The Theory of Gravitation

7-1 Planetary motions

In this chapter we shall discuss one of the most far-reaching generalizations
of the hemasn mind. While we are admiring the human mind, we should take some
time off to stand in awe of a nasure that could follow with such completeness and
generality such an elegantly simple principle as the law of gravitation. What is
this law of gravitation? It is that every object in the universe attracts every
other object with a force which for any two bodies is proportional to the mass of
each and varies inversely as the square of the distance between them. This state-
ment can be expressed mathematically by the equation

#
F =g,
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If to this we add the fact that an object responds to a force by accelerating in the
direction of the force by an amount that is inversely proportional to the mass of
the object, we shall have said everything required, for a sufficiently talented
mathematician could then deduce all the consequences of these two principles.
However, since you are not assumed fo be sufficiently talented yet, we shall dis-
cuss the consequences in more detail, and not just leave you with only these two
bare principles. We shall briefly relate the story of the discovery of the law of
gravitation and discuss some of Hs consequences, its effects on history, the mys-
teries that such a law entatls, and some refinements of the law made by Einstein;
we shall also discuss the relationships of the Jaw to the other laws of physics.
All this cannot be done In one chapter, but these subjects will be treated in due
fime in subsequent chapters.

The story begins with the ancients observing the motions of planets among the
stars, and finally deducing that they went around the sus, a fact that was redis-
covered later by Copermicus.  Exactly how the planets went around the sun,
with exactly what motion, took a little more work to discover. In the beginning of
the fifteenth century there were great debates as to whether they really went around
the sun or not. Tycho Brahe had an idea that was different from anything pro-
posed by the ancients: his idea was that these debates about the nature of the
motions of the planets would best be resolved if the actual positions of the planets
in the sky were measured sufficiently accurately. If measurement showed exacily
how the planets moved, then perhaps it would be possible to establish one or
another viewpoint. This was a tremendous idea~~that to find something out, i
is better to perform some careful experiments than to carry on deep philosophical
arguments. Pursuing this idea, Tycho Brahe studied the positions of the planets
for many years in his observatory on the island of Hven, near Copenhagen. He
made voluminous tables, which were then stucied by the mathematician Kepler,
after Tycho's death. Kepler discovered from the data some very beautiful and
remarkable, but simple, laws regarding planetary motion.

T-2 Kepler’s laws

First of all, Kepler found that each planet goes around the sun in a curve
called an ellipse, with the sun at a focus of the cllipse. An cllipse is not just an
oval, but is 2 very specific and precise curve that can be obtained by using two
tacks, one at each focus, a loop of string, and & pencil; more mathematically, it
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Fig. 7-1,  An ellipss,

Fig. 7-2,

Kepler's iaw of areas,

is the locus of all poinis the sum of whose distances from two fixed points (the foci)
is & constant, Or, if you will, it is a foreshortened circle {Fig. 7-1).

Kepier's second observation was that the planets do neot go around the sun
at a uniform speed, but move faster when they are nearer the sun and more
slowly when they are farther from the sun, in precisely this way: Suppose a planet
is observed at any two successive times, let us say a week apart, and that the radius
veckor* is drawn fo the planet for each observed position. The orbital arc traversed
by the planet during the week, and the two radius vectors, bound a ceriain plane
area, the shaded area shown in Fig. 7-2. If two similar observations are made a
week apart, at a part of the orbit farther from the sun (where the planet moves
more slowly), the similarly bounded area is exactly the same as in the first case,
So, in accordance with the second law, the orbital speed of each planet is such that
the radius “sweeps out™ equal areas in egual times.

