
8  Centrifugal separation 
 
The basic equations for most centrifugal modelling were introduced 
in Chapter 5. The liquid drag force was given in equation (5.4), under 
streamline flow, and the centrifugal field force was provided in 
equation (5.18). It is a simple matter to equate these to arrive at an 
analogue equation to the terminal settling velocity, equation (5.5), but 
with one significant difference 
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the distance with time differential is not constant. In a centrifugal 
field the particle moves radially, see Figure 8.1 and equation (5.18), 
and the radial position is part of the field force – hence the particle 
accelerates during its travel in the radial direction. Thus, to determine 
the particle position as a function of time integration is required. 

It is well known that from a strict physical definition of forces on a 
particle, in circular motion, the centripetal force and not the 
centrifugal force should be considered. An unrestrained particle 
would leave its orbit tangentially if the centripetal force was 
suddenly removed. This is what happens with particles in cyclone 
separation from gases and this is discussed further in Chapter 14. 
However, this chapter is concerned with separation of particles in 
rotating flow within a viscous medium, usually water. The particle 
will not travel tangentially to one orbit, but to lots of orbits, giving 
the impression of radial movement outwards (provided the particle is 
denser than the surrounding continuous phase). Mathematically, we 
can use the well-known expressions, such as equations (5.18) and 
(8.1), to describe this travel. 

As illustrated in Figure 8.1, the centrifugal acceleration is simply 
the product of the radial position (r) and the square of the angular 

velocity (ω). The SI units of angular velocity are s−1, but calculated by 
converting from revs per minute (rpm) into radians per second – then 
ignoring the dimensionless radian term. In solid body rotation, such 
as a centrifuge, this is easily calculated from the rotational speed, 

usually provided in rpm. Thus, 1 rpm is 2π s−1 as an angular velocity. 
In free body rotation, such as the hydrocyclone, the angular velocity 

is calculated from the tangential velocity (uθ) by 

r

uθ=ω         (8.2) 

this is also illustrated on Figure 8.1. In the hydrocyclone the principle 
known as the conservation of angular momentum is used; in which 
knowledge of the tangential velocity at any radial position can be 
used to calculate the tangential velocity at another because 

constant22θ11θ == ruru       (8.3) 

Buoyancy 
If a particle floats, rather 
than sinks, then it will 
move inwards in a 
centrifugal field. Particles
denser than the fluid will 
move outwards. The 
centrifugal field acts like 
an enhanced 
gravitational field in 
equation (5.3) and it is 
usual to speak in terms 
of the equivalent ‘g’ 
force: i.e. centrifugal 

acceleration / 9.81 m s−2. 

Fig. 8.1 Particle in rotation 
and definitions 
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or to take account of frictional losses within the hydrocyclone 
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where n” is an empirical constant, usually between 0.6 and 1. 
In filtration within a centrifugal field the body force acts on the 

liquid, which can pass through the filter medium, or septum, similar 
to a washing machine or spin drier. The rotation acts in a similar way 
as increasing the pressure effecting the filtration and it is possible to 
deduce what this equivalent pressure difference is, using an equation 
analogous to that given by the static component of Bernoulli’s 
equation (depth x density x acceleration) 
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where ro is the radius of the centrifuge and rL is the inner liquid radial 

position and ∆PCH is sometimes called the centrifugal head.  
From all of the above, it should be apparent that modification of 

the equations discussed in Chapters 4 and 5, for an enhanced body 
force due to rotation is simply required. 

8.1 Sedimenting centrifuges 

The analogue continuous gravitational equipment design, to 
centrifuges, was covered in Section 5.4. Applying a similar logic to 
the critical trajectory model illustrated in Figure 5.6, the critical 
particle enters the centrifuge at radial position rL and leaves at radial 
position ro – assuming that the particle is denser than the liquid, see 
Figure 8.2. Equating the times taken for the particle to move radially 
and for it to progress axially provides the following expressions, 
based on equations (8.1) and (5.4) 
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where the equation (8.6b) is the volume of the machine divided by 
the volume flow rate; i.e. analogue to equation (5.4). Combining these 
equations and multiplying through by the acceleration due to gravity 
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The term in the square brackets is the terminal settling velocity under 
gravity, equation (5.5), making this substitution and rearranging 
gives 
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It is notable that the left hand side of equation (8.7) is identical to the 
left hand side of equation (5.28). Thus, equation (8.7) represents a 
centrifuge that has the same settling capacity as the plan area of a 

