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ABSTRACT
We provide a revised assessment of the number of exoplanets that should be discovered by

Gaia astrometry, extending previous studies to a broader range of spectral types, distances, and
magnitudes. Our assessment is based on a large representative sample of host stars from the
TRILEGAL Galaxy population synthesis model, recent estimates of the exoplanet frequency
distributions as a function of stellar type, and detailed simulation of the Gaia observations using
the updated instrument performance and scanning law. We use two approaches to estimate
detectable planetary systems: one based on the S/N of the astrometric signature per field crossing,
easily reproducible and allowing comparisons with previous estimates, and a new and more robust
metric based on orbit fitting to the simulated satellite data.

With some plausible assumptions on planet occurrences, we find that some 21 000 (±6000)
high-mass (∼ 1− 15MJ) long-period planets should be discovered out to distances of ∼500 pc for
the nominal 5-yr mission (including at least 1000–1500 around M dwarfs out to 100 pc), rising
to some 70 000 (±20 000) for a 10-yr mission. We indicate some of the expected features of
this exoplanet population, amongst them ∼25–50 intermediate-period (P ∼ 2 − 3 yr) transiting
systems.

Subject headings: astrometry — space vehicles: instruments (Gaia) — planets and satellites: general

1. Introduction

The current exoplanet census stands at around
18001, with some 600 discovered from radial ve-
locity measures, and most of the others from pho-
tometric transits. Only two (massive) astromet-
ric discoveries have been claimed (Muterspaugh
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1As of 2014 September 1, exoplanet.eu lists 1821 confirmed
planets in 1135 systems, NASA’s exoplanetarchive.ipac.
caltech.edu lists 1743 (along with ∼4000 Kepler tran-
sit candidates), while the more restrictive exoplanets.org
lists 1516 confirmed (with 1492 good orbits).

et al. 2010; Sahlmann et al. 2014), while orbit con-
straints for previously-known systems are provided
by Hipparcos (e.g. Reffert & Quirrenbach 2011;
Sahlmann et al. 2011) and HST–FGS astrometry
(e.g. McArthur et al. 2010).

The astrometric detectability and characteriza-
tion of exoplanets should change quantitatively
with Gaia, which was launched on 2013 Decem-
ber 19 and began routine operations in 2014 Au-
gust. Previous work has estimated the potentially
detectable numbers, both from periodic transit
searches in its high-accuracy multi-epoch photom-
etry, and independently from the astrometric dis-
placement of the host star.

Photometric transit detection, demonstrated a
posteriori in the comparable Hipparcos photom-
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etry for HD 209458 b (Robichon & Arenou 2000)
and HD 189733 b (Bouchy et al. 2005), has been
considered both for Hipparcos (Castellano et al.
2000; Laughlin 2000; Jenkins et al. 2002; Koen
& Lombard 2002) and Gaia (Robichon 2002; Høg
2002). Despite an accuracy of ∼1mmag per tran-
sit at G . 14− 16 (Jordi et al. 2010), the low ca-
dence makes the discovery of new transiting plan-
ets non-trivial. Dzigan & Zucker (2012), who took
into account the scanning law, Galactic structure
models, and detection limits to .16mag, con-
cluded that the low cadence and relatively small
number of measurements gives a limit on the de-
tectable orbital period of P . 10d, and a result-
ing total number of expected discoveries from Gaia
photometry of between one thousand and several
thousand.

The expected number of astrometric planet de-
tections was superficially estimated at the time of
the mission acceptance in 2000 at around 30 000
(Perryman et al. 2001), based on the limited
knowledge of exoplanet occurrences then available,
and on the higher astrometric accuracies (by a fac-
tor roughly 2) targeted at the time. Improved
studies have since been undertaken (Lattanzi et al.
2000; Quist 2001; Sozzetti et al. 2001). The most
detailed estimates have been made for subsets of
the Gaia census by Casertano et al. (2008) for
FGK dwarfs, and by Sozzetti et al. (2014) for
M dwarfs.

