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In this paper we consider the problem of hedging options in the presence of cost in trading

the underlying asset. This work is an asymptotic analysis of a stochastic control problem,

as in Hodges & Neuberger [1] and Davis, Panas & Zariphopoulou [2]. We derive a simple

expression for the ‘hedging bandwidth’ around the Black–Scholes delta; this is the region in

which it is optimal not to rehedge. The effect of the costs on the value of the option, and on

the width of this hedging band is of a significantly greater order of magnitude than the costs

themselves. When costs are proportional to volume traded, rehedging should be done to the

edge of this band; when there are fixed costs present, trading should be done to an optimal

point in the interior of the no-transaction region.

1 Introduction

The seminal work in the theory of option pricing by Black and Scholes [3] obtained the

value of an option on an asset, V , as the solution to a linear partial differential equation

with independent variables the underlying asset price S and time t:

LBS (V ) ≡ Vt + 1
2
σ2S2VSS − rV + rSVS = 0 (1.1)

subject to appropriate boundary and final conditions. In this equation, r is the interest

rate, measuring the continuous compounding of interest on cash in the bank, and σ is the

volatility of the asset, a measure of the standard deviation of the asset price returns. This

model assumes, as we do here, that the underlying asset follows the random walk given

by the stochastic differential equation

dS = µSdt+ σSdX.

One of the simplest options is a European call option; this gives its holder the right

but not the obligation to buy the asset at a given exercise price, E, at a given maturity

date, T . For such an option, the final condition at t = T is

V (S, T ) = max (S − E, 0)

for the buyer and

V (S, T ) = −max (S − E, 0) = min (E − S, 0)



118 A. E. Whalley and P. Wilmott

for the seller or writer. This has an explicit closed form solution for the buyer:

V (S, t) = SΦ(d1)− Ee−r(T−t)Φ(d2), (1.2)

where

d1 =
ln(S/E) + (r + 1

2
σ2)(T − t)

σ
√

(T − t)

d2 =
ln(S/E) + (r − 1

2
σ2)(T − t)

σ
√

(T − t) = d1 − σ
√

(T − t)

and Φ(d) is the cumulative density function for the standardized normal distribution.

The derivation of the Black–Scholes equation involves the construction of a weighted

portfolio of the option and a number, −∆, of the underlying asset. ∆ is selected so that at

any instant the risk associated with the portfolio is minimized (under their assumptions

the portfolio is actually risk-free), and as a result ∆ is itself a function of S and t – in

fact ∆ = VS (S, t), the derivative of the option price with respect to the asset price, and

hence it changes continuously with time. This implies that the number of assets in the

portfolio must be adjusted continuously, a process which is called delta-hedging. However

transacting continuously in order to delta-hedge is not only unrealistic in itself, since in

practice trades in the underlying asset can only occur at discrete points in time, but also

gives rise to problems when we attempt to incorporate the costs of transacting in the

underlying asset. If we maintain the strategy of trading continuously, the costs associated

with this trading could be unbounded and swamp the option value. Hence a new valuation

strategy is needed to incorporate costs and to provide for trading at discrete points in

time. It turns out that even though the transaction costs are themselves small (and indeed

we utilize this fact in this paper), their effect is of a greater order of magnitude. We find

that the effect on the option price is of the order of the square root of the costs, and the

effect on the band within which the option delta is allowed to move before a transaction

is made is of the order of the quarter power of the costs. Hence whilst these effects are

still small, they are significantly less small than the costs themselves.

There are two main approaches to the modelling of hedging strategies and option values

in the literature: local in time and global in time. The former was started by Leland [4]

and extended by Boyle & Vorst [5], Hoggard, Whalley & Wilmott [6], Avellaneda &

Paras [7], Toft [8], Whalley & Wilmott [9] and Henrotte [10]. The first five of these

assume hedging takes place at given discrete time intervals (Boyle & Vorst [5] is actually

a binomial model) and the last two assume flexible but prescribed trading rules. These

involve a band around the ideal value of ∆, within which the number of assets actually

held in the portfolio is allowed to vary. In all of these the hedging strategy is, however,

given exogenously, i.e. the hedging strategy is chosen a priori, as distinct from the current

model where the strategy is determined as part of the model solution, and is chosen

optimally; such prescribed hedging strategies are often used in practice. They typically

result in partial differential equations for the value of the option, V hereafter, which are

similar to the Black–Scholes equation (1.1) above, but with an extra term representing the

effect of the transaction costs. An example of such an equation is

LBS (V ) ≡ Vt + 1
2
σ2S2VSS − rV + rSVS =K(S, t, VSS ), (1.3)
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where K is in general a nonlinear functional of the Gamma, Γ = VSS , the second

derivative of the option with respect to the asset price, and as a result these equations are

nonlinear. However, since they only involve derivatives with respect to the asset price S

and time t, they are invariably quick to compute.

The global-in-time models have been proposed by Hodges & Neuberger [1] and Davis,

Panas & Zariphopoulou [2]. Such models achieve an element of ‘optimality’, since they

are based on the approach of utility maximization. These models result in both an

(endogenous) optimal hedging strategy, which turns out to involve a band around ∆ as

described above, and an option value. One of the disadvantages of such an approach is,

however, speed of computation. The models are slow to compute since they usually result

in three- or four-dimensional free boundary problems.

In this paper, we perform an asymptotic analysis of a utility maximizing model which

is a generalization of the Davis, Panas & Zariphopoulou [2] model, but assuming that

transaction costs are small. We derive simple formulae and equations for the optimal

hedging strategy and option price respectively. The particular case of this model with

proportional transaction costs only (described in Whalley & Wilmott [11]) was tested

against others in the Monte Carlo simulations of Mohamed [12] and found to be the

most successful strategy that was tested. In this paper we generalize this approach to

consider an arbitrary transaction cost structure. We give, as examples, simple explicit

results for the optimal ‘hedging bandwidth’ and optimal ‘rebalance points’ in the cases

of fixed transaction costs and fixed plus proportional. The arbitrary cost structure case

is more complex than the proportional cost case since we must now find not only the

optimal hedging bandwidth (outside of which the number of assets held is not allowed to

go), but also the optimal rebalance point. When buying or selling becomes optimal it is

to this optmal rebalance point that we must rehedge.

In § 2 we very briefly describe the stochastic control problem of Davis, Panas &

Zariphopoulou [2] with an arbitrary transaction cost structure. The interested reader is

advised to read that paper carefully in conjunction with this. In § 3 we consider the

asymptotic limit of small transaction costs; this results in an inhomogeneous diffusion

equation for the price of an option and formulae for both the width of the hedging

bandwidth and the optimal rebalance point. In § 4 we consider some special cases of

particular, practical interest. In § 5 we discuss certain issues in the hedging of portfolios

of options. § 6 concludes.