Fig. 8.2 Critical particle 
trajectory in a centrifuge 
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gravity settling basin. This is illustrated further as follows, the 
parameters that are defined by the process are called sigma-process 
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i.e. for a given particle size there will be a certain flow rate (Q) at 
which all particles of this size are removed. If this flow rate is 
exceeded then particles of this size start to appear in the effluent. 
Thus, the process variables (size and flow rate) defines the sigma 
value. If the centrifuge is 100% efficient, the sigma process will be 
equal to the machine based parameters, called sigma-machine 
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Both equations (8.8) and (8.9) have the SI units of area and both 
represent the theoretical plan area of a gravity settling basin that 
would perform the same separation duty on the solids. Introducing 
an efficiency factor (EA) to take account of poor flow distribution 
within the machine and other factors reducing the separation 
capacity gives 
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It is worth noting that, under gravity, particles less than 2 µm in size 
might not settle because of molecular bombardment from the liquid 
and colloidal forces. However, in a centrifugal field the body force is 
much stronger and these particles have a greater chance of settling. 
Hence, a separation that might not be possible under gravity might 
be possible in a centrifuge. Obviously, a separation that is possible 
under gravity will be much quicker in a centrifuge, due to the 
enhanced g force. However, if there is little density difference 
between the particle and fluid the separation under gravity and in a 
sedimenting centrifuge will be slow, or impossible. 

In a continuous sedimenting centrifuge there is always the 
problem of how to remove the deposited solids continuously and 
how to enhance the separation. Various designs are used including: 
scroll discharge decanter, time activated nozzle discharge disc stack 
and the continuous tubular centrifuge. These are illustrated in Figure 
8.3. In the scroll discharge machine the Archimedean scroll rotates 
very slightly slower than the centrifuge, to convey the solids up the 
beach and out of the machine. The disc stack centrifuge provides a 
lot of parallel settling chambers, similar to the lamella separator in 
Figure 6.16. However, solids discharge is usually intermittent from 
this machine, limiting its application to low concentration slurries. In 
the tubular bowl centrifuge there are no internal structures, so it is 
possible to run the machine at very high rotational speeds, up to 
30000 rpm. Continuous discharge relies upon flushing material out of 
the machine using displacement by incoming material and these 
devices are usually used on liquid/liquid separations or emulsions. 

 

Fig. 8.3 Some sedimenting 
centrifuge designs 

Fig. 8.4 The hydrocyclone 
and flow patterns inside 
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The machines with internal structures have slightly modified forms 
of the sigma expression to account for the differences in geometry. 
However, the sigma values are still related to the equivalent settling 
basin plan area. 

8.2 Hydrocyclones 

Figure 8.4 illustrates a hydrocyclone, including the flow patterns 
found within the device. The tangential inlet causes the fluid to 
rotate, rather than mechanically rotating the wall, hence these devices 
are described as having no moving parts. Of course, a pump or other 
prime mover for the suspension is required. The flow pattern within 
the hydrocyclone is complex and there are three velocities that need 
to be considered. The tangential velocity gives rise to particles subject 
to the centrifugal field force and is, therefore, critical to the operation 
of the hydrocyclone. Tangential velocities of the liquid, and solids, 

may be up to 20 m s−1. The radial velocity is much lower, usually less 

than 0.1 m s−1. However, within the device there is a net flow of 
liquid towards the centre and a net flow of solids away from it. 
Hence, it is important to distinguish between the radial liquid, or 
solid, flow. The third velocity is in the axial direction. This velocity 
has to be considered carefully because the hydrocyclone has two 
outlets, continuously splitting the feed in to two separate streams. 
The overflow contains a suspension that is more dilute than the feed 
and has a finer particle size distribution. By contrast, the underflow is 
a suspension more concentrated than the feed and has a coarser 
particle size distribution. Thus, the hydrocyclone acts as both a 
thickener (i.e. concentrates a suspension) and a classifier (i.e. selects 
particles of a specific size). The axial velocity must take material to 
the two outlets and the suspension near to the wall of the 
hydrocyclone flows axially to the underflow. The material near to the 
centre of the hydrocyclone flows axially to the overflow. Hence, there 
is axial flow downwards, and upwards, within the hydrocyclone as 
illustrated in Figure 8.5. 