Casertano et al. (2008) derived an estimated
numerical yield for their sample based on star
counts from the Besançon Galaxy model, but con-
strained to V < 13 and d < 200 pc to provide
constant astrometic precision and hence uniform
Gaia detectability thresholds for their orbit-fitting
experiments. They adopted an along-scan single-
epoch measurement error of ∼11µas (∼ 8µas for
successive crossings of the two fields of view), to
be compared with the latest estimates of ∼34µas,
even for the brightest Gaia stars. They con-
cluded that Gaia will detect ∼8000 giant planets
(Mp > 1 − 3MJ) around FGK stars out to semi-
major axes 3–4AU. Their comprehensive double-
blind simulations also led to a number of conclu-
sions on exoplanet detectability and orbit relia-
bility (also for two-planet systems). For exam-
ple, they showed that planets with astrometric
S/N > 3 per field crossing and period P ≤ 5 yr
can be detected reliably and consistently, with a

very small number of false positives. At twice the
detection limit, they found uncertainties in orbital
parameters and masses of typically 15–20%, while
for favorable two-planet systems orbital elements
will be measured to better than 10% accuracy in
some 90% of cases, with the mutual inclination
angle ∆i determined with uncertainties . 10◦.

Restricting their considerations to M dwarfs,
Sozzetti et al. (2014) showed that Gaia should de-
tect some 100 giant planets across the known sam-
ple of M dwarf host stars within 30 pc, and some
2600 detections and ∼500 accurate orbit determi-
nations out to 100 pc.

Motivated by the start of the Gaia operations,
we re-assess the number of exoplanets detectable
by Gaia astrometry. Our main objectives are to
extend the previous studies to a wider parameter
range (notably spectral type and distance), while
taking account of recent estimates of exoplanet fre-
quencies as a function of host star and planet prop-
erties. We use a comprehensive host star Galaxy
population model, the latest instrument perfor-
mance estimates, and detailed simulations of the
satellite observations based on the scanning law.
We quantify detection numbers both in terms of
a simple S/N threshold per field crossing used in
earlier work, as well as a more robust detection
statistic based on orbit fitting.

The paper is organized as follows. In Section 2
we summarize the essential concepts and quan-
tities relevant to astrometric exoplanet detection
with Gaia. In Section 3.1 we describe the sam-
ple of host stars used to quantify the numbers of
planets detectable by Gaia astrometry drawn from
a population synthesis Galaxy star count model,
and in Section 3.2 we present the assumptions on
the exoplanet frequency estimates which we then
use to simulate planets around each star. In Sec-
tion 4 we derive preliminary detection statistics
based on a simple consideration of the resulting
astrometric signatures and the along-scan astro-
metric error appropriate for that stellar magni-
tude. In Section 5 we estimate planet discovery
numbers more rigorously by simulating the obser-
vations that will be made by Gaia, and quanti-
fying exoplanet detectability based on goodness-
of-fit improvements from the orbit solutions. In
Section 6 we focus on a statistically secure sub-
set that is expected to transit, determining the
distribution of transit depths, and quantifying the
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number of transit events that will simultaneously
be present in the Gaia epoch photometry. In Sec-
tion 7 we discuss results for the subsets of FGK
stars and M dwarfs, briefly comparing our pre-
dicted yields with previous assessments, and we
underline some of the uncertainties on our latest
predicted numbers.

2. Measurement and detection principles

2.1. Gaia astrometry

Gaia, as for its predecessor Hipparcos, uti-
lizes a small number of key measurement prin-
ciples (observations above the atmosphere, two
widely-separated viewing directions, and a uni-
form ‘revolving scanning’ of the celestial sphere)
to create a catalog of star positions, proper mo-
tions, and parallaxes of state-of-the-art accuracies
(Perryman et al. 2001). Crucially, both missions
provide absolute trigonometric parallaxes, rather
than the relative parallaxes accessible to narrow-
field astrometry from the ground. The observa-
tions are reduced to an internally consistent and
extremely ‘rigid’ catalog of positions and proper
motions, but whose system orientation and angu-
lar rate of change are essentially arbitrary, since
the measured arc lengths between objects are in-
variant to frame rotation. Placing both positions
and proper motions on an inertial system corre-
sponds to determining these 6 degrees of freedom
(3 orientation and 3 spin components). For Gaia,
they will be derived using the large numbers of ob-
served quasars (Claeskens et al. 2006; Perryman
et al. 2014).

