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Homework 2: Innovation of construction materials
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Problem 1

For the polygon, using notations as in the assignment, the shape factor is to be determined.

I
¢ = 12F
In theory, this value results from a ratio of moments (elastic and plastic).
In order to determine ¢, the area moment of inertia and the area have to be determined.

1. Area moment of inertia

In order to find the area moment of inertia, we start from a base triangle which constitutes the
polygon by rotation around the center point.

For a rectangular triangle, by elaborating
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It follows that
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These values can be doubled to obtain the value for a base triangle due to symmetry




From this:
L =1+]1,

Using Steiner, the moment of inertia is calculated with respect to the central axis:
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That value has to be divided by two in order to have an in-planar moment of inertia.
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One finally obtains:
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The same can be done using Maple:
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Goniometric identities allow re-writing this in the shape proposed in the homework assignment.
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QED
Next, it will be demonstrated that above expression has a true maximum for n=3.

In order to achieve this, ¢ is rewritten:
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In order to prove the maximum, a series development of the latter part is performed:
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The derivative of this expression is negative for n = 3 thus ¢(n) is a continuously decreasing
function. This means that n is the natural number still representing a polygon, with the largest shape
factor.
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In conclusion: the shape factor has a true maximum for n=3.



Problem 2

This problem is assessed on a separate piece of paper.