A further understanding of these axial flows can be obtained by 
considering the hydrocyclone primary and secondary vortices. The 
primary vortex spirals down towards the underflow taking the larger 
particles with it: these are centrifugally encouraged towards the wall 
of the hydrocyclone. However, the geometry of the hydrocyclone 
causes flow reversal towards the central axis of the device, giving rise 
to the secondary vortex that spirals upwards to the overflow. It is the 
finer particles that are caught within the secondary vortex. A vortex 
finder is used on the overflow to minimise short circuiting of solids 
from the feed directly to the overflow. 

Referring to Figure 8.5, the argument can be made that because 
there is axial flow upwards into the overflow and downwards into 
underflow there must be a shear plane within the hydrocyclone 
where there is no net velocity in the axial direction. In fact, the shear 
plane is a surface, or locus, because the device is three dimensional; 

 

tangential: 

axial: 

Fig. 8.5 Velocities within 
the hydrocyclone 

radial: 
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hence, this has become known as the Locus of Zero Vertical Velocity 
(LZVV). However, it is a misnomer because the hydrocyclone could 
operate equally efficiently in any orientation and the term should 
really be locus of zero axial velocity. The concept of this LZVV is very 
important and it can be used to explain some of the observed 
behaviour in the hydrocyclone. Within the device it is possible to set 
up a force balance between the centrifugal force and the liquid drag 
force. The latter pulls the particles inwards, as liquid must flow 
inwards in order to enter the overflow. Hence, particles may adopt an 
orbit; where the drag force is balanced by the centrifugal force. 
Particles that orbit at a radial distance greater than the LZVV will be 
in the primary vortex and will tend to report to the underflow. 
Particles orbiting at radial distances less than the LZVV will be in the 
secondary vortex and will be carried into the overflow. Thus, the 
particle size that orbits at the LZVV will have no preference for the 
overflow or underflow; i.e. it will have an equal chance of entering 
either exit. This is defined as being the cut size (x50) of the 
hydrocyclone, see Figure 8.7. Again, the term is misleading as it could 
be assumed that no particles bigger than the cut size enters the 
overflow; which is very significantly different from the true meaning 
of equal chance of entering either flows. For a particle to be radially 
stationary on the LZVV the force due to liquid drag inwards must be 
balanced by the particle centrifugal field force outwards, Figure 8.6 
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where R is the radius of the LZVV. Hence, it is possible to predict the 
cut size of the hydrocyclone provided the terms on the RHS of 
equation (8.11) are known. This approach is known as the equilibrium 
orbit theory. There are three variables that must be deduced before the 
cut size can be estimated: the radial liquid velocity, the radial position 
of the LZVV and the angular velocity at the LZVV. The remaining 
physical constants should be straightforward to obtain.  

The radial position of the LZVV is deduced by assuming that the 
LZVV is a shape that is identical to that of the overall hydrocyclone, 
but at a smaller radius, and that the volumetric flow split of overflow 
rate compared to feed rate is equal to the volume ratio within the 
hydrocyclone; i.e. 

rate feed volume

rate overflow volume

nehydrocyclo inside volume

LZVV inside volume
=  

see Problem 8 for a worked example of this.  
Once the radial position of the LZVV has been deduced it is 

possible to calculate the radial liquid velocity if it is assumed that the 
liquid flow entering the overflow is uniformly distributed over the 

Fig. 8.6 Equilibrium orbit at 
the LZVV with liquid drag 
and centrifugal forces 
balanced 

Fig. 8.7 Size distributions 
of feed, overflow and 
underflow showing the 
cut size. Note that this is 
an idealised plot 
assuming equal volume 
flow split between the 
underflow and overflow 
– hence the two outlet 
curves should equal the 
feed curve. 
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entire surface of the LZVV. Hence, after calculating the equilibrium 
orbit radius (R) the surface area of the LZVV can be deduced from the 
equations of surface area of a cylinder and cone, see the Problems for 
these. The radial liquid velocity inwards is then the volume flow rate 
in the overflow divided by this surface area. The angular velocity at R 
is deduced using equations (8.2) and (8.3). Firstly, the tangential 
velocity at the inlet to the hydrocyclone is determined by dividing the 
feed rate by the cross-sectional area of the feed pipe. This gives the 
tangential velocity at the wall of the hydrocyclone, equation (8.3), or 
(8.4), can be used to convert this to tangential velocity at the LZVV 
and equation (8.2) is used to deduce the angular velocity at this point. 