On-board detection ensures that objects brighter
than G ∼ 20 at that measurement epoch will be
detected and observed astrometrically and pho-
tometrically, the latter through low-resolution
spectrophotometry at the trailing edge of the as-
trometric field (see Jordi et al. 2010, Figs 1–2).
The highest photometric accuracy will come from
the unfiltered G band astrometric field photom-
etry, which will range (per field crossing) from
1mmag or better for G < 14mag to ∼ 0.2mag at
G = 20mag (Jordi et al. 2010, Figure 19).

Final astrometric accuracies (in positions, par-
allaxes, and annual proper motions) should be
roughly constant at ∼ 10µas (micro-arcsec) be-
tween V ∼ 7 − 12, degrading according to pho-
ton statistics to ∼20–25µas at V = 15, and to

∼300µas at V = 20 (precise values depend on
photometric passband, star color, and astromet-
ric parameter). These final accuracies result from
the combination of the one-dimensional measure-
ments throughout the mission, assembled using a
global iterative adjustment (Perryman et al. 2001;
O’Mullane et al. 2011; Lindegren et al. 2012).

A single star at finite distance and with recti-
linear space motion can be described by just 5 as-
trometric parameters, representing its position (α,
δ), proper motion (µα, µδ), and parallax ($). Any
orbiting companions, including those of planetary
mass, will perturb the stellar motion and result
in deviations of the individual (‘intermediate’) as-
trometric data from a simple 5-parameter model.
Detectability will depend on the amplitude of the
deviations (Section 2.2), and the number and cov-
erage of the individual measurements.

The number of individual field of view cross-
ings, Nfov, along with the final mission accuracies
from which they are constructed, are primarily de-
pendent on ecliptic latitude, β. This results from
the satellite ‘scanning law’, which is optimized to
maintain a constant (solar) thermal payload il-
lumination, while maximizing separability of the
astrometric parameters. Nfov is independent of
magnitude, and ranges between about Nfov ∼ 60
at β < 10◦ to about Nfov ∼ 80 at β > 80◦, with
a maximum of about Nfov ∼ 150 at intermedi-
ate ecliptic latitudes, β ∼ 45◦, where the scanning
density is highest (Table 1). The high values of
Nfov around β ∼ ±45◦ do not necessarily improve
planet detection substantively, adding little to the
number of distinct epochs and projection geome-
tries.

Our simulations of detection and orbit recon-
struction require estimates of σfov, the along-scan
accuracy per field of view crossing as a function of
G magnitude (Table 2). In terms of the centroid-
ing accuracy for each of the 9 astrometric CCDs,
ση, we adopt

σfov = (
σ2
η

9
+ σ2

att + σ2
cal)

0.5 , (1)

where σatt is the contribution from (both ran-
dom and systematic modelling) attitude errors,
and σcal is that from calibration errors. Both are
assumed constant over the field crossing; we adopt
σatt = 20µas (Risquez et al. 2013), and similarly
for σcal (Lindegren et al. 2012). Evidently, both
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are provisional pending results from the global it-
erative solution.

For bright stars, G . 12, signal saturation is
avoided by CCD ‘gating’, activated according to
the star’s measured brightness, allowing a reduced
number of active TDI lines, and designed to result
in a more-or-less constant measurement precision
over the range G ∼ 3− 12mag.

In terms of the inverse relative number of pho-
tons in the image

z = 10 0.4(max[G,12]−15) , (2)

normalized to z = 1 at G = 15, we use

ση = (53 000 z + 310 z2)0.5 , (3)

which is a fit to the values 92, 230, 590, 960, 1600,
2900µas quoted for G = 13, 15, 17, 18, 19, 20 by
Lindegren et al. (2012, Table 1).

We complete these forms with an expression for
the sky-averaged parallax accuracy, which can be
approximated by

σ$ = 1.2× 2.15 σfov/
√

68.9 = 0.311σfov , (4)

where 2.15 is the geometric factor linking the (sky-
averaged) parallax accuracy with the error per
field crossing, 68.9 is the (sky-averaged) number
of field crossings per star over the nominal 5-yr
mission including dead time (Table 1), and 1.2 is
a margin (Lindegren et al. 2012).