2 The utility maximizing model

In this section we describe the utility maximizing model derived by Hodges & Neuberger

(HN) and Davis, Panas & Zariphopoulou (DPZ) and formulate it in a convenient form

for our subsequent calculations. In this context, the ‘utility’ of wealth is used as a measure

of the value of money to an individual. It is a popular economic concept, easily illustrated

by the example of the pauper and the prince. Decreasing marginal (i.e. the first derivative

of) utility, which is often assumed to apply in practice, implies the ‘value’ of one pound to

the pauper is considerably higher than the value to the prince even though the purchasing

power is the same. We use the notation U(W ) for the utility of an amount of wealth W .

Given an initial wealth (in cash) of Bwo(t), the investor can invest in a portfolio of
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the risky share and riskless bond with the objective of maximising the expected utility

of their wealth at a given future time T . This is equivalent to choosing, at any time τ

between now and T , the quantity of shares y(S, τ) to be held in the portfolio. Later we

shall consider portfolios including an option position: we use the sub or superscript wo to

denote quantities ‘without’ the option obligation, and shall use the sub or superscript w

for quantities ‘with’ the option obligation. Jwo is the maximized expected utility (of final

wealth) without the option position:

Jwo(t, S , Bwo, ywo = 0) = maxywo(τ),t6τ6T {E [U (Wwo(T ))]}. (2.1)

Here final wealth is defined to be wealth in cash after transaction costs

Wwo(T ) = ywo(S, T )S + Bwo(T )− k(S, ywo(S, T )), (2.2)

where ywo(S, t) represents the quantity of risky assets held at time t when the asset price is

S , Bwo(t) is the amount of risk-free bonds held at time t (which receive a return of r, the

risk-free interest rate), and k(S, u) is the transaction costs associated with transacting the

quantity u of the risky asset S . It is assumed that transactions in risk-free bonds do not

incur transaction costs; alternatively, k can be regarded as representing both sets of costs.

In Equation (2.2) the cost is simply associated with liquidation of the final asset position.

Then define B̂wo as the minimum initial wealth which delivers a non-negative maximum

expected utility of final wealth:

B̂wo = inf {B : Jwo(t, S , B, 0) > 0}.
For concave increasing utility functions with U(0) = 0, this implies an investor with

zero initial wealth is indifferent beween paying (since B̂wo 6 0) the amount |B̂wo| and

transacting as determined by the utility maximizing strategy, and doing nothing. It is the

amount they are willing to pay to enter the market. More importantly, however, it serves

as a reference for comparison once we introduce options.

If we consider the same situation: maximizing the expected utility of wealth at time

T , but where we have in addition an option holding or liability which expires at T , and

compare the minimum current wealth which gives non-negative expected utility of final

wealth including the option position, say B̂w , with B̂wo, this will give a value for the option

position. So the amount the investor is willing to pay to enter the market when they do

not have the option position equals the amount they are willing to pay (or receive) to

enter the market when they have an option position plus the value of the option position

to them, B̂wo = B̂w + V , or

V = B̂wo − B̂w.
Furthermore, the difference between the portfolio strategies derived under the utility

maximization with and without the option position will be the hedging strategy required

to achieve the maximum expected utility of final wealth and hence the option valuation.

Now we perform the maximization in (2.1), with the terminal wealth (at time T ) altered

by a portfolio of options with payoff V (S, T ) = VT (S) at maturity1 T . We assume that

1 Portfolios of options with a number of maturities are dealt with in a similar manner solving

backwards in time from the furthest maturity date and adding in payoffs for earlier maturities as

appropriate.
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the option position will be held until expiry, the position will not be closed before then.

Final wealth net of transaction costs is then given by

Ww(T ) = yw(S, T )S + Bw(T )− k(S, yw(S, T )) + VT (S). (2.3)

For the writer of a European call option, for example, we have

Ww(T ) =

{
yw(S, T )S + Bw(T )− k(S, yw(S, T )), S 6 E

yw(S, T )S + Bw(T )− k(S, yw(S, T )) + E − S, S > E
(2.4)

Note we are assuming here that the option is settled in cash. For options with delivery

of the asset on exercise the analysis below remains the same; the final conditions merely

alter, but this only affects the option price at a higher order of magnitude than we shall

consider here.

Letting Jw be the maximized expected utility including the option position,

Jw(t, S , Bw, yw = 0) = maxyw(τ),t6τ6T {E [U (Ww(T ))]} , (2.5)

B̂w is then defined by

B̂w = inf {B : Jw(t, S , B, 0) > 0};
it is the minimum initial wealth which delivers non-negative maximum expected utility of

final wealth with the option obligation. It turns out that the problems for Jwo and Jw are

identical except for the conditions at maturity. For the general analysis we shall therefore

drop sub- and superscripts of wo and w for the two problems and consider the problems

separately only when necessary.

For a general utility functionU(x) and for the particular case of proportional transaction

costs, k(S, y) = k3S |y|, HN and DPZ show that this problem is described by

max

{
Jy − S(1 + k3)JB, (2.6)

− (Jy − S(1− k3)JB
)
, (2.7)

Jt + rBJB + µSJS +
σ2S2

2
JSS

}
= 0, (2.8)

where B is the amount of risk-free bonds held in the portfolio, and

dB = rBdt− Sdy − k(S, dy)

(Jy, JB, Jt and JS , JSS represent derivatives of J with respect to y, B, t and S respectively).

One of the most popular choices for utility function is the negative exponential utility

function:2

U(x) = 1− exp (−γx) . (2.9)

For the present problem with this choice of utility function, HN and DPZ show that

the monetary amount invested in the risky asset is independent of total wealth, and hence

2 This utility function is popular for its simplicity and its property of constant ‘absolute risk

aversion’. Absolute risk aversion is given by U ′′/U ′ and is a measure of the reluctance of an investor

to accept a ‘fair bet’.
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Figure 1. A schematic diagram of (S, y) space showing the buy, sell and no-transaction regions,

and the optimal rebalance lines.

that the dependence on B can be eliminated and the problem can be reduced to a three-

dimensional free boundary problem. The structure of the solution then takes the form

(2.11) – see below. This reduction of a dimension is not possible for an arbitrary utility

function, and so in this work we concentrate on this special though important case. In the

case of exponential utility, for the writer of a European call option facing proportional

transaction costs, HN and DPZ show that (S, y) space divides up into just three regions,

within each of which one of the terms (2.6), (2.7) and (2.8) equals zero; these are shown

schematically in Figure 1 (ignore, for the moment, the dashed lines in this figure). In

regions where (2.6) equals zero, the strategy is to buy underlying assets (shares); where

(2.7) vanishes, shares should be sold according to the strategy; and regions where (2.8)

vanishes are regions where no transactions occur. The number of shares to be bought or

sold will be found as part of the solution.

The middle line in Figure 1 is the curve along which the investor must move in the

absence of transaction costs; this curve is denoted by

y = y∗(S, t).

