increase in magnitude as the die area increases.

Impact of Number of Wafers in the 3D Stack. In this important
experiment, we study the scalability of the proposed algorithms in
quality and runtime as the number of wafers in the 3D stack increases.
We initially assume a defect rate resulting in 80% yield per wafer
and a die area of 1cm2. The yield and runtime results are given in
Table III. A ‘–’ in the table indicates the algorithm failed because
of memory allocation problems. The obvious part of the results is
that yield generally degrades, as expected, as the number ofwafers
in the stack increases. In comparing the various algorithms, we find
the following.

• The upper bounds on the optimal solutions stay tight for up to
K = 4; however, both the ILP and the relaxed LP run out of
memory for values ofK ≥ 5. Furthermore, the runtime of the
ILP dramatically increases as the number of wafersK increase.
The scalability of the optimal ILP algorithm can be improved
by using more powerful workstations and better commercial ILP
solvers.

• The greedy algorithm produces good results up toK = 5. For
larger values ofK, it runs into memory problems that prevent it
from scaling gracefully.

• The iterative matching heuristic is the most scalable of all
algorithms. All instances are solved in less than 1 second and
furthermore the quality of the solution is close to the optimal. It
also dominates the greedy algorithm in both yield and runtime.
Compared to other methods, the iterative matching heuristic is
the only technique that is scalable in memory requirements.

• Overall the yield loss due to wafer-to-wafer integration atlarge
values ofK will be unacceptable unless the yield per wafer is
extremely high or the 3D structure has redundant resources to
cope with the defects (as is the case with error correction codes
in memory stacks).

Impact of Wafer Lot Size. One possibility to improve the results
of wafer-to-wafer integration is tobatch or aggregate wafer lots to
effectively increase the size of wafer lot. For example, it is possible
to aggregate two wafer lots each with 25 wafers to produce a larger
wafer lot of 50 wafers. The aggregated wafer lot will then be used
with other aggregated wafer lots to derive the integration process.
A random assignment will not benefit from such batching as the
yield will stay the same on the average. However, the proposed
algorithms can exploit the larger wafer lots to find better assignments
that further maximize the functional yield. Towards testing this
hypothesis, we carry out an experiment where we try four different
wafer lot sizesN = 25, 50, 75 and 100 (we assumeK = 3, individual
wafer yield of 80%, and die area is 1cm2). We plot the yield per
wafer stack for both the random assignment and optimal assignment
integration strategies in Figure 4. As hypothesized, the yield random
assignment strategy stays on the average constant; however, as the
wafer lot size increases, the optimal strategy is able to exploit this
flexibility and increase the yield.

Cost Considerations.Our proposed methods require wafer testing
in comparison to randomly assigning wafers. The cost of testing
should be evaluated in comparison to the improvement in revenues
attained from the increased yield from our methods. Providing exact
cost numbers requires many factors, but we consider here some
hypothetical estimates for the purpose of illustration. Let’s assume
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method area=50mm2 area=100mm2 area=150mm2 area=200mm2 area=250mm2

random 55.61% 1.000 31.92% 1.000 18.42% 1.000 10.83% 1.000 6.94% 1.000
greedy 56.83% 1.022 34.47% 1.080 21.58% 1.171 14.44% 1.333 10.19% 1.467
IMH 57.15% 1.028 34.63% 1.085 21.84% 1.186 14.44% 1.333 10.19% 1.467
ILP 57.24% 1.029 34.97% 1.096 22.11% 1.200 14.80% 1.367 10.65% 1.533
UB 57.24% 1.029 34.97% 1.096 22.11% 1.200 14.80% 1.367 10.65% 1.533

TABLE II
IMPACT OF DIE AREA ON THE FINAL YIELD FOR THE VARIOUS INTEGRATION STRATEGIES. A DEFECT DENSITY OF0.4 DEFECTS PER CM2 IS ASSUMED.

method metric K = 2 K = 3 K = 4 K = 5 K = 6 K = 7
wafers in stack wafers in stack wafers in stack wafers in stack wafers in stackwafers in stack

random yield 64.07% 1.000 51.02% 1.000 40.68% 1.000 32.54% 1.000 25.76% 1.000 20.51% 1.000
runtime (s) 0.00 0.00 0.00 0.00 0.00 0.00

greedy yield 64.92% 1.013 52.71% 1.033 43.73% 1.075 36.44% 1.120 – – – –
runtime (s) 0.00 0.09 2.79 79.94 – –

IMH yield 65.25% 1.019 53.22% 1.043 44.07% 1.083 36.61% 1.125 30.68% 1.191 25.76% 1.256
runtime (s) 0.00 0.00 0.01 0.02 0.03 0.04

ILP yield 65.25% 1.019 53.56% 1.050 44.41% 1.092 – – – – – –
runtime (s) 0.00 5.49 15435.41 – – –

UB yield 65.25% 1.019 53.56% 1.050 44.58% 1.096 – – – – – –
runtime (s) 0.00 0.392 40.64 – – –

TABLE III
IMPACT OF NUMBER OF WAFER STACKS FOR THE VARIOUS INTEGRATION STRATEGIES. THE INDIVIDUAL WAFER YIELD IS 80%. A ‘–’ INDICATES THAT A

SOLUTION WAS NOT FEASIBLE DUE TO MEMORY LIMITATIONS.
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Fig. 4. Yield benefit from increasing the wafer lot size. Results are for wafer
lot sizes of 25, 50, 75 and 100 wafers.

a 3D processor based on the die of an Intel Core 2 Duo integrated
with two DRAM die. Intel Core 2 Duo has a die area equal to $143
mm2. Using our die calculating formula in Section IV, the numberof
die per wafer is 418. The price of Core 2 Duo depends on the speed of
the model. For the E6700 model, the price at launch time was $530.
We have no idea of the defect density at Intel fabrication facilities,
but we assume the reasonable defect density of 0.4 defects/cm2. Then
from Table II, we roughly expect that our technique will improve the
yield from 18.42% to 22.11% which translates to extra 15 3D ICs
which are worth $7950 (not including the price of the DRAM die).
Thus, we can afford up to $7950 in additional test costs.

V. CONCLUSIONS

We have formulated the problem of yield maximization in wafer-
to-wafer integration. We have proposed a optimal techniques and
scalable heuristics with near optimal performance to maximize the
yield. The proposed assignment techniques provide significant im-
provements to wafer-to-wafer integration yield, increasing the overall
number of good die in many cases. Our proposed methods require

wafer testing in comparison to randomly assigning wafers. The cost
of testing should be evaluated in comparison to the improvement in
revenues attained from the increased yield from our methods.
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