Values of z, ση, σfov, and σ$, as a function of
G magnitude, are given in Table 2.

2.2. The astrometric signature

As a planet detection and characterization tech-
nique, astrometry aims at measuring the influence
of an orbiting planet in addition to the two other
classical astrometric effects: the linear path of
the system’s barycenter projected on the sky (the
star’s proper motion), and the reflex motion (the
star’s parallax) resulting from the Earth’s orbital
motion around the Sun. Both star and planet or-
bit the star–planet barycenter and, after account-
ing for the parallax and proper motion terms, the
orbit of the primary therefore appears projected
on the plane of the sky as an ellipse with semi-
major axis given by

a? =

(
Mp

M?

)
ap , (5)

where Mp and M? are the planet and star mass
respectively, and ap is the semi-major axis of the
planet orbit with respect to the barycenter.

The observable for astrometric planet detection
is the corresponding quantity in angular measure,
generally referred to as the astrometric signature,
given by

α =

(
Mp

M?

)( ap

1 AU

)( d

1 pc

)−1

arcsec , (6)

where d is the distance, and Mp and M? are
in common units. The definition may also be
adopted for e 6= 0, but with detectability depen-
dent on orbital phase (Section 4). The effect is
linearly proportional to ap and, importantly, ap-
plies equally to hot or rapidly-rotating stars. But
while the technique is most sensitive to massive
planets at large ap, measurement timescales must
be proportionally long (of order of the orbital pe-
riod).

The size of the effect calculated for all con-
firmed exoplanets to date (2014 September 1) is
shown in Figure 1a as a function of orbit period.
Vertical lines illustrate the period limits between
which Gaia will be most efficient in its discovery
space (0.2 . P . 6 yr, see Section 5). On the
assumption that an astrometric signature of ∼1–
3 times the parallax standard error could be de-
tected (see Section 4), a sizeable fraction of known
systems will have their exoplanet-induced photo-
centric motion determined at some level by Gaia.

Figure 1b restricts the plot to the known tran-
siting planets, and demonstrates that Gaia as-
trometry will provide little orbital information for
the majority of known transiting planets. No tran-
siting planets have α > 30µas, and the great ma-
jority have α � 1µas. Indeed, known exoplanets
with large α are almost exclusively those discov-
ered by radial velocity measurements. Even the
nearest hot Jupiters will be undetected astromet-
rically, and the same applies to the P . 6 d plan-
ets which might be discovered in the Gaia pho-
tometric data (Dzigan & Zucker 2012). Gaia as-
trometry may nonetheless clarify the existence of
massive outer companions of hot Jupiters, which
have been invoked to explain their inward migra-
tion (e.g. Bakos et al. 2009; Neveu et al. 2013;
Knutson et al. 2014).

Various astrophysical noise sources will con-
tribute to the accuracy of astrometric measure-
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ments in principle, but appear to lie below rel-
evant limits in practice, and have been ignored
here. These include the effects of variable stellar
surface structure (star spots, plages, granulation,
and non-radial oscillations) on the observed photo-
centre (e.g. Reffert et al. 2005; Ludwig 2006; Eriks-
son & Lindegren 2007; Lanza et al. 2008; Makarov
et al. 2009), relativistic modeling at ∼ 1µas (e.g.
Anglada-Escudé et al. 2007), and possible effects
at optical wavelengths of interstellar and inter-
planetary scintillation and stochastic gravitational
wave noise (Perryman et al. 2001).

2.3. Orbit constraints from astrometric
data

A 3d Keplerian orbit is described by 7 pa-
rameters, for example the classical elements
a, e, P, tp, i,Ω, ω. The semi-major axis a and ec-
centricity e specify the size and shape of the orbit.
The period P is related to a and the component
masses through Kepler’s third law, while tp spec-
ifies the position of the object along its orbit at
some reference time, generally with respect to a
specified pericenter passage. The three angles (i,
the orbit inclination to the plane tangent to the
celestial sphere; Ω, the longitude of the ascend-
ing node; and ω, the argument of pericenter) give
the projection of the true orbit into the observed
(apparent) orbit; they depend solely on the orien-
tation of the observer with respect to the orbit.