Experimental observations performed using glass and transparent 
plastic hydrocyclones have shown that there exists a mantle region 
within the hydrocyclone, in which there is little radial flow over the 
LZVV. The experimenters injected a pulse of dye into the 
hydrocyclone and it remained at the LZVV corresponding to the 
region where the hydrocyclone is cylindrical, but not the conical 
section; i.e. the dye did not accumulate in the conical section. Hence, 
in order to use equation (8.11) the liquid velocity inwards can be 
modified by neglecting the surface area of the cylindrical section of 
the LZVV; i.e. the overflow rate divided by the surface area of the 
conical section of the LZVV gives the liquid velocity corrected for no-
flow over the mantle region.  

Equation (8.11) can be used to deduce the cut size, but it does not 
provide any information on the proportion of particles finer than the 
cut size that will enter the underflow (other than the knowledge that 
this will be less than 50%), nor on the proportion of particles larger 
than the cut size that will enter the overflow. This information is 
provided in the grade efficiency curve, which is illustrated by Figures 
8.7 and 8.8. The formal definition of grade efficiency (E1) is given 
below 
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However, there is a problem with this simple definition of grade 
efficiency: if the feed was simply taken into a box and split into two 
separate outlets, with equal flows, the grade efficiency according to 
equation (8.12) would be 50%, but the system has not achieved any 
degree of particle classification (sorting by size). To overcome this 
shortcoming the reduced grade efficiency is used, which is the grade 
efficiency by equation (8.12) minus the volumetric flow split entering 
the underflow. The volumetric flow split is know as the recovery (Rf). 
In practice, using this definition for reduced grade efficiency will 
result in values approaching zero for small particle sizes, but at larger 
particle sizes the values will be 100% minus the recovery. Whereas 
the value at larger particle sizes should be 100%. Hence, a modified 
reduced grade efficiency is usually used, with the correct limits of 
zero at low particle size and 100% at high sizes 

Grade efficiency 
In particle classification it
is usual to have a single 
feed stream and two 
outlet streams – one with 
particles finer than the 
other, and it is usual to 
define the grade 
efficiency as being the 
fraction by mass of 
particles reporting to the 
fine cut of the classifier. 
Grade efficiency in 
hydrocyclones is defined 
as fraction by mass 
entering the underflow, 
i.e. the coarser cut. It is 
also sometimes called the 
recovery curve. With the 
term grade efficiency 
care is always needed to 
determine if the 
definition is recovery to 
the fine, or coarse, 
fraction from the 
classifier. 

Fig. 8.8 Reduced grade 
efficiency curve and 
ideal classifier showing 
a vertical line at the cut 
size. 
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and a sharpness of separation can be deduced from 
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A residence time model for hydrocyclones, similar to that derived for 
centrifuges before equation (8.7), provides the following result 
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The derivation was first published by Rietema and his work was later 
extended by Svarovsky. Consideration of equation (8.15) leads to the 
conclusion that there should be an optimum design: minimising cut 
size and pressure drop and maximising flow rate. Equation (8.15) is 
useful as it relates cut size to pressure drop over the hydrocyclone. 

8.3 Filtering centrifuges 

A schematic illustration of a filtering centrifuge is shown in Figure 
8.9. As with sedimenting centrifuges, a major design consideration is 
the removal of solids in order to permit continuous operation of the 
industrial equipment. In filtering centrifuges, a more coherent solid 
structure is obtained due to the two forms of dewatering that apply: 
centrifugation and filtration. However, mechanical devices are still 
required to remove the cake in a semi-continuous manner. This can 
be achieved by the methods described in the box. 

In most of the above filtering centrifuge types there is an 
identifiable cycle which is illustrated in the following table. 

 
Table 8.1  Centrifuge full cycle 
 

Function Time (s) Cycle time (%) 

Accelerate 50 to 500 rpm 40 5 

Load & filter at 500 rpm 277 32 

Accelerate to 1050 rpm 90 10 

Spin dry at 1050 rpm 119 14 

Wash at 1050 rpm 10 1 

Spin dry at 1050 rpm 236 27 

Slow down to 50 rpm 90 10 

Discharge at 50 rpm 15 2 

   

Total cycle time 877 100% 

Basket load per cycle of solids 140 kg 

Productivity 575 kg h−1 

 
The operations in italics in Table 8.1 are considered in the rest of this 
chapter, starting with the modification of the filtration theory already 

 

Fig. 8.9 Definition of 
terms within a filtering 
centrifuge 

Cake removal 

An oscillating plate that 
pushes the cake out of the 
machine in a pusher 
centrifuge, a knife that 
periodically enters the 
cake and scrapes it away 
in a peeler centrifuge and  a 
rotating filter bag that is 
periodically pulled inside 
out; thus discharging its 
contents in the inverting 
bag centrifuge, the latter is a 
popular centrifuge type 
within the pharmaceutical 
industry. It is also possible 
to stop a centrifuge and 
manually dig the cake 
away. 
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covered in Chapter 4, to account for its application in a centrifugal 
field and filtering on the inside of a cylindrical surface. 