The writer of the option must always maintain her portfolio in the region of the (S, y)

space bounded by the two outer curves. While inside this region she does not transact. So

when (2.8) holds, y does not change.

The boundaries where the buy and no-transaction (sell and no-transaction respectively)

regions meet, which mark the edges of the no-transaction region, are of particular

interest since they represent the points in (S, y) space at which rebalancing occurs.

Should a movement of the asset price take the writer to the edge of this no-transaction

region, she must trade so as to stay inside. If she hits the top boundary, y+(S, t), she

must sell shares; if she hits the bottom boundary, y−(S, t), she must buy shares. The

number of shares bought or sold is chosen to move the position to the rebalancing

position. The points to which rebalancing occurs must also be determined as part of

the solution; these will be inside or on the boundaries of the no-transaction region.
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The portfolio adjustment strategy in the presence of transaction costs and the hedging

strategy for an option in the presence of transaction costs is derived from these two sets

of points.

In the proportional cost case studied by HN and DPZ, the optimal rebalance points

are just the boundaries of the no-transaction region; on hitting either of the bound-

aries, trading occurs so as to move along that boundary. This feature of transacting

the minimum possible in order to stay within the no-transaction region is due to the

particular, proportional nature of the transaction costs. In the case of arbitrary trans-

action costs it is perfectly possible that the (S, y) space could be divided into more

than three regions; there could be more than one buy region, say. However, for typical

transaction cost structures this is unlikely to occur. Although our analysis will be very

general, we shall have at the back of our minds a costs structure of the form fixed

plus proportional. In this case, and because of the fixed cost term in particular, we

find that the (S, y) space is divided up as shown in Figure 1. There are still the buy,

sell and no-transaction regions but now on rehedging the portfolio we must buy or sell

shares to move to the ‘optimal rebalance point’, shown as the dashed lines in this figure.

The positions of the hedging bandwidth and the optimal rebalance points must all be

found.

For the holder of a European call option or indeed a portfolio of held and written

options the diagram can be transformed in the obvious way; the structure remains the

same. Asymptotic expressions for y∗ and the position of the upper and lower boundaries

for the proportional cost case described above were found by Whalley & Wilmott [11].

In this paper we consider a more general form of transaction costs incorporating a fixed

component in addition to costs proportional to the value (or number of assets) traded

and show how different types of costs have differing effects on option valuation and, more

strikingly, on the hedging strategy followed.

Our objectives are to solve for the value of the option, V , and, equally if not more

importantly from the point of view of the practicalities of trading, find the edges between

the no-transaction and buy and sell regions and the optimal rebalance points. In full

generality this involves the solution of a four-dimensional free boundary problem (for J),

from which the option value and trading strategy are derived by the process described

above, the latter as the free boundaries between the no-transaction and buy and sell

regions. This is a computationally expensive and time-consuming exercise.

We also use the negative exponential utility function

U(x) = 1− exp (−γx) , (2.10)

and show how the problem can be rewritten in an intuitively appealing form which

gives the option value as the difference between the values of the wealth invested in the

risky asset with and without the option position. Like HN and DPZ, we find that the

particular choice of the negative exponential utility function results in the reduction of the

problem to a single partial differential equation valid in the no-transaction region, with

explicit formulae for the solutions in the buy and sell regions, respectively. The reduction

of dimension which occurs in this special case does not happen with a general utility

function. We shall leave the analysis of the arbitrary case for the future; we are sure that

a similar analysis to that in the present paper is possible.
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We rewrite J , the maximum expected utility of final wealth, in the form

J(t, S , B, y) = 1− exp

(
− γ

δ(t, T )
(B +W (t, S , y))

)
. (2.11)

Here γ is the measure of absolute risk aversion in the utility of final wealth U(x),

γ = −U
′′(x)

U ′(x)
,

and is constant, and δ(t, T ) = e−r(T−t) is a discount factor which converts wealth at

maturity of the option to current wealth. B = B(t) is the current amount held in risk-free

bonds, and W (t, S , y) is the expected value at time t of the utility-maximized wealth held

in the risky asset at time T . The system of equations for J , (2.6), (2.7) and (2.8) transform

into the following equations satisfied by W :

min

{
Wy − γ

δ(t, T )

(
S +

∂k

∂y

)
, (2.12)

−
(
Wy − γ

δ(t, T )

(
S − ∂k

∂y

))
, (2.13)

Wt − rW + µSWS +
σ2S2

2

(
WSS − γ

δ(t, T )
(WS )2

)}
= 0. (2.14)

(2.12) and (2.13) can be solved to give the system as

Wt − rW + µSWS +
σ2S2

2

(
WSS − γ

δ(t, T )
(WS )2

)
> 0. (2.15)

subject to the constraints

W (t, S , y + u) >W (t, S , y) +
γ

δ(t, T )
(uS + k(S, u)), (2.16)

W (t, S , y − u) >W (t, S , y)− γ

δ(t, T )
(uS − k(S, u)) (2.17)

where u > 0, or more succinctly ((2.15) is unaffected)

W (t, S , y + u) >W (t, S , y) +
γ

δ(t, T )
(uS + (k1 + (k2 + k3S)|u|)). (2.18)

These must be solved subject to ‘value-matching’ and ‘smooth-pasting’ conditions at

the boundaries between (2.16), (2.17) and (2.15), which have still to be found, and final

conditions at T : W (T , S, y(S, T )) represents the wealth invested in the risky asset at T ,

including any positions held for the hedging of options, net of transaction costs incurred

in converting the risky assets into risk-free bonds. For the portfolio without the option

position this is simply

Wwo(T ) = ywo(S, T )S − k(S, ywo(S, T )), (2.19)

and for the portfolio including, say, a written European call option position (with cash

delivery),

Ww(T ) = yw(S, T )S − k(S, yw(S, T )) + min (E − S, 0)

=

{
yw(S, T )S − k(S, yw(S, T )), S 6 E
yw(S, T )S − k(S, yw(S, T )) + E − S, S > E

(2.20)
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Recall that the option value V is defined to be the difference between the minimum

initial cash amounts which delivered non-negative maximum expected final utility at T

for portfolios with and without the option position, respectively,

V = B̂wo − B̂w.
Using the negative exponential utility function formulation (2.11), we see that (since U(x)

is a monotone increasing function), zero maximum expected utility of final wealth implies

B̂w = −Ww(t, S , 0), B̂wo = −Wwo(t, S , 0),

where Ww (Wwo respectively) is the current value of the expected maximized utility of the

holdings of the risky asset at T including (excluding respectively) the effects of the option

liability. Evaluation at y = 0 represents the fact that these values are net of all transaction

costs. This means Ww (Wwo, respectively) is the solution to (2.16), (2.17) and (2.15) with

conditions (2.20) and (2.19), respectively.