Both radial velocity and astrometry measure
the host star’s barycentric motion rather than that
of the planet directly, and somewhat different in-
formation is provided by each measurement tech-
nique.2

2We recall that the sizes of the three related orbits – the
stellar orbit around the barycenter, the planet orbit around
the barycenter, and the relative orbit of the planet around
the star – are in proportion a? : ap : arel = Mp :
M? : (M? + Mp), with arel = a? + ap. Furthermore,
erel = e? = ep, Prel = P? = Pp, the three orbits are
coplanar, and the orientations of the two barycentric or-
bits (ω) differ by 180◦. From the line-of-sight (radial) ve-
locity variations alone, not all 7 Keplerian elements are
accessible. Specifically: (i) Ω is undetermined; (ii) only
the combination a? sin i is determined, with neither a?
nor sin i individually; (iii) measurements provide a value
for the ‘mass function’, which for Mp � M? reduces to
M ' (M3

p sin3 i)/M2
? . It follows that if M? can be esti-

mated from its spectral type (or otherwise), then Mp sin i
can be determined, although the planet mass remains un-
certain by the unknown factor sin i.

From astrometry, all 7 Keplerian elements are
accessible in some form, irrespective of the orbit
inclination to the line-of-sight. Specifically, the
orbit solution (including the planet location along
the orbit as a function of time) gives i and α. From
Equation 6, a? can be determined from α if d is
known, with a?+ap (and hence ap) obtained from
Kepler’s third law assuming that (M?+Mp) 'M?

can be estimated from the star’s spectral type or
from evolutionary models. ThenMp is determined
from Equation 5. If the planet is invisible (the case
for all but a few more massive long-period plan-
ets which have been imaged) the orbital motion of
the star around the system barycenter is correctly
determined by astrometry only if the star position
is measured with respect to an ‘absolute’ refer-
ence frame, which is the case for Gaia (Perryman
et al. 2014). Astrometric measurements alone are,
however, unable to identify which of the nodes is
ascending, i.e. where the planet moves away from
the observer through the reference plane, an am-
biguity resolved by radial velocity observations.

For multiple exoplanet systems, and if the or-
bital contributions from each can be separated, as-
trometry can also establish the relative inclination
between pairs of orbits (e.g. van de Kamp 1981,
Equation 16.5; Casertano et al. 2008; McArthur
et al. 2010).

Four orbit elements (a?, e, ω, tp) are in common
between astrometric and spectroscopic orbit so-
lutions. Combined observations therefore further
constrain and improve the 3d orbit, as well as
the individual component masses (e.g. Wright &
Howard 2009).

3. Host star and planet distributions

3.1. Star counts

As an input to a new set of simulations, we
used the population synthesis Galaxy star count
model TRILEGAL (TRIdimensional modeL of
thE GALaxy, Girardi et al. 2005, 2012). This is
based on a theoretical stellar luminosity function
φ(M,rrr, λ) [i.e., as a function of absolute mag-
nitude M , Galactic position rrr = (`, b, r), and
photometric passband λ], derived from a set of
evolutionary tracks, together with suitable distri-
butions of stellar masses, ages, and metallicities.
TRILEGAL (version 1.6) includes five distinct
Galaxy components: the thin and thick disks, the

5



halo, the bulge, and the disk extinction layer (Gi-
rardi et al. 2005, Section 3.6). The model has
been calibrated with respect to a variety of ob-
servational counts, including multi-passband cat-
alogues from very deep galaxy surveys (including
CDFS, DMS, and SGP), the ‘intermediate-depth’
near-infrared point source catalogue 2MASS, and
the local stellar sample derived from Hipparcos.

A run of TRILEGAL is formally a Monte Carlo
simulation in which stars are generated according
to specified probability distributions. The num-
ber of stars in each bin of distance modulus is
predicted according to (Girardi et al. 2005, Equa-
tion 1)

N(mλ, `, b) = dmλ

∫ ∞
0

dr r2 ρ(rrr)φ(Mλ, rrr) dΩ .