Finally, a third law was discovered by Kepler much Iater; this law is of a
different category from the other two, because it deals not with only & single planet,
but relates one planet t0 another. This law says that when the orbital period and
orbit size of any two planets are compared, the periods are proportional {o the
3/2 power of the orbit size. In this statement the period is the time interval it
takes a planet to go completely around its orbit, and the size is measured by the
length of the greatest diameter of the elliptical orbit, technically known as the
major axis, More simply, i the planets went in circles, as they nearly do, the
time required to go around the circle would be proportional to the 3/2 power of
the diameter (or radius). Thus Kepler’s three laws are:

1. Fach planet moves around the sun in an cllipse, with the sun at one focus.

IL. The radius vecter from the sun to the planet sweeps out equal areas in
equal intervals of time,

IIL. The squares of the periods of any two planets are proportional to the
cubes of the semimajor axes of their respective orbits: ¥ ~ g%,

7-3 Development of dynamics

While Kepler was discovering these laws, Galileo was stadying the laws of
motion. The problem was, what makes the planets go around? (In those days,
one of the theories proposed was that the plasets went around because behind
them were invisible angels, beating their wings and driving the planets forward.
You will see that this theory is now modified! It turns out that in order to keep
the planets going around, the invisible angels must fly in a different direction and
they have no wings, Otherwise, it is a somewhat similar theory!} Galileo dis-
covered a very remarkable fact about motion, which was essential for under-
standing these laws. That is the principle of inertig—if something is moving, with
nothing touching it and completely undistarbed, it will go on forever, coasting at
2 uniform speed in a straight line. (Why does it keep on coasting? We do not
know, but that is the way it is.)

Newton modified this idea, saying that the only way to change the motion
of a body is to use force. If the body speeds up, a force has been applied in the
direction of motion. On the other hand, if #s motion is changed o a new direc-
tion, a force has been applied sideways. Newton thus added the idea that a force
1s needed to change the speed or the direction of motion of a body. For example,
if a stone is attached to a string and is whirling around in 2 circle, it takes a force
to keep it in the circle. We have to pull on the string. In fact, the law is that the
acceleration produced by the force is inversely proportional to the mass, or the
foree is proportional to the mass times the acceleration. The more massive a
thing is, the stronger the force required to produce a given acceleration. (The
mass can be measured by putiing other stones on the end of the same string and
making them go around the same circle at the same speed. In this way it is found
that more or iess force is required, the more massive object requiring more force.)

* A radivs vector is a line drawn from the sun to any point in 4 planet’s orbit,
T-2



The brifiant idea resulting from these considerations is that no tfangential foree
is needed to keep a planct in its orbit (the angels do not have to fly tangentially)
because the planet would coast in that direction anyway. If there were nothing
at il to disturb it, the planet would go off in & straight Jine. But the actual motion
deviates from the line on which the body would have gone if there were no force,
the deviation being essentially az right angles to the motion, not in the diregtion
of the motion. In other words, because of the principle of inertia, the force needed
to vontrol the motion of a planet around the sun is not a force aground the sun
but toward the sun. (If there is a force toward the sun, the sun might be the angel,
of course!)

7-4 Newton’s Jaw of gravitation

From his better understanding of the theory of motion, Newton appreciated
that the sun could be the seat or organization of forces that govern the motion of
the planets. Newton proved to himself (and perhaps we shall be able to prove it
socn) that the very fact that equal areas are swept out in equal times is a precise
sign post of the proposition that all deviations are precisely radial--that the law of
areas is a direct consequence of the idea that all of the forces are directed exactly
toward the sun.

Next, by analyzing Kepler’s third law it is possible to show that the farther
away the planet, the weaker the forces. If two planets at different distances from
the sun are compared, the analysis shows that the forces are inversely propor-
tional to the squares of the respective distances. With the combination of the
two laws, Newton concladed that there must be a force, inversely as the square
of the distance, directed in a line between the two objects,

Being a man of considerable feeling for gencralities, Newton supposed, of
course, that this relationship applied more generally than just to the sun holding
the pianets, 1t was already known, for example, that the planct Jupiter had moons
going around it as the moon of the earth goes around the earth, and Newion
felt certain that each planet held its moons with a force. He already knew of the
force helding us on the earth, so he proposed that this was a umiversal force
that everything pulls everything else.