It is possible to combine the basic filtration equations (4.7) and 
(4.10) and rearrange to give 
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However, when filtering on the inside of a cylinder the effective 
filtering area will be continually decreasing because of the shrinking 
of the radius on which the new cake forms. Hence, a consideration of 
the two areas contributing towards the equations (4.7) and (4.10), 
provides the alternative form to equation (8.16) 
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where Ao is the area before any solids deposition occurs and is 

hrA oo 2π=  (8.18) 

See Figure 8.9 for an illustration of these terms. Integration of 
equation (8.17), under constant pressure conditions, provides 
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where Alm and Aav are the log-mean and average areas respectively. 
They can be calculated from 
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For filtering centrifuges the constant pressure, to be used in equation 
(8.19), can be calculated by equation (8.5). For data analysis, equation 
(8.19) can be rearranged into the form 
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a similar relation to equation (4.19) which was used for constant 
pressure cake filtration analysis and illustrated in Figure 4.10. 
Equation (8.23) can be used for data analysis provided that the areas 
do not change significantly; this is true at the start of the filtration. 
Hence, under these conditions, a plot of t/V against V will be a 
straight line that can be used to deduce the filter cake specific 
resistance from the gradient and the cloth resistance from the 
intercept. Under these conditions Ao may need to be used for the log 
mean and average areas. 

More detailed information on the areas can be obtained by 
conducting a material balance on the solids inside a batch centrifuge. 
Imagine a batch centrifugation has resulted in two products: a filtrate 
of volume V and a cake of volume hA. The balance provides: 

Equipment 
See: 
www.midlandit.co.uk
/particletechnology 
for links to equipment 
suppliers with pictures 
of the equipment 
described here. 

Fig. 8.10 Filtration on the 
inside of a cylinder – terms 
used in material balance 
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total volume slurry in the centrifuge was (V+hA)  m3 

volume of solids at the start is   Cf(V+hA) m3 

volume solids filtered and in cake is  ChA  m3 
where C is the cake concentration and Cf the feed slurry 
concentration of solids, both by volume fraction. Hence, the mass 
balance on the solids gives 
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and, see Figure 8.10, from the geometry the cake volume is 
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Hence, combining these equations and rearranging gives 
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Equation (8.24) provides the cake radius as a function of filtrate 
volume, which can be used in equations (8.21) and (8.22) to give the 
filtering areas. This enables a more detailed analysis of the filtration 
data than that described under equation (8.23) and it can be used as 
part of the simulation, or modelling, of centrifugal filtration as 
described in Figure 8.11. Combining equations (8.19) to (8.22) and 
(8.5) for total pressure, noting that c is the dry cake mass per unit 
volume of filtrate, but forming inside a cylinder between ro and rc, i.e. 
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provides the following simulation equation which is valid for 
filtration and for cake washing 
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where C is the cake concentration by volume fraction and ρm is the 
mean suspension density, see equation (6.12). During cake washing, 
the cake radius (rc) will remain constant and the mean suspension 
density will be the density of the washing liquid, not including any 
solids. In many instances the liquid radius (rL) is also a constant as 
the feed is controlled by an overflow weir.  

8.4 Washing and dewatering 

After filtration the cake will contain pores between the solids with 
retained solution present. In many cases, e.g. in some pharmaceutical 
formulations, it is not desirable to leave solutes from the initial 
reaction present in the final solid product. Hence, fresh solvent is 
used to wash the solutes from the cake, or at least to reduce their 
concentration to a low value. After washing to remove the solutes the 

 

Fig. 8.11 Centrifugal 
filtration modelling as 
could be applied within a 
computer spreadsheet 
N.B. Rm must be finite to 
start solution off, its 
effect can be minimised 

by reducing ∆t and 
comparing results as 

0m →R   
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cake is often dewatered to reduce the amount of retained solvent in the 
pores between the solids forming the cake. The term dewatered is 
generally used regardless of whether the solvent is water, or 
otherwise. As the cake radius remains constant during washing, it is 
possible to integrate equation (8.26) directly for the time taken to 
wash the cake 
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where Vw is the volume of wash water passed in the time t. The 
values to use in equations (8.26) and (8.27) for specific resistance and 
cake concentration could be obtained from conventional cake 
filtration tests and empirical relations such as equations (4.15) and 
(4.16), where cake forming pressure is obtained from equation (8.5). 