So the option value is given by

V = Ww(t, S , 0)−Wwo(t, S , 0). (2.21)

The hedging strategy for the option is given by yw(S, t)− ywo(S, t), the difference between

the (endogenously determined) values of the amount of the underlying asset held in each

of the two portfolios yw and ywo (with and without the option liability) respectively.

3 Asymptotic analysis for small levels of transaction costs

In this problem the transaction costs associated with trading in the underlying asset are,

in practice, small. We shall therefore find it convenient to introduce the parameter ε as

a measure of the size of the transaction costs. Thus at each rehedge, there will be an

associated cost K which is of O(ε). We shall then take asymptotic expansions of the W

functions in powers of ε. From these expansions we find that the hedging bandwidth, i.e.

the width of the band about the number of assets which would be held in the absence of

transaction costs, is O(ε
1
4 ), and that the effect of the costs on the option value is O(ε

1
2 ). We

shall see later in this section how the expansion in fractional powers of ε arises naturally

from the structure of the problem.

We therefore translate the y coordinate according to

y = y∗(S, t) + ε
1
4Y . (3.1)

The rescaled variable Y is a dimensionless quantity which will be O(1). It is a measure of

the difference between the number of shares actually held in the portfolio and the ideal

number we would hold in the absence of transaction costs, y∗. This rescaling ensures that

our analysis is concentrated in the area of interest, the O(ε
1
4 ) region around the value of

the hedge ratio in the absence of costs. Our independent variables are now S , t and Y .

(We shall find an explicit expression for y∗ as a function of S and t.) We also rescale the

cost function by writing

k(S, ε
1
4U) = εK(S,U).

This scaling acknowledges the fact that the hedging bandwidth is O(ε
1
4 ) and the cost of a

trade is O(ε).
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Figure 2. A schematic diagram of V4 against Y .

Fractional asymptotic scalings have occured in a number of other transaction or

adjustment cost problems. The scaling of ε
1
4 was found and exploited in a similar manner

in the portfolio analysis problem of Atkinson & Wilmott [13]. Shreve [14] has results

which suggest an asymptotic power of one third for the width of the no-transaction

interval for an optimal investment and consumption model with transaction costs under a

different utility function, and notes that Fleming et al. [15] have also obtained this scale.

Dixit [16] also obtains asymptotic scales of one quarter for the width of a no-transaction

region for fixed costs of adjustment but with quadratic penalty costs of deviation from

an ideal value of the state variable, and an asymptotic scale of one third when the

penalty costs are instead equal to the modulus of the deviation from the ideal. The

exact fractional power for a no-transaction region in the presence of adjustment costs

varies therefore, depending on the form of the adjustment costs and other aspects of the

particular problem, but in all these cases first order costs produce fractional order (i.e.

larger) widths of the bands within which no adjustment occurs.

Having rescaled our variables we can refer to Figure 2, which is a more detailed

schematic diagram of the buy, sell and no-transaction regions. The horizontal axis in this

figure is the Y -axis. We shall explain the vertical axis in a moment. This figure shows

the boundaries of the no-transaction region as Y = −Y −(S, t) and Y = Y +(S, t). Inside

this region are the optimal rebalance points Y = −Ŷ −(S, t) and Y = Ŷ +(S, t): when the

asset price random walk takes us to Y +(S, t) we must sell shares to move to Ŷ +(S, t).

It is worth mentioning that if there is no fixed element to the transaction costs then

the optimal rebalance point and the edge of the no-transaction region coincide. That is

Y + = Ŷ +. In the case including fixed transaction costs, Ŷ − and Ŷ + are strictly inside the

no-transaction region, and so there is a jump in the number of shares held.

If we are totally within the buy region, say, then we must transact to the optimal

rebalance point. Thus, in the buy region Y < −Y −(S, t)

W (S, Y , t) = W (S,−Ŷ −, t) + ε
1
4 (Y + Ŷ −)S − εK(S, Y + Ŷ −). (3.2)

Similarly, in the sell region Y > Y +(S, t) we have

W (S, Y , t) = W (S, Ŷ +, t) + ε
1
4 (Y − Ŷ +)S − εK(S, Y − Ŷ +). (3.3)
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In the no-transaction cost region we have equality in equation (2.15), i.e.

Wt − rW + µSWS +
σ2S2

2

(
WSS − γ

δ(t, T )
(WS )2

)
= 0. (3.4)

We impose value-matching and smooth pasting conditions, which we discuss in more

detail in § 3.4. These conditions correspond to continuity of the option price and optimality

of the hedging strategy. When there are fixed costs, these are

W (S, Y +, t) = W (S, Ŷ +, t) + ε
1
4 (Y + − Ŷ +)S − εK(S, Y + − Ŷ +), (3.5)

∂W

∂Y

∣∣∣∣(S,Y + ,t) = ε
1
4 S − ε∂K

∂U

∣∣∣∣
(S,U=Y +−Ŷ +)

, (3.6)

and
∂W

∂Ŷ +

∣∣∣∣(S,Ŷ + ,t) = ε
1
4 S − ε∂K

∂U

∣∣∣∣
(S,U=Y +−Ŷ +)

(3.7)

(similar conditions hold at the buy boundary). In the absence of fixed costs, Y + = Ŷ +

and the boundary conditions become

∂W

∂Y

∣∣∣∣(S,Y + ,t) = ε
1
4 S − ε∂K

∂U

∣∣∣∣
(S,U=0)

, (3.8)

and
∂2W

∂Y 2

∣∣∣∣
(S,Y + ,t)

= 0. (3.9)

We can write the solution in the no-transaction region as

W = (y∗ + ε
1
4Y )S + V0(S, t) + ε

1
4V1(S, t) + ε

1
2V2(S, t) (3.10)

+ε
3
4V3(S, t) + εV4(S, Y , t) + ε

5
4V5(S, Y , t) + · · · .

We shall justify the omission of Y from the V0, V1, V2 and V3 terms in this expansion later.

We must now find the functions Vi such that equation (3.4) and all relevant boundary

and smoothness conditions are satisfied. We shall see, in performing this analysis, that the

choice of a series expansion in powers of ε1/4 is inevitable.

The ε
1
4 term in (3.10) proportional to Y is forced on us as it represents the cash

(without costs) from a sale of O(ε
1
4 ) shares on rehedging. We shall find that the O(ε

1
4 )

term V1 is identically zero, but we leave it in for the sake of completeness. We also find

that the leading order term which depends explicitly on Y is the O(ε) term, V4(S, Y , t).

The dependence of V4 on Y is required by the continuity conditions at the edges of

the no-transaction regions to match the transaction cost terms in (3.2) and (3.3). So V4

represents the cost of a single transaction to stay within the hedging band.