The next problem was whether the pull of the earth on its people was the
“same” as its pull on the moon, i.e., inversely as the square of the distance. if an
object on the surface of the earth falls 16 feet in the first second after it is released
from rest, how far does the moon fall in the same time? We might say that the
moon does not fall at all. But if there were ne force on the moon, it would go off
in a straight line, whereas it goes in a circle instead, so it really falls in from where
it would have been if there were no foree at all,. We can caleulate from the radius
of the moon’s orbit {which is about 240,000 miles) and how long it takes to go
around the earth (approximately 29 days), how far the moon moves in its orbit
in 1 second, and can then calculate how far it falls in one second.* This distance
terns out fo be roughly 1/20 of an inch in a second. That fits very well with the
inverse square law, because the earth’s radius is 4000 miles, and if something which
is 4000 miles from the center of the earth falls 16 feet in a second, something
240,000 miles, or 60 times as far away, should fall only 1/3600 of 16 feet, which aiso
is roughly 1/20 of an inch. Wishing to put this theory of gravitation to & fest by
similar calculations, Newton made his calculations very carefully and found a
discrepancy 50 farge that he regarded the theory as contradicted by facts, and did
not publish his results. Six years later 2 new measurement of the size of the carth
showed that the astronomers had been using an incorrect distance to the moon.
When Newton heard of this, he made the calcudation again, with the corrected
figures, and obtained beautifu] agreement.

This idea that the moon “falls” is somewhat confusing, because, as you see,
it does not come any closer. The idea is sufficiently interesting to merit further

* That is, how far the circle of the moon’s orbit falis below the straight line tangent
t0 it at the point where the moon was one second before,
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explanation: the moon falls in the sense that it fuils away from the straight line
that it would pursue if there were no forces, Let us take an example on the surface
of the earth, Asn object released near the carth’s surface will fall 16 feet i the fArst
second. An obsect shot out herizentally will also fall 16 feet; even though it is
moving horizentaily, it stll falls ¢he same 16 feet in the same time. Figure 7-3
shews an apparatus which demonstrates this. On the horizontal track is a ball
which is going to be driven forward a little distance away. At the same height
is 2 ball which i1s going to fall vertically, and there is an electrical switch arranged
so that &t the moment the first ball feaves the track, the second ball is released,
That they come to the same depth at the same time is witnessed by the fact that
they collide in midair. An object like a bullet, shot horizontally, might go a long
way in one second-——perhaps 2000 feet—but 3t will still fall 16 feet # it is aimed
horizontally. What happens if we shoot a bullet faster and faster? Do not forget
that the earth's surface is curved. If we shoot it fast enough, then when it falls
16 feet it may be at just the sume height above the ground as it was before, How
can that be? irstill falls, but the earth curves away, so it falls “around” the earth,
‘The guestion is, how far does it have to go m one second so that the earth is
16 feet below the horizon? In Fig, 7-4 we see the earth with its 4008-mile radius,
and the tangential, straightline path that the builet would take if there were no
force. Now, if we use one of those wonderful theorems in geometry, which says
that our tangeat i the mean proportional between the two parts of the diameter
cut by an equal chord, we see that the horizontal distance travelled is the mean
proportional between the 16 feet fallen and the 8000-mile diameter of the earth,
The square oot of (16/528G) X 8000 comes out very close to 5 miles. Thus
we see that if the bullet moves at § mules a second, it then will continae to fall
toward the earth at the same rate of 16 feet each second, but will never get any
closer because the earth keeps curving away from it. Thus it was that Mr, Gagarin
maintained himself in space while going 25,000 mules around the earth at approxi-
mately 3 miles per second. (He took a Httle longer because lie was a little higher,)

Any great discovery of a new law 1s useful only if we can take more out than
we put in. Now, Newton used the second and third of Kepler’s Jaws to deduce
his law of gravitation. What did he predic? ¥First, his analysis of the moon’s
motion was a prediction because it connected the falling of obiects on the garth’s
surface with that of the moon. Second, the question is, is the orbit an ellipse?
We shall see in a later chapter how it 1s possible to calculate the motion exactly,
and indeed one can prove that it should be an eilipse,® so no extra fact is needed
to explain Kepler's first law. Thus Newton made his first powerful prediction,