(7)
For each simulated star, the star formation rate,
age–metallicity relation, and initial mass function
are used to derive the stellar age, metallicity, and
mass. Absolute photometry is derived via inter-
polation in the grids of evolutionary tracks (or
isochrones), and converted to the apparent mag-
nitudes using the appropriate values of bolometric
corrections, distance modulus and extinction. All
relevant stellar parameters can be retained from
the simulations, including the initial and current
mass, age, metallicity, surface chemical composi-
tion, surface gravity, luminosity, and effective tem-
perature.

The photometric system is an option in the sim-
ulation input. We selected Sloan ugriz combined
with 2MASS JHKs. The broad-band Gaia G mag-
nitudes are then estimated as a function of Sloan
g and z as (Jordi et al. 2010, Table 5)

G = g−0.1154−0.4175 (g−z)−0.0497 (g−z)2+0.0016 (g−z)3 ,
(8)

with σ = 0.08mag over a broad range of colors and
extinction. After a number of investigation runs,
the magnitude limit of our simulations was set to
r = 17.5mag as a compromise between retrieving
a representative selection of low-luminosity stars
with large astrometric signature (for reference, a
magnitude limit of r = 15 at d = 200 pc, corre-
sponds to M = 0.38M�), while keeping the com-
putational demands at a reasonable level.

We used the current version of TRILEGAL
(version 1.6), with a perl script provided by L. Gi-
rardi to automate the interaction with the www in-

terface (stev.oapd.inaf.it/trilegal). Default
model values and normalizations were used for the
various Galaxy components: (a) an initial mass
function (IMF) given by the Chabrier log normal
distribution, and a binary fraction of 0.3 with mass
ratio in the range 0.7–1; (b) extinction according
to an exponential disk of scale height 110 pc, scale
length 100 kpc, and AV (∞) = 0.0378mag; (c) so-
lar position R� = 8.7 kpc, z� = 24.2 pc; (d) thin
and thick disks given by ρ ∝ exp(−R/hR) f(z),
where the vertical distribution is given by f(z) =
sech2(0.5z/hz), and where the vertical scale height
of the thin disk is assumed to increase with stellar
age as h(t) = z0(1 + t/t0)α; (e) the halo is de-
fined by an oblate r

1
4 spheroid, and the Galaxy

is assumed to comprise a triaxial bulge; (f) de-
fault selections for the star-formation rate and age-
metallicity relation were also used for each Galaxy
component (thus for the thin-disk: 2-step star-
formation rate, with the age–metallicity relation
from Fuhrmann (1998), and α-enhancement; for
the thick-disk: 11–12Gyr constant star formation,
z = 0.008 with 0.1 dex standard deviation, and
solar-scaled abundances; for the halo: 12–13Gyr
age, with [M/H] distribution from Ryan & Norris
(1991); for the bulge: 10Gyr age, with [M/H] dis-
tribution from Zoccali et al. (2008) enhanced by
0.3 dex).

Simulations were run for a field size of 1 deg.2
in 10◦ steps of Galactic longitude ` = 0 − 180◦

(being symmetric for 180−360◦) and Galactic lat-
itude b = −90◦ to +90◦ (excluding b = 0◦ where
the simulations did not complete within the time
imposed by the server, but including b = ±5◦ and
b = ±15◦). For the main part of our simulations
we restricted our selection to stars with log g > 3.0
and log Teff < 4.0, thus excluding giant and high
mass stars (this approximation is discussed further
in Section 7.2). This yielded a total of ∼915 000
stars in the mass range 0.07 − 3.27M�. The full-
sky sample was then generated by interpolating
these numbers over a mesh of 0.01 rad in ` and
b, finding the nearest simulated field to each grid
node, and drawing the specified number of sam-
ples, with replacement, from that file. Each sam-
ple is then a simulated star.

The result is a list of N? ∼ 260 × 106 stars,
including binaries, whose distance distribution is
shown in Table 4 (NP14

? ). Fluctuations between
300–500 pc are due to the TRILEGAL model us-
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ing discrete steps in distance modulus. Because
the simulations are magnitude limited, simulated
stars actually extend out to 16 kpc. Although we
consider all sample stars when simulating plan-
ets, only those within 700 pc (for α > 2σfov) yield
detections. Of the 260 × 106 stars simulated,
∼ 20× 106 are within 700 pc (Table 4).