Prior to washing, and as indicated in Table 8.1, it is usual to 
dewater the cake slightly. This will reduce the amount of solution 
that needs to be displaced from the cake and helps to reduce any 
inhomogeneity within the filter cake. Figure 8.12 compares the 
performance of cake washing with, and without, a dewatering stage 
before washing. The effectiveness of washing is usually judged by 
comparing the solute concentration in the filtrate with the value of 
solute in the solution. The wash ratio is the volume of wash liquid 
divided by the volume of the pores within the filter cake. Hence, 
under plug flow conditions, a wash volume of 1 would give a solute 
concentration of zero in the filtrate. In filter cakes the flow conditions 
can never be adequately described by plug flow, but a dewatered 
cake helps to reduce the volume of wash water required to obtain a 
given residual solute concentration.  

For high removal of solute from the cake it may be necessary to 
reslurry wash the cake; i.e. take the dewatered filter cake and form 
another well dispersed slurry with it, then filter again. This is because 
cake washing on any filter is a mixture of displacement and 
diffusional flow of the solute and the latter process is very slow. The 
mass fraction of solute remaining in the washed cake (WS) can be 
related to the wash ratio (WR) and the washing efficiency (EW) by the 
following equation 

WR
E

W 







−=
100

1 W
S  (8.28) 

Typical washing efficiencies are between 40 and 80%. An example 
wash ratio curve is illustrated in Figure 8.13. 

After washing it is common to spin the cake as dry as possible, 
before discharge. There are two aspects to consider in this part of the 
dewatering process: the equilibrium residual moisture and the kinetic 
approach to that equilibrium. In the former case, for a given degree of 
force removing liquid from a cake (provided by a centrifugal field in 
this case) there will be a given amount of residual moisture retained 
by the capillary pressure force. This force is considered further in 

Fig. 8.12 Comparison of 
washing performance with 
dewatered and flooded cakes 

Fig. 8.13 Example washing 
performance at 50 and 70% 
efficiencies as provided by 
equation (8.28) 
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Chapter  13. A finite time is required for the cake to drain, hence the 
rate of approach to the equilibrium saturation level of the filter cake 
is also important. The equilibrium saturation is known as the 
irreducible saturation and saturation is usually reported in terms of a 
ratio based on the initial value: i.e. after cake formation a fully 
saturated cake has a value of 1, but during dewatering the relative 
saturation approaches the irreducible saturation if sufficient time is 
allowed. This ratio of saturation values is known as the relative 
saturation. There are two well-known models for saturation 
modelling, one developed by Wakeman and based on particle 
properties and another based on the work of Zeitsch, which is based 
on a Boltzman distribution of pore diameters. However, in 
application the Zeitsch model applies the data obtained from the 
filtration stage and will be discussed further here. 

The relation between filter cake permeability and cake specific 
resistance was provided in equation (4.12); permeability is used in 
Zeitsch’s dimensionless Drainage (DN) number 
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where σ is the surface tension and θ is the contact angle of the liquid 

on the solid. Zeitsch deduced the irreducible saturation (
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The error function (erf) is built in to most modern spreadsheets, 
hence evaluation of operating parameters, such as rotational speed, 
by equations (8.29) and (8.30) on a spreadsheet is straightforward. 

For a kinetic evaluation of drainage, Zeitsch defined a drainage 

rate constant (φ), which has the SI units of s−1, as 
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and, for convenience, it is possible to combine the drainage rate 
constant and drainage number into a single dimensionless term (B) 

t
D

B φ+=
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1
 (8.32) 

where t is the time during drainage. According to the Zeitsch model, 
the relative saturation with respect to time is 
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Figure 8.14 provides an illustration of the above theory used to 
compare rotational speeds on relative saturation and drainage times. 