The law of gravitation explains many phenomena not previously understood.
For example, the pull of the moon on the earth causes the tides, hitherto mysterious.
The moeon pulls the water up under it and makes the tides—people had thought
of that before, but they were not as clever as Newton, and so they thought there
ought to be only one tide during the day. The reasoning was that the moon puils
the water up ander it, making a high tide and a low tide, and since the ¢arth spins
underneath, that makes the tide at ong siation go up and down every 24 hours,
Actually the tide goes up and down in 12 hours. Anether school of thought
claimed that the high tide should be on the other side of the earth because, so they
argued, the moon pulls the carth away from the water! Both of these thecries
are wrong. It actually works like this: the pull of the moon for the carth and for
the water is “*balanced” at the center. But the water which is closer to the moon is
pulled more than the average and the water which is farther away from it is pulled
lesy than the average. Furthermore, the water can flow while the more rigid earth
cannot, The true picture is a combination of these two things.

What do we mean by “balanced”? What balances? If the moon pulls the
whole earth toward it, why doesn’t the earth fali right “up’ to the moon? Because
the earth does the same trick as the moon, it goes in a circle around a point which
is inside the earth but not at its center. The moon does not just go arcund the

* The proof is not given in this course.
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earth, the earth and the moon both go around a central position, each falling
toward this common position, as shown in Fig. 7-5. This motion around the
common center is what balances the fali of each. So the earth is not going in a
straight ling either; it fravels in & circle. The water on the far side is “unbalanced™
because the moon's attraction there is weaker than st is at the center of the earth,
where it just balances the “centrifugal force.” The result of this imbalance 15 that
the water rises up, away from the center of the earth. On the near side, the attrac-
tion from the moon is stronger, and the imbalance is in the opposite direction 1n
space, but agasn away from the cenfer of the earth, The net result 15 that we get
two tidal bulges.

7-8 tniversal gravitation

What ¢lse can we understand when we understand gravity? Everyone knows
the earth is round. Why is the earth round? That is easy; it is due to gravitation,
The earth can be understood to be round merely because everything attracts
everything else and so 1t has atfracted itself together as far as it can! I we go even
further, the earth is not exactly a sphere because it is rotatingy and this brings in
cenirifugal effects which tend to oppose gravity near the equator. It turns out that
the earth should be elliptical, and we even get the right shape for the ellipse.
We can thus deduce that the sun, the moon, and the earth should be (nearly)
spheres, just from the law of gravitation.

What else can you do with the law of gravitation? If we look at the moons
of Jupiter we can understand everything about the way they move around that
planet. Incidentally, there was once a certain difficulty with the moony of Jupiter
that is worth remarking on. These satellites were studied very carefully by Roemer,
who noticed that the moons sometimes seemed to be ahead of schedule, and some-
times behind. (One can find their schedules by waiting a very long time and finding
out how long it takes on the average for the moons to go around.) Now they were
ahead when Jupiter was particularly close to the earth and they were behind when
Tupiter was farther from the earth. This would have been a very difficult thing to
expiain according to the law of gravitation-—it would have been, in fact, the death
of this wonderful theory if there were no other explanation, If 2 law dogs not work
even in one place where it ought to, it is just wrong. But the reason for this dis-
crepancy was very simple and beautiful: it takes a little while to see the moons of
Jupiter because of the time it takes lght to travel from Jupiter to the earth. When
Jupiter is closer to the earth the time is a little less, and when it is farther from the
earth, the time is more. This is why moons appear o be, on the average, a little
ahead or a little behind, depending on whether they are closer to or farther from
the earth. This phenomenon showed that light does not fravel instantaneously,
and furnished the first estimate of the speed of light. This was done in 16536,