Now observe that since the width of the no-transaction region is O(ε
1
4 ) the expected

time between rehedges is O(ε
1
2 ). Therefore during the lifetime of the option there will be

O(ε−1/2) rehedges. This gives a total cost – individual cost multiplied by number of hedges

– of O(ε
1
2 ). Thus, the O(ε

1
2 ) term above, the V2 term, will contain the leading correction to

the Black–Scholes equation; this is what we are interested in. So the V4 term represents

the cost of the individual trade and V2 represents the accumulated transaction costs of all

trades. As we shall see, these two functions are intimately related. We can now say that

the vertical axis in Figure 2 represents the Y -dependence of the unknown function V4.
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Since the derivatives in (3.4) are with respect to t and S keeping y fixed, then

∂

∂y
→ ε−

1
4
∂

∂Y
,

∂

∂S
→ ∂

∂S
− ε− 1

4 y∗S
∂

∂Y
,

∂

∂t
→ ∂

∂t
− ε− 1

4 y∗t
∂

∂Y
.

Thus we readily find from (3.10) and (3.1) that

∂W

∂t
≡Wt = y∗t S + V0t (S, t) + ε

1
4V1t (S, t) + ε

1
2V2t (S, t) + ε

3
4V3t (S, t)

+ εV4t (S, Y , t)− y∗t
(
S − ε 3

4V4Y + · · ·
)

+ · · · ,
∂W

∂S
≡WS = y∗SS + y∗ + ε

1
4Y + V0S (S, t) + ε

1
4V1S (S, t) + ε

1
2V2S (S, t)

+ ε
3
4V3S (S, t) + εV4S (S, Y , t)− y∗S

(
S + ε

3
4V4Y + · · ·

)
+ · · · ,

∂2W

∂S2
≡WSS = y∗S + V0SS (S, t) + ε

1
4V1SS (S, t) + ε

1
2V2SS (S, t) + ε

3
4V3SS (S, t)

− y∗SSε
3
4V4Y − y∗Sε 3

4V4Y S

− y∗S
(

1 + ε
3
4V4Y − ε 1

2 y∗SV4Y Y − ε 3
4 y∗SV5Y Y + · · ·

)
+ · · · .

It will be observed that each of the above can be slightly simplified. We have retained

them in this form to help the reader perform their own calculations.

The advantage of asymptotic analysis will now become clear when we perform the next

step, to substitute these expressions into (3.4) and equate powers of ε
1
4 .

3.1 The O(ε− 1
2 ) and O(ε− 1

4 ) equations

The O(ε− 1
2 ) terms lead to an ordinary differential equation for V0 with independent

variable Y

V0Y Y =
γ

δ(t, T )
V 2

0Y
,

This is solved with boundary conditions the leading order terms in the value-matching and

smooth pasting conditions which imply V0Y = 0. Similar ordinary differential equations

together with the relevant terms in the value-matching and smooth pasting conditions are

found for V1, V2 and V3 (we omit the details). This implies V0Y = V1Y = V2Y = V3Y = 0

for all Y , and we have represented this explicitly in (3.10).

3.2 The O(1) equation

The O(1) terms are

Wt = V0t

WS = V0S + y∗

WSS = V0SS ,
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and so the O(1) equation is

V0t − rSy∗ − rV0 + µS
(
V0S + y∗

)
+
σ2S2

2

(
V0SS − γ

δ(t, T )

(
V0S + y∗

)2
)

= 0. (3.11)

This is the equation in the absence of any costs and we will see later how it results in the

Black–Scholes equation for the option value to leading order.

3.3 The O(ε
1
4 ) equation

We can take this procedure to the next order, equating powers of ε
1
4 . We find that

V1t − rSY − rV1 + µS
(
Y + V1S

)
+
σ2S2

2

(
− 2γ

δ(t, T )

(
Y + V1S

) (
V0S + y∗

)
+ V1SS

)
= 0.

This equation contains a term proportional to Y and one independent of Y . Since all the

other terms in the equation are independent of Y , these terms must separately be zero.

From the first of these we find that

y∗(S, t) = −V0S +
δ(t, T )(µ− r)

γSσ2
, (3.12)

as given by Davis et al. Thus, if we can find V0 (for each of the problems with and without

the option liability) then we have found the leading order expressions for y∗ in each case,

and hence the difference, which gives the hedging strategy.

Equation (3.12) determines the hedging strategy in the absence of transaction costs, y∗,
in terms of the leading order ‘option value’ V0. If we substitute this back into (3.11) we

find that V0 satisfies

V0t +
σ2S2

2
V0SS + rSV0S − rV0 = −δ(t, T )(µ− r)2

2γσ2
. (3.13)

The particular solution of this with zero final data is, remembering that δ(t, T ) = e−r(T−t),

δ(t, T )(µ− r)2(T − t)
2γσ2

. (3.14)

The general solution is thus any solution satisfying the Black–Scholes equation plus the

particular solution (3.14).

We then retrace our steps to get from V0 to V , the option price, using (3.10) and

the boundary conditions (2.19) and (2.20) respectively. We find that the leading order

final data in the portfolio without the option liability, Wwo, is V0(S, T ) = 0, whereas in

the portfolio with the call option liability, Ww , it has the usual payoff functional form

V0(S, T ) = −max (S−E, 0). So from the linearity of (3.13) we see that, to leading order (or

in the absence of any costs) the option value is simply the Black–Scholes value. Similarly

the extra number of shares required in the portfolio with the additional option liability

is, to leading order, the Black–Scholes delta value.

We now consider the terms independent of Y , which give an equation for V1:

V1t − rV1 +
σ2S2

2
V1SS + V1S

(
µS − γσ2S2

δ(t, T )

(
y∗ + V0S

))
= 0.

If we substitute for V0S + y∗ using (3.12), we find that V1 satisfies the Black–Scholes
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equation. The final condition for this equation for both Ww and Wwo is V1(S, T ) = 0.

(This is found by expanding the final conditions in powers of ε
1
4 and considering the

terms of O(ε
1
4 ).)

Thus V1 is identically zero for all S and t < T , and so the leading order correction to

the Black–Scholes value occurs at the O(ε
1
2 ) level.

3.4 The O(ε
1
2 ) equation

We now take the analysis to higher order to find the correction to the Black–Scholes

value due to transaction costs. If we examine the O(ε
1
2 ) terms in (3.4), we find that

V2t − rV2 + µSV2S +
σ2S2

2

(
V2SS + y∗2

S V4Y Y − γ

δ(t, T )

(
Y 2 + 2V2S

(
y∗ + V0S

)))
= 0. (3.15)

This is an ordinary differential equation for V4 with dependent variable Y . We note in

passing that the equivalent ordinary differential equations for V0 - V3 as a function of

Y are homogeneous. The application of the relevant boundary conditions leads us to

conclude that V0, V1, V2 and V3 are independent of Y .