On Figure 8.14, it is noticeable that there is little saturation 
reduction by spinning at 1400 rpm; the equilibrium value (irreducible 

Fig. 8.14 Comparison of rotation 
speeds and resulting drainage 
curves.  
Operating data: 
filter diameter      0.3 m 

solvent density     980 kg m−3 

solids density       1400 kg m−3 
solvent viscosity   0.001 Pa s 
cake concn.            0.3 v/v 

specific resistance 6x1010 m kg−1 
rotational speed    3400 rpm 

surface tension      0.07 N m−1 
contact angle         10 Degrees 
cake thickness       50 mm 

Fig. 8.15 Effect of cake 
thickness on saturation at a 
rotational speed of 3400 rpm 
– all other variables are as 
given below Figure 8.14 
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saturation) is 96%. At 3400 rpm the irreducible saturation is 24%. 
Hence, the beneficial effect of dewatering at higher rotational speeds 
is obvious. However, a relatively slow filtration rotational speed may 
be required to reduce the tendency for particles to penetrate the filter 
cloth. If this occurs the medium resistance term will increase and the 
cloth may even blind. Thus, gentle filtration conditions are often 
employed during the start of any filtration, building up to more 
severe dewatering conditions as time progresses. The data on Figure 
8.14 demonstrates that there is a threshold pressure that needs to be 
overcome before significant dewatering occurs. The data on Figure 
8.15 shows that dewatering is favoured by thicker cakes rather than 
thin ones. This is evident from a consideration of equations (8.29) and 
(8.30): the higher the drainage number the greater the dewatering will 
be. The rotational velocity has a significant effect on the dewatering 
as it is raised to the power 4 in the expression and the cake thickness 
(ro-rc) is raised to the power 2. Clearly, the benefit from increasing the 
cake thickness, on the reduction in cake moisture, becomes less 
significant at higher depths. Also, productivity calculations often 
suggest that thin cakes provide greatest throughputs; so, it is likely 
that there is an optimum cake thickness for any operation and that it 
is a balance between filtration, washing and dewatering 
requirements. The analysis provided by the above equations can be 
used to deduce that optimum cake height and, therefore, optimum 
throughput provided the numerical input variables are known, or 
can be measured. 

8.5 Summary 

A centrifugal field force can be used to speed up sedimentation and 
filtration. A sedimenting centrifuge, or hydrocyclone, may be used 
instead of gravity settlement and a filtering centrifuge enhances the 
rate at which liquid passes through the filter cake and cloth. In 
practice, in filtering centrifuges centrifugal sedimentation should be 
expected as well as filtration. The models of gravity sedimentation 
and pressure filtration were adapted to a centrifugal field force in this 
chapter. 

8.6 Problems 

1. 

i). The equation for the rate at which a particle will settle in a 
gravitational field, neglecting the acceleration of the particle, is Ut=... 
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ii). The equation for the rate at which a particle will move in a 
centrifugal field, neglecting the acceleration of the particle, is dr /dt =... 

a: 
µ

ωρρ

18

)(

d

d
2

s
2 rx

t

r −
= b: 

µ

ωρρ

18

)(

d

d
2

s
3 rx

t

r −
= c: 

µ

ρρ

18

)(

d

d s
2 gx

t

r −
=  



Fundamentals of Particle Technology 89 

 
iii). Why is the rate of motion radially in a centrifugal field not a 
constant, unlike settling under gravity? 
 
iv). The diagram on the right illustrates a homogeneous oil emulsion 
contained in a circular channel rotating at 1000 rpm. The diameter of 
the outer circle is 30 cm, and the distance between the walls, i.e. the 

channel width is 2.5 cm. The angular velocity of the channel is (s−1): 
a:  1000 b:  6280 c:  105 d:  3140 
 
v). If the oil is less dense than the surrounding water an oil droplet 
will travel inwards on the application of a centrifugal field force, just 
as oil floats in a gravitational field. In the integration of the 
centrifugal rate expression with respect to time and radial distance, 
the upper or top limit of the integration of radial position is (cm): 
a:  30 b:  12.5 c:  15 d:  27.5 
 

vi). The oil and water densities are 800 and 1000 kg m−3, respectively 
and the viscosity of water is 0.001 Pa s, the time taken (neglecting 
acceleration) before a sample of emulsion withdrawn at the inner 

radius contains no particles bigger than 10 µm in diameter is (s): 
a:  15 b:  2290 c:  -15 d:  150 
 

2. In a continuous tube type centrifuge 5.4 m3 min−1 of an aqueous 

suspension is being processed and all the particles of diameter 10 µm 
or more are being removed.  The solid and liquid specific gravities 

are 2.8 and 1.0 respectively, and the liquid viscosity is 10−3 Pa s. 