If all of the planets push and pull on each other, the force which controls,
fet us say, Jupiter in going around the sun is not just the force from the sun;
there is also a pull from, say, Saturn. This foree is not really strong, since the sun
is much more massive than Saturn, but there is some pull, se the orbit of Jupiter
should not be a perfect ellipse, and it 1s pot; it is slightly off, and “wobbles” around
the correct elfiptical orbit, Such 2 motion is a little more complicated. Attempts
were made fo analyze the motions of Jupiter, Saturn, and Uranus on the basis
of the law of gravitation. The effects of cach of these planets on each other were
calculated to sce whether or not the tiny deviations and irregularities in these
motions couid be compleiely understood from this one law. Lo and behold, for
Tupiter and Saturn, all was well, but Uranus was “weird.” It behaved in a very
pecutiar manner. §t was not travelling in an exact ellipse, but that was under-
standable, because of the attractions of Fupiter and Saturn. But even if allowance
were made for these attractions, Uranus seill was not going right, so the laws of
gravitation were in danger of being overturned, a possibility that could not be
ruled out. Two men, Adams and Leverrier, in England and France, independently,
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Fig. /6. A double-star system,

arrived at another possibility: perhaps there Is another planet, dark and invisible,
which men had not seen. This planet, ¥, could pull on Uranus. They calculated
where such a planet would have to be in order to cause the observed perturba-
tions. They sent messages to the respective observatories, saying, “Gentlemen,
point your telcscope to such and such a place, and you will see a new planet.”
It often depends on with whom you are working as to whether they pay any atten-
tion to you or not. They did pay attention to Leverrier; they looked, and there
planet N was! The other observatory then also looked very quickly in the next
few days and saw it too.

This discovery shows that Newton's laws are absolutely right in the solar
system; but do they extend beyond the relatively small distances of the nearest
planets? The first test lies in the question, do stars attract ezch other as well as
planets? We have definite evidence that they do in the double stars. Figure T-6
shows a double star—two stars very close together (there is also a third star in
the picture so that we will know that the photograph was not turned). The stars
are also shown as they appeared several years later. We see that, relative {o the
“fixed” star, the axis of the pair has rotated, 1.¢., the two stars are going around
each other. Do they rotate according to Newton's laws? Careful measurements
of the relative positions of one such double star system are shown in Fig 7-7.
There we see a beautiful ¢llipse, the measures starting in 1862 and going zll the
way around to 1904 (by now it must have gone around once more). Everything
coincides with Newton’s laws, except that the star Sirius A is not ot the focus.
Why should that be? Because the plane of the ellipse is not in the “plane of the
sky.” We are not looking at right angles to the orbit plane, and when an ellipse
is viewed at a tilt, it remains an ellipse but the focus is no longer at the same place,
Thus we can analyze double stars, moving about each other, according to the
requirements of the gravitational Jaw.
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Fig. 7-8. A globular dar cluster.

That the law of gravitation is true at even bigger distances is indicated in
Fig. 7-8, 1f one cannot see gravitation acting here, he has no soul. This figure
shows one of the most beautiful things in the sky—a globular star cluster. Al of
the dots are stars. Although they look as if they are packed solid toward the center,
that is due {0 the fallibility of our instruments, Actually, the distances hetween
even the centermost stars are very great and they very rarely collide. There are
more stars i the mterior than farther out, and as we move outward there are
fewer and fewer, It is obvious that there is an attraction among these stars,
Tt 1s clear that gravitation exists at these enormous dimensions, perhaps 100,000
fimes the size of the solar system. Let us now go further, and ook at an entire
galaxy, shown in Fig. 7-9. The shape of this galaxy indicates an obvious tendency
for its matter {0 agglomerate. Of course we cannot prove that the law here is
precisely inverse square, only that there is still an attraction, at this enormous
dimension, that holds the whole thing together. One may say, “Well, that is all
very clever but why is it not just a bali?” Because it is spinning and has angular
momentum which 1t cannot give up as it contracts; it must contract mostly in a
plane. (Incidentaily, if yon are looking for a good problem, the exact details of
how the arms are formed and what determines the shapes of these galaxies has
not been worked out.) It is, however, clear that the shape of the galaxy is due to
gravitation even though the complexities of ifs structure have not yet aliowed

Fig. 7-9. A golaxy,
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us to analyze it compietely. In a galaxy we have a scale of perhaps 50,000 to
100,000 light years, The earth’s distance from the sun is 8% light minutes, so you
can see how large these dimensions are.