Equation (3.15) is easily integrated to give

V4 =
γY 4

12δ(t, T )y∗2

S

− Y 2LBS (V2)

σ2S2y∗2

S

+ cY (3.16)

where without loss of generality we set V4(S, 0, t) = 0, and

LBS (V2) = V2t + rSV2S +
σ2S2

2
V2SS − rV2.

The conditions of continuity and smoothness that we shall require, and describe shortly,

will be sufficient to find all of Y +(S, t), Y −(S, t), Ŷ +(S, t) and Ŷ −(S, t), as well asLBS (V2)

and c.

3.5 Boundary conditions

The six unknown functions are listed at the end of the previous section. To determine the

correct boundary conditions we must refer to Figure 2 in some detail. Suppose we begin

in the no-transaction region, that is −Y − 6 Y 6 Y +. Should the random walk of the

asset take us to the edge of this region, for example to Y = Y +, the edge of the sell region,

then we must trade to some interior point. We trade from point B to point A; both A

and B are to be determined. Such a trade costs K(S, Y + − Ŷ +) in scaled variables. This

cost is offset exactly by the added value of the better-hedged position. Thus, the value

functions at A and B must differ by this cost (this is the ‘value-matching condition’) i.e.

V4(S, Ŷ +, t)− V4(S, Y +, t) = K(S, Y + − Ŷ +). (3.17)

When the costs include a fixed element, there is a discrete jump in the number of shares

held, (Y ), and this results in a jump in the value function. We shall consider the case of

purely proportional costs shortly.

Furthermore, the points A and B (or Y + and Ŷ +) are optimal. Thus (these are the
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‘smooth pasting’ conditions),

∂V4

∂Ŷ +
(S, Ŷ +, t) =

∂K

∂Ŷ +
(S, Y + − Ŷ +) = −∂K

∂U
(S,U = Y + − Ŷ +) (3.18)

and

− ∂V4

∂Y +
(S, Y +, t) =

∂K

∂Y +
(S, Y + − Ŷ +) =

∂K

∂U
(S,U = Y + − Ŷ +), (3.19)

or equivalently,

∂V4

∂Y
(S, Ŷ +, t) =

∂V4

∂Y
(S, Y +, t) = −∂K

∂U
(S,U = Y + − Ŷ +). (3.20)

Similar equations hold at the buy boundary and rebalance point; simply change signs in

the obvious manner.

The above equations hold when Y + and Ŷ + are distinct. They coincide when transaction

costs have no fixed component; this was the case discussed in Whalley & Wilmott [11],

HN and DPZ. In this case, control of the number of shares held is instantaneous and no

jump occurs (Y + = Ŷ +), so the value-matching condition becomes

∂V4

∂Y
(S, Y +, t) = −∂K

∂U
(S,U = Y + − Ŷ +), (3.21)

which replaces (3.17). The optimality condition at Y + = Ŷ + also changes: ∂2V4/∂Y
2 is

required to be continuous there (across the edge of the no-transaction region). This gives

us the alternative condition to (3.20) (one less condition is required since Y + = Ŷ +)

∂2V4

∂Y 2
(S, Y +, t) = −∂

2K

∂U2
(S,U = Y + − Ŷ +)(= 0). (3.22)

We use (3.21) and (3.22) to derive the equations in § 4.1. For the remainder of this section

we shall consider only the case with Y + � Ŷ +. For more detailed discussion of the

Y + = Ŷ + case, see Whalley & Wilmott [11].

We have here only given a heuristic explanation of the boundary conditions. Dumas [17]

and Dixit [18] derive them more rigorously.

We could use equation (3.16) to derive the six equations for the six unknowns. However,

these equations are unwieldy and writing them down explicitly does not add any insight

into our problem. Instead, we shall for the rest of this paper concentrate on the special

case in which buying and selling is ‘symmetric’ in the sense that the cost of a purchase or

sale only depends on the magnitude of the trade. Thus the function K(S,U) is an even

function of U. In this case, we can write Y + = Y − and Ŷ + = Ŷ −, with c = 0.

We find that the equations for the edge of the hedging bandwidth and the optimal

rebalance point are

γ

3δ(t, T )y∗2

S

Y +Ŷ +(Y + + Ŷ +) =
∂K

∂U
(S, Y + − Ŷ +) (3.23)

and
γ

12δ(t, T )y∗2

S

(Y + − Ŷ +)(Y + + Ŷ +)3 = K(S, Y + − Ŷ +). (3.24)

with the equation for V2 now being

LBS (V2) =
γσ2S2

6δ(t, T )
(Y +2

+ Y +Ŷ + + Ŷ +2

). (3.25)
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To implement this model, we first solve (3.23) and (3.24) to find Y + and Ŷ + as functions

of S , t and the Black–Scholes Gamma, V0SS (via y∗S ). This gives us our hedging strategy for

each portfolio seperately and hence for the option, i.e. hedging bandwidth and rebalance

points, right up to expiry of the option. To find the option value we put Y + and Ŷ + into

(3.25). This equation is a Black–Scholes-type diffusion equation for V2 with a non-zero

right-hand side that is a function of the costs and the Black–Scholes gamma.

4 Special cases

4.1 Proportional costs only

For our first special case let us consider proportional costs only. Costs proportional to

value traded were first examined by Whalley & Wilmott [11]. We generalize this to costs

proportional to the number (quantity) of assets traded (k2|U|) plus those proportional

to the value traded (k3S |U|), since the results are computationally similar. For example,

commission costs of trading are often of the form k2|U|. and the bid-ask spread represents

a cost of the form k3S |U|. So K(S,U) = (k2 + k3S)|U|. From equations (3.21) and (3.22)

we find that

V2t + rSV2S +
σ2S2

2
V2SS − rV2 =

σ2S2

2

(
9γ(k2 + k3S)2

4δ(t, T )

) 1
3
(∣∣∣∣V0SS +

δ(t, T )(µ− r)
γS2σ2

∣∣∣∣) 4
3

(4.1)

with

Y + =

(
3(k2 + k3S)δ(t, T )

2γ

(
V0SS +

δ(t, T )(µ− r)
γS2σ2

)2
) 1

3

.

and

Ŷ + = Y +.

This last equation tells us that the optimal rebalance point coincides with the edge of the

hedging bandwidth. In other words, when we rehedge we only do the minimum amount

of trading to stay inside the bandwidth. The equation for Y + gives the semi-width of the

hedging bandwidth.

Equation (4.1) is to be solved subject to the final condition V2(S, T ) = 0.

It is now important to distinguish between the two problems for Ww and Wwo. The V2

component of Wwo satisfies (4.1) with V0SS = 0 i.e.

V2t + rSV2S +
σ2S2

2
V2SS − rV2 =

1

2

(
3(k2 + k3S)

2σS

) 2
3 δ(t, T )(µ− r) 4

3

γ
. (4.2)

Using VBS (S, t) to denote the Black–Scholes option value we see that the V2 component

of Ww satisfies (4.1) with V0SS being the Black–Scholes value for the gamma, i.e. VBS
SS .