In simulations using the Besançon Galaxy
model (version 2003, as available on the web
site) to replicate the detection numbers reported
by Casertano et al. (2008), we found that the
TRILEGAL star counts were some 30% lower out
to ∼200 pc than those returned by the Besançon
galaxy model. A. Robin (2014, priv. comm.) has
attributed this to the fact that the star formation
rate in the Besançon model was assumed constant
over the thin disk life time; the revised model
described by Czekaj et al. (2014) is expected to
correct much of this discrepancy. We have accord-
ingly adopted the results from TRILEGAL, noting
that some 30% more exoplanets would be detected
astrometrically should the star counts (and the
treatment of extinction) follow more closely that
predicted by the Besançon model.

3.2. Assumed exoplanet occurrence de-
pendencies

Recent developments in characterizing exo-
planet occurrence frequencies as a function of
planetary and stellar properties are directly rele-
vant to our re-assessment. These include: (a) im-
proved statistics of the longer-period radial veloc-
ity discoveries, allowing a more secure extrapola-
tion for large Mp and P ; (b) larger numbers of
Neptune-mass discoveries, which augments the
contribution of lower-mass planets at large ap

(while the distant limit for detection will de-
crease compared with those of Jupiter mass, this
will be compensated by the increased numbers
at smaller d); (c) improvements in characterizing
the occurrence of planets around M dwarfs. At
the same time we have introduced some very sim-
ple, and intentionally conservative, assumptions
in cases where occurrence rates are unknown or at
best poorly known empirically.

More specifically, for each of the 260 million
stars returned by the TRILEGAL simulations to
r < 17.5mag, we simulate the exoplanet occur-
rence and properties according to the following
dependencies:

(1) binary stars: the secondary stars of binaries
were ignored, and planets simulated around the
primaries according to the occurrence distribu-
tions for single stars (this simplification is dis-
cussed in Section 7.2);
(2) host star mass and metallicity: for giant plan-
ets around host stars with M? > 0.6M� we
used the relationship between giant planet occur-
rence and host star mass and metallicity given by
Johnson et al. (2010). This relation was deter-
mined for stars with 0.5M� < M? < 2.0M� and
[Fe/H]< 0.4. We assume that the occurrence rate
of giant planets around stars with M? > 2.0M�
is equal to that at M? = 2.0M�, and that the
rate for stars with [Fe/H]> 0.4 is equal to that
at [Fe/H]=0.4. We extrapolate occurrence rates
to stars off the main sequence (including white
dwarfs), while excluding from consideration giant
and high mass stars (as noted in Section 3.1, and
discussed further in Section 7.2). Our treatment
of host star mass and metallicity for smaller plan-
ets and for planets around stars with M < 0.6M�
is discussed below;
(3) planet mass and orbital period: we assume
that the planet mass and period distributions
are independent of metallicity. For each star
we draw planets from the joint mass–period dis-
tribution given by Cumming et al. (2008), as
determined from radial velocity surveys for GK
stars. For planet masses > 0.3MJ and periods
< 2000 d, they obtained a power law fit dN =
CMα P β d lnM d lnP with α = −0.31± 0.2, β =
0.26± 0.1, and the normalization constant C such
that 10.5% of solar type stars have a planet with
mass in the range 0.3 − 10MJ and orbital pe-
riod 2–2000 d. For M? > 0.6M�, we extrapo-
lated this power law to cover the extended mass
range 0.1 − 15MJ, and to orbital periods up to
10 yr (for very wide orbits around A stars the best
constraints are currently based on direct imaging,
but the semi-major axes probed lie well beyond
the range of orbit period relevant for Gaia). For
P < 418 d, the outer period to which the Kepler
distributions were determined, we did not extrapo-
late the Doppler-based distributions below 0.3MJ,
and instead used the Kepler results for planets of
lower mass (Table 3);
(4) occurrence around low-mass stars (M dwarfs):
we examined two dependencies. The first is a
simplified extension of the Johnson–Cumming dis-
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tributions, for which we assumed that the occur-
rence rate of gas giant planets around stars with
M? < 0.5M� was equal to that at M? = 0.5M�.
The second (which we have adopted for all sub-
sequent steps) follows the conclusions of Montet
et al. (2014), who found that the Cumming et al.
mass–period power-law does not agree with the
microlensing results for M dwarfs (see also Clan-
ton & Gaudi (2014) for a recent analysis recon-
ciling the radial velocity and microlensing planet
yields for M dwarfs). From Doppler measurements
of 111 M dwarfs, they found a lower occurrence
rate compared to higher mass stars, finding only
6.5 ± 3.0% host one or more massive companions
with 0 < ap < 20AU and 1MJ < Mp < 13MJ.
Accordingly, we adopt as our baseline, and more
conservative estimate for M? < 0.6M�, their dou-
ble power law in stellar mass and metallicity