Gravity appears to exist at even bigger dimensions, as indicated by Fig. 7-10,
which shows many “little” things clustered together. This is a cluster of galaxies,
just like a star cluster. Thus galaxies attract each other at such distances that they
too are agglomerated into clusters, Perhaps gravitation exists even over distances
of tens of miflions of light years; so far as we now know, gravity seems o go out
forever inversely as the square of the distance.

Not only can we understand the nebulae, but from the law of gravitation we
can even get some ideas about the origin of the stars, 1f we have a big cloud of dust
and gas, as indicated in Fig. 7-11, the gravitational atiractions of the pieces of
dust for one another might make them form little lumps. Barely visible in the figure
are “little” black spots which may be the begining of the accumulations of dust
and gases which, due to their gravitation, begin to form stars. Whether we have
ever seen a star form or not is still debatable. Figure 7-12 shows the one piece of
evidence which suggests that we have. At the left is a picture of a region of gas
with some stars in it taken in 1947, and at the right is another picture, taken only
7 years later, which shows two new bright spots. Has gas accumulated, has gravity
acted hard enough and collected it into z ball big enough that the stellar nuclear
reaction starts in the interior and turns it into a star? Perhaps, and perhaps not.
1t is unreasonable that in only seven years we should be so Jucky as 10 see 2 siar
change itself into visible form; it is much less probable that we should see two!

Fig. 7-10. A cluster of galaxies.

Fig. 7-11, An inferstellar dust clovd. Fig. 7-12. The formation of new stors?
7-8



-6 Cavendish’s experiment

Gravitation, therefore, extends over enormeus distances. But if there is a
force between any pair of objects, we ought {0 be able to measure the force berween
out own objects. Instead of having to watch the stars go around each other,
why can we not take a ball of lead and a marbie and watch the marble go toward
the ball of lead? The difficulty of this experiment when done in such a simple
manner is the very weakness or delicacy of the force. 1t must be done with extreme
care, which means covering the apparatus to keep the air out, making sure it is
not ejectrically charged, and so on; then the force can be measured. It was first
measured by Cavendish with an apparatus which is schematically indicated in
Fig. 7~13. This first demonstrated the direct force between two large, fixed balls
of lead and two smaliler balls of lead on the ends of an arm supported by a very
fine fiber, called a torsion fiber. By measuring how much the fiber gets twisted,
one can measure the strength of the force, verify that it is inversely proportional
to the square of the distance, and determine how strong it is. Thus, one may
accurately determine the coefficient & in the formula

F=62%

All the masses and distances are known. You say, “We knew it already for the
earth.” Yes, but we did not know the mass of the carth. By knowing G from this
experiment and by knowing how strongly the earth attracts, we can indirectly
learn how greai is the mass of the earth! This experiment has been called “weighing
the earth.” Cavendish claimed he was weighing the earth, but what he was meas-
uring was the coefficient & of the gravity law. This is the only way in which the
mass of the earth can be determined. € turas out {o be

6.670 X 10~ newion - m®/kg®

E is hard {0 exaggerate the importance of the effect on the history of science
produced by this preaf success of the theory of gravitation. Compare the confa-
sion, the lack of confidence, the incomplete knowledge that prevailed in the earlier
ages, when there were endless debates and paradoxes, with the clarity and simptic-
ity of this law~—this fact that all the moons and planets and stars have such a
simple rule to govern them, and further that man could understand it and deduce
how the planets should move! This is the reason for the success of the sciences in
folowing years, for it gave hope that the other phenomena of the world might also
have such beautifully simple laws.

7-7 What is gravity?