Denoting the solution of this by Vw
2 and the solution of (4.2) by Vwo

2 , the option value

correct to O(ε
1
2 ) is given by

V (S, t) = VBS (S, t) + ε
1
2

(
Vw

2 (S, t)− Vwo
2 (S, t)

)
+ · · · ,

These equations are easily solved by finite-difference methods (see Wilmott, Dewynne &

Howison [19]). This is clearly much faster to do that to solve the original three-dimensional

problem.
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We can also derive the hedging strategy for an option by comparing the boundaries

of the no-transaction regions with and without the option liability. Thus if we write y∗w
and y∗wo for the centres, and ±Y +

w and ±Y +
wo for the edges of the no-transaction region

respectively with (·w) and without (·wo) the option position and set

D+ = y∗w + Y +
w − (y∗wo + Y +

wo) (4.3)

D− = y∗w − Y +
w − (y∗wo − Y +

wo) (4.4)

and

−∆ = y∗w − y∗wo (4.5)

then we see to leading order that the centre of the no-transaction region, to which the

region collapses in the absence of transaction costs (ε→ 0), is

∆ = V0S (4.6)

which is exactly the Black–Scholes delta.

The bandwidth, D− 6 −∆ 6 D+, within which the actual number of assets is allowed

to vary when transaction costs are present, is given by

−V0S −
(

3(k2 + k3S)δ(t, T )

2γ

) 1
3

(∣∣∣∣V0SS +
δ(t, T )(µ− r)

γS2σ2

∣∣∣∣ 2
3 −

(
δ(t, T )(µ− r)

γS2σ2

) 2
3

)
6 −∆ 6

− V0S +

(
3(k2 + k3S)δ(t, T )

2γ

) 1
3

(∣∣∣∣V0SS +
δ(t, T )(µ− r)

γS2σ2

∣∣∣∣ 2
3 −

(
δ(t, T )(µ− r)

γS2σ2

) 2
3

)

When V0SS � Λ = (δ(t, T )(µ− r))/(γS2σ2), we can approximate this by

−V0S −
(

3(k2+k3S)δ(t,T )
2γ

) 1
3 |V0SS |

2
3

6 −∆ 6

−V0S +
(

3(k2+k3S)δ(t,T )
2γ

) 1
3 |V0SS |

2
3 .

This is valid when V0SS is large, e.g. for times close to expiry and asset prices close to the

exercise price, for large values of the risk aversion parameter, γ, and for small values of

the expected growth rate of the asset above the risk-free rate, all of which decrease Λ.

In general we see that the bandwidth increases with the option’s gamma: that is, the

bandwidth is relatively large wherever the gamma is large, in particular close to the strike

price near expiry.

Mohamed [12] has performed a Monte Carlo simulation of this hedging strategy in

the special case µ = r and found that it was the best strategy he tested (he also tested

fixed-period hedging and hedging based on fixed changes in delta).
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4.2 Fixed costs only

When costs only have a fixed component we have K(S,U) = k1. In this case we apply

equations (3.17) and (3.20) and find that

V2t + rSV2S +
σ2S2

2
V2SS − rV2 = σ2S2

(
k1γ

3δ(t, T )

) 1
2
∣∣∣∣V0SS +

δ(t, T )(µ− r)
γS2σ2

∣∣∣∣ (4.7)

with

V2(S, T ) = 0,

Y + =

(
12k1δ(t, T )

γ

(
V0SS +

δ(t, T )(µ− r)
γS2σ2

)2
) 1

4

,

and

Ŷ + = 0.

The last equation tells us that rehedging should be to the centre of the band: since costs

are fixed one might as well hedge to maximize the expected time to the next hedge.

We now distinguish between the two problems for Ww and Wwo. The V2 component of

Wwo, V
wo
2 , satisfies (4.7) with V0SS = 0, i.e.

LBS (V2) = V2t + rSV2S +
σ2S2

2
V2SS − rV2 =

k
1
2

1 (µ− r)
(3γ)

1
2

e−r(T−t)/2,

and with zero final condition.

The V2 component of Ww , Vw
2 , satisfies (4.7) with V0SS being the Black–Scholes value

for the gamma, i.e. VBS
SS . The option value correct to O(ε

1
2 ) is again given by

V (S, t) = VBS (S, t) + ε
1
2

(
Vw

2 (S, t)− Vwo
2 (S, t)

)
+ · · · , (4.8)

One point to note about the above is the appearance of the modulus of the gamma in

equation (4.7). A term like this was first found by Hoggard, Whalley & Wilmott [6] in

their extension of the Leland (fixed hedging period) model.

Again, we can extract the hedging strategy for the option position by comparison of

the edges of the bandwidths in the portfolios with and without the options. In this case,

we have

|D± + V0S | =
(

12δ(t, T )k1

γ

) 1
4

(∣∣∣∣V0SS +
δ(t, T )(µ− r)

γS2σ2

∣∣∣∣ 1
2 −

(
δ(t, T )(µ− r)

γS2σ2

) 1
2

)
,

or, when V0SS � Λ,

|D± + V0S | =
(

12δ(t, T )k1

γ

) 1
4 |V0SS |

1
2 .

The bandwidth again increases with the modulus of the gamma, and for large Γ is

proportional to a fractional power of it.
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4.3 Proportional plus fixed cost

When K(S,U) = k1 + (k2 + k3S)|U| we must solve

Y +Ŷ +(Y + + Ŷ +) =
3(k2 + k3S)δ(t, T )y∗2

S

γ
(4.9)

(Y + − Ŷ +)3(Y + + Ŷ +) =
12k1δ(t, T )y∗2

S

γ
(4.10)

for Y + and Ŷ +. Then L(V2) is given by equation (3.25). Equations (4.9) and (4.10) must

be solved numerically.

Even without solving the full problem numerically, we can however gain some useful

insights into the effect of transaction costs on option hedging strategies and valuation.

We shall consider two of these in the next section.

5 Hedging portfolios

5.1 Economies of scale

In this section we consider the effects of scale on the pricing and hedging of a portfolio

of options in the presence of fixed and proportional transaction costs.

Consider hedging first a single option, where the hedging has a certain fixed cost k1

associated with it and also proportional costs k2|N| and k3S |N|, where N is the quantity

of the underlying asset traded. For a single option we would expect the k1 fixed term to

have the greatest impact (otherwise the problem reduces to the proportional case studied

in § 4.1 for all sizes of derivative portfolios). In this case, the problem with general costs

k1 + k2|N| + k3S |N| behaves (to leading order) as in the analysis in § 4.2 for purely fixed

costs: hedging is to the optimal quantity of assets, at the centre of the hedging band

which has width proportional to k
1
4

1 |VSS | 12 , and the option value is given by (4.8).