i). The volume flow rate was (m3 s−1): 
a:  0.0015 b:  0.09 c:  324 d:  5.4 

ii). Stokes' settling velocity of the 10 µm particle was (m s−1): 

a:  9.8x10−6 b:  9.8x10−7 c:  1.5x10−4 d:  9.8x10−5 
iii). The particle Reynolds number was: 

a:  2.7x10−3 b:  275 c:  9.8x10−5 d:  9.8x10−4 

iv). The sigma process value was (m2); 
a:  920 b:  150 c:  9200 d:  590 
 

3. The machine used in the above question had a length and 
diameter of 1.5 and 0.75 m respectively.  The pool depth (i.e. ro - rL) 
was 0.1 m, and the operating speed was 1800 rpm. 

i). The rotational speed was (s−1): 
a:  190 b:  380 c:  11000 d:  94 

ii). The volume of the centrifuge pool ONLY was (m3): 
a:  0.31 b:  0.20 c:  0.62 d:  0.05 

iii). The 'sigma machine' value was (m2): 
a:  19 b:  840 c:  3600 d:  2200 
iv). Compare the two sigmas for the efficiency of the machine (%): 
a:  26 b:  4.3 c:  110 d:  30 

 

Questions 2 and 5 

Consider the axial and 

radial flow in a tube 

centrifuge.  If the start 

radius is, in fact, the 

inner diameter of the 
centrifuge, i.e. between r

L
 

and the central axis there 

is only air, and we 

consider a critical  

particle trajectory we can 

derive the following 

equations  
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where Ut is the terminal 

settling velocity of the 
critical particle under 
consideration.  This is the
area of a settling basin 
that would perform the 
same duty under the 
given flow rate.  The 
theoretical capacity of 
the centrifuge is 
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4. The sigma values of four machines labelled a, b, c and d are 200, 

400, 600 and 1200 m2, respectively.  Assuming they cost the same, 
which machine would you recommend? 
 
5.  
i). Derive an expression for the volume fraction of a centrifuge, based 
on an imaginary start radius that exists between rs and ro (i.e. p=). 

 
ii). Using rs instead of rL  and equating the two sigma terms (see box 

above), derive an expression for rs. 

 
iii). Combine the answers to parts (i) and (ii) to give an expression for 
the proportion of particles removed as a function of flow and 
material properties, i.e. p or the grade efficiency=... 
 
8. The feed and overflow rates of the hydrocyclone illustrated are 36 
and 23 litres per minute, the liquid viscosity is 0.0015 Pa s, the solid 

and liquid densities are 2000 and 1000 kg m−3, respectively. These 
questions determine the separation size for the hydrocyclone using 
equilibrium orbit theory. 
i). If Ro is the internal radius of the hydrocyclone, the fractional 

volume inside the locus of zero vertical velocity is: 

a:  (R/Ro)
 3 b:  (R/Ro)

 2 c:  2lRπ  d:  lR2/lRo
2 

ii). By assuming that the fractional volume inside the locus of zero 
vertical velocity is equal to the proportion of the feed flow going into 
the overflow (O/F), the equilibrium radius was (m): 
a:  0.0052 b:  0.016 c:  0.032 d:  0.0080 
iii). By considering the locus of zero vertical velocity as a surface over 
which the flow entering the O/F is uniformly distributed the liquid 

velocity over the LZVV was (m s−1): 
a:  0.025 b:  0.057 c:  0.0186 d:  0.069 

iv). The inlet velocity, hence tangential velocity at Ro, was (m s−1): 

a:  5.97 b:  11.9 c:  7.32 d:  3.0 
v). Using the principle of the conservation of angular momentum, 
and assuming that all the inlet flow occurs at Ro, the tangential 

velocity at the equilibrium orbit radius was (m s−1); 
a:  14.9 b:  45.8 c:  9.54 d:  7.47 

vi). The separation or cut size of the hydrocyclone was (µm): 
a:  2.0 b:  6.0 c:  9.4 d:  12 
vii). The particle Reynolds number at the LZVV was: 
a:  0.074 b:  0.12 c:  0.15 d:  0.30 
 

9. Reitema's residence time model for an optimum design is given 
left, where L is total length.  Using your answer for (8.vi) for the 
separation size, the hydrocyclone pressure drop was (bar): 
a:  0.84 b:  3.4 c:  5.8 d:  7.9 
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The equilibrium orbit (R) of
a particle at the locus of
zero vertical velocity is
given by 
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where Vi is the tangential 

velocity of the liquid in the 
hydrocyclone at the 
equilibrium orbit position 
and U is the inward radial 
velocity of the liquid.  The 
principle of the 
conservation of angular 
momentum gives 

constantii =rV  

and the surface area and
volume of a cone are 

rlπ  3/2lrπ  

where l is height or length. 