But is this such 2 simple law? What about the machinery of it? All we have
done is to describe fow the earth moves arcund the sun, but we have not said
what makes it go. Newton made no hypotheses about this; he was satisfied to
find what it did without getting into the machinery of it. o one has since given
any machinery. It is characteristic of the physical laws that they have this abstract
character. The law of conservation of energy is a theorem concerning guanftities
that have {0 be calculated and added together, with no mention of the machinery,
and likewise the great laws of mechanics are quantitative mathematical laws for
which no machinery is available. Why can we use mathematics to deseribe nature
without a mechanism behind it? No one knows. We have to keep going because
we find out more that way.

Many mechanisms for gravitation have been suggested. ¥ is interesting to con-
sider one of these, which many people have thought of from time to time. At
first, one is quite excited and happy when he “discovers™ it, but he soon finds that
it is not correct. It was first discovered about 1750. Suppose there were many
particles moving in space at a very high speed in all directions and being only slightly
absorbed in going through matter. When they are absorbed, they give an impulse
to the earth. However, since there are as many going one way as another, the
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impulses ali balance. But when the sun is nearby, the particles coming toward the
earth through the sun are partially absorbed, so fewer of them are coming from
the sun than are coming from the other side, Therefore, the earth feels a net im-
pulse toward the sun and it does not take one long to see that it is inversely as the
square of the distance—because of the variation of the solid angle that the sun
subtends as we vary the distance. What is wrong with that machirery? It in-
volves some new consequences which are ror prue.  This particular idea has the
following trouble: the earth, in moving around the sun, would impinge on more
particles which are ¢oming from its forward side than from its hind side {(when
you run in the rain, the rain in your face is stronger than that on the back of your
head!). Therefore there would be more impulse given the earth from the front,
and the earth would feel a resistance ro motion and woald be slowing up in its orbit,
One can calculate how long it would take for the earth to stop as a result of this
resistance, and it would not take long enough for the earth to still be in its orbit, so
this mechanism does not work. No reachinery has ever been invented that “explains”
gravity without also predicting some other phenomenon that does nos exist,

Next we shall discuss the possible relation of gravitation to other forces.
There is no explanation of gravitation in terms of other forces at the present time.
11 is not an aspect of electricity or anything like that, so we have no explanation,
However, gravitation and other forces are very similar, and it is interesting to
note analogies. For example, the force of electricity beiween two charged objects
iooks just like the law of gravitation : the force of electricity is a constant, with a minus
sign, times the product of the charges, and varies mversely as the gquare of the
distance. It is in the opposite direction-—iikes repel. Butis it still not very remark-
able that the two laws involve the same function of distance? Perhaps gravitation
and electricity are much more closely related than we think, Many attempts have
been made fo unify them; the so-called unified field theory is only a very elegant
attempi fo combine electricity and gravitation; but, in comparing gravitation and
electricity, the most interesting thing is the relative strengths of the forces. Any
theory that conzains them both must also deduce how strong the gravity is.

If we take, in some natural units, the repulsion of two electrons {nature’s
universal charge} due to electricity, and the attraction of two electrons due to their
masses, we can measure the ratio of eiectrical repulsion to the gravitational
attraction, The ratio is independent of the distance and is a fundamental constant
of nature. The ratio is shown in Fig. 7-14. The gravitational attraction relative
to the electrical repulsion between two electrons is 1 divided by 4.17 X 10%%
The question is, where does such a large number come from? 1t is not accidental,
like the ratio of the volume of the carth to the volume of a flea. We have considered
two natural aspects of the same thing, an electron. This fantastic number is a
natural constant, so it involves something deep in nature, Where could such a
tremendous number come from? Some say that we shali one day find the “universal
equation,” and in it, one of the roots wili be this number, It is very difficult to
find an eguation for which such a fantadic number is a natural root. Other pos-
sibilities have been thought of; one is to relate it to the age of the universe. Clearly,
we have to find another large number somewhere, Byt do we mean the age of the
universe in years? No, because years are not “natural”; they were devised by men.
As an example of something natural, et us consider the time it takes light to go
across a proton, 107 %% second. If we compare this time with the age of the universe,
2 X 10'° years, the answer is F07%2, 1t has about the same number of zeros going
off it, so it has been proposed that the gravitational constant is related 1o the age
of the universe. If that were the case, the gravitational constant woukid change with
time, because as the universe got older the ratio of the age of the universe to the
time which it takes for Hight to go across a proton would be gradually increasing.
Is it possible that the gravitational constant is changing with time? Of course
the changes would be so ¢mali that it is quite difficult to be sure.