As the number of options in the portfolio increases, the relative effect of the fixed

costs of transactions, k1, decreases whilst that of the proportional costs, k2|N| + k3S |N|
increase as |N| increases. For an extremely large portfolio of options, we would expect the

proportional terms to have the dominant effect, so the bandwidth becomes proportional

to (k2 +k3S)
1
3 |VSS | 23 and rehedging is of the minimum possible amount so as to stay within

the hedging band. For intermediate sizes of option portfolios, where the relative sizes of

the transaction cost terms are comparable, the optimal rebalance points move gradually

from the centre of the band to the edges.

We can formalize this by writing

V = nZ,

where n represents the quantity of options held in the portfolio. This implies that

y∗w = nZ0S − (µ− r)δ(t, T )

γσ2S

∂y∗w
∂S

= nZ0SS +
(µ− r)δ(t, T )

γσ2S2

and for n� 1, that (y∗w)S = O(n).
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Considering the general case of fixed (k1) and proportional (k2, k3) costs from § 4.3 we

substitute to obtain

ζη(ζ + η) =
3(k2 + k3S)δ(t, T )

γ

(
nZ0SS + ξ

)2

n3
= O(n−1), (5.1)

(ζ − η)3(ζ + η) =
12k1Sδ(t, T )

γ

(
nZ0SS + ξ

)2

n4
= O(n−2), (5.2)

where we have used the notation Y +
w = nζ, Ŷ +

w = nη, and ξ = (µ− r)δ(t, T )/(γσ2S2).

As n → ∞ the contribution from ξ and from Y +
wo, Ŷ

+
wo can be neglected and there are

two alternatives: either

O(η)� O(ζ) and O(ζ − η) = O(ζ),

or

O(η) = O(ζ) and O(ζ − η)� O(ζ).

In the former case, we see from (5.2) that O(ζ) = O(n
1
2 ), and so from (5.1), O(η) = O(1) >

O(ζ), which is a contradiction. Hence we must have

O(η) = O(ζ) = O(n−
1
3 )

and

O(ζ − η) = O(n−
5
9 ).

We see that the relative size of both the width of the hedging band per option, ζ, and

the distance of the optimal rebalance point from the centre of the band per option, η,

decrease (as n− 1
3 ) as the number of options in the portfolio, n, increases. However, the

relative distance between the edge of the hedging band and the optimal rebalance point

also decreases (as n− 5
9 , so faster than the relative decrease in the bandwidth), and the

ratio of the distance of the optimal rebalance point from the hedging bandwidth to the

width of the hedging bandwidth is O(n− 2
9 ) i.e.

ζ − η
ζ

= O(n−
2
9 ).

Thus the optimal rebalance point moves relatively closer and closer to the edge of the

hedging bandwidth as the size of the portfolio increases, demonstrating the obvious

economies of scale.

5.2 The marginal value of an option

Finally, let us look at the marginal value of an option in a portfolio. We shall assume

that costs are only proportional to the value traded.

Suppose that we have a portfolio of options (expiring on the same date for simplicity)

with value P (S, t). According to the above analysis this function is given by the solution

of a certain partial differential equation. Now, suppose that we have the opportunity

to add another option into our portfolio. Let us call the value of this new portfolio

P̄ (S, t) = P (S, t) + V (S, t). We shall find the equation satisfied by the marginal value of

the new option V (S, t).
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The function P̄ satisfies the same equation as P . The only difference between them is

that they have different payoffs at the expiry date: P̄ contains the extra obligation of the

additional option. If we assume that the value V of our extra option is small compared

with the value of our original portfolio P , i.e.

|V | � |P |,
then we can readily find the equation satisfied by V by expanding terms such as∣∣∣∣PSS +

δ(t, T )(µ− r)
γS2σ2

+ VSS

∣∣∣∣ 4
3

using the binomial expansion.

We find that the option value V is given by

V (S, t) = VBS (S, t) + ε
1
2V2(S, t) + · · · .

Here V2 satisfies

L(V2) =
2δ(t, T )

3γ

(
3γ2S4σ3

2δ(t, T )2

) 2
3

sgn

(
PSS +

δ(t, T )(µ− r)
γS2σ2

) ∣∣∣∣PSS +
δ(t, T )(µ− r)

γS2σ2

∣∣∣∣ 1
3

VBS
SS ,

where VBS is now the Black–Scholes value of the additional option.

Whether this gives an option value that is greater or less than the Black–Scholes

depends upon the sign of the product of the Black–Scholes Gamma of the option and

PSS +
δ(t, T )(µ− r)

γS2σ2
.

This can be explained quite simply by example. Assume for the sake of simplicity that

µ = r. Suppose that we hold a portfolio with a net negative gamma. If we add to this

portfolio an option also having a negative Black–Scholes gamma then we are making

our position with regard to transaction costs worse. However, if we add an option with a

positive gamma we are improving our position by reducing our transaction costs. Thus we

see that it is very important to examine the marginal effect of an option on the portfolio.

A similar effect is observed in the behaviour of the hedging bandwidth. Obviously the

centre of the no-transaction region is at the Black–Scholes delta, but the increase in the

size of the semi-width of this band is given by

ε
1
4
2

3

(
3Sδ(t, T )

2γ

) 2
3

sgn

(
PSS +

δ(t, T )(µ− r)
γS2σ2

) ∣∣∣∣PSS +
δ(t, T )(µ− r)

γS2σ2

∣∣∣∣− 1
3

VBS
SS .

Thus the bandwidth can be greater or smaller with the addition of the new claim, or

possibly greater for some values of S and t but smaller for other values.

6 Conclusion

In this paper we have derived a generalization of the global-in-time transaction cost model

of Davis, Panas & Zariphopoulou. This optimizes the hedging strategy under a negative

exponential utility function. We adopt an arbitrary transaction cost structure, and have

simplified the Davis, Panas & Zariphopoulou three-dimensional free boundary problem
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using asymptotic analysis. This results in a single parabolic partial differential equation

for the option value.

The optimal ‘hedging bandwidth’ around the Black–Scholes delta, and optimal ‘rebal-

ance points’, to which the portfolio should be adjusted, are given explicitly as the solution

of simple equations. In the case of purely fixed costs, transactions take place to the

centre of the bandwidth; however for costs proportional to the size of the transaction,

the optimal rebalance point moves away from the centre of the band, and, as the value of

the portfolio increases, the proportional costs increase in significance relative to the fixed

costs, moving the rebalance points closer to the edges of the bandwidth.

The nonlinearity of the option valuation equation also has interesting consequences for

the marginal value of an option. The value of such an extra option is strongly affected

by the portfolio to which it is being added, so a short option can have a lower fair value

to its writer than the Black–Scholes price if it is offsetting the overall portfolio position!

Explicit equations are given for these effects.

For a very general transaction cost regime, the solutions for the bandwidth, rebalance

points, and option value still need to be found numerically, but the asymptotically

derived equations in this paper are significantly less demanding and computationally

time-consuming to solve than the three-dimensional free boundary problem from which

they were derived.
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