f(M?, [Fe/H]) = 0.039M0.8
? 103.8 [Fe/H] , (9)

with a dependency onMp (and flat in log ap), con-
sistent with both their observations and the mi-
crolensing observations, given by

dN ∝ M−0.94
p d lnMp d ln ap . (10)

For the same stars, M? < 0.6M�, we extrapo-
lated this power law to cover the extended mass
range 0.1− 15MJ. Using the Montet et al. (2014)
distribution for M? < 0.6M� in place of the
Johnson–Cumming distributions substantially re-
duces the expected Gaia planet yield for two rea-
sons: (1) rather than assuming that stars with
M? < 0.5M� have the same planet occurrence
fixed to the Johnson et al. rate at M? = 0.5M�,
the Montet et al. relation predicts that the planet
occurrence rate continues to drop for lower mass
stars; (2) although the occurrence rate of small
planets around M dwarfs is higher in the Montet
et al. distribution, the larger planets and longer
period planets which Gaia would be sensitive to
are less common;
(5) eccentricities: we assumed that eccentricities
of the 3d orbits follow a Beta distribution

Pβ (e; a, b) ∝ ea−1 (1− e)b−1 , (11)

with a = 0.867 and b = 3.03, as established
from fits to radial velocity observations by Kipping
(2013). We ignore any possible dependency on pe-
riod (in practice, the planets detectable with Gaia

astrometry are on wide orbits where this assump-
tion, in the absence of tidally-circularized orbits,
appears justified). The eccentricity was not used
in deciding whether an astrometric signal would
be detected (Section 4), but it is used in determin-
ing the enhanced transit probability for elliptical
orbits (Section 6);
(6) distribution of low-mass planets: for Mp <
0.3MJ, we used the joint period–radius distribu-
tion determined from the Kepler data by Fressin
et al. (2013). This extends only out to P = 428 d
for the largest planets, and since a power law does
not appear to provide a particularly good fit, we
did not extend the distributions to longer peri-
ods. Radii were converted to masses using the
following empirical relation, chosen to match the
Fressin et al. (2013) occurrence rate (as a func-
tion of Rp) to the Howard et al. (2010) occurrence
rate (as a function of Mp) for P < 50 d, and with
Mp = 0.3MJ at Rp = 1RJ (the same approach as
used by Howard et al. (2012) to compare their ra-
dius distribution from Kepler to their earlier mass
distribution from Doppler observations, Howard
et al. 2010)

Mp = 1.08R 3.45
p

= 3.17R 0.87
p

= 10.59 (R p/4) 2.07

= 24.51 (R p/6) 2.17

Rp ≤ 1.5

1.5 <Rp ≤ 4.0

4.0 <Rp ≤ 6.0

6.0 <Rp

(12)

where Mp and Rp are expressed in Earth units.
(7) multi-planet systems: the Cumming et al.
(2008) distribution uses only the most significant
Doppler signal for stars with multiple planets.
Carrying this over into our planet occurrence sim-
ulations, we do not account for multiple gas giant
systems. The Fressin et al. (2013) distributions
based on Kepler, on the other hand, include all
planets in the multi-planet systems. In this case,
we have partitioned the distribution into their des-
ignated mass bins (Table 3), and generate at most
one planet per mass bin for each star. In practice,
no planets from the parameter space covered by
the Fressin et al. (2013) distribution are recovered
with α > 2σfov, and therefore we