One test which we can think of i 1o determine what would have been the effect
of the change during the past 10? years, which is approximately the age from
the earliest life on the earth to now, and one-tenih of the age of the univesse,
in this time, the gravity constant would have increased by about 10 percent. It
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turns out that if we consider the structure of the sun—the balance between the
weight of its material and the rate at which radiant energy is generated inside ig—
we can deduce that if the gravity were 10 percent stronger, the sun would be much
more than 10 percent brighter—by the sixth power of the gravity constant! If we
calculate what happens {o the orbit of the carth when the gravity is changing, we
find that the earth was then closer in. Altogether, the earth would be about 10
degrees centigrade hotier, and all of the water would not have been in the sea, but
vapor in the air, se life woald not have started in the sea. So we do nor now believe
that the gravity constant is changing with the age of the universe. But such argu-
ments as the one we have just given are not very coavincing, and the subject is
not completely closed.

It is a fact that the force of gravitation is proportional to the mass, the quantity
which is fundamentally a measure of inertia—of how hard it is to hold something
which is going around in a circle. Therefore two objects, one heavy and one light,
going around a larger object in the same circle at the same speed because of gravity,
wiil stay together because to go in a circle reguires a force which is stronger for
a bigger mass, That is, the gravify is stronger for a given mass in jusr the right
proportion so that the two objects will go arcund together. If one object were inside
the other it would stay inside; it is & perfect balance. Therefore, Gagarin or Titov
would find things “weightless” inside a space ship; if they happened to let go
of a piece of chalk, for example, it would go around the earth in exactly the same
way as the whole space ship, and so it would appear fo remain suspended before
them in space. It is very interesting that this force is exactly proportional to the
mass with great precision, because if it were not exactly proportional there would
be some effect by which inertia and wesght would differ. The absence of such an
effect has been checked with great accuracy by an experiment done frst by
Eotvos in 1909 and more recently by Dicke. For ali substances tried, the masses
and weights are exactly proportional within 1 part s 1,000,000,000, or less. This
15 a remarkable experiment.

-8 Gravity and relativity

Another topic deserving discussion is Enstein’s modification of Newton's
law of gravitation. In spite of all the excitement it created, Newton’s law of gravi-
tation is not correct! It was modified by Einstein to take into account the theory
of relativity. According to Newton, the gravitational effect is instantaneous, that
is, if we were to move a mass, we would at once feel a new force because of the
new position of that mass; by such means we could send signals at infinite speed.
Einstein advanced arguments which suggest that we cannot send signals faster
than the speed of light, so the law of gravitation must be wrong. By correcting it
to take the delays into account, we have a new law, called Einstein's law of gravi-
tation. One feature of this new law which 15 quite easy to understand is this:
In the Emnstein relativity theory, anything which has energy has mass—mass in
the sense that it is attracted gravitationally. Even light, which has an energy,
kas a “mass.” When a light beam, which has energy in it, comes past the sun there
is an attraction on it by the sun. Thus the light does not go straight, but is de-
flected. During the eclipse of the sun, for example, the stars which are around the
sun should appear displaced from where they would be if the sun were not there,
and this has been observed.

Finally, let us compare gravitation with other theories. In recent years we
have discovered that ail mass is made of tiny particles and that there are several
kinds of interactions, such as nuclear forces, etc, None of these nuclear or electrical
forces has vet been found to explain gravitation, The quantum-mechanicai aspects
of nature have not yet been carried over to gravitation. When the scale is so small
that we need the quantum effects, the gravitational effects are so weak that the
need for a quantum theory of gravitation has not yet developed. On the other hand,
for consistency in our physical theories it would be important to see whether
Newion's law modified to Einstein’s law can be further modified to be consistent
with the ancertainty principle. This last modification has not yet been completed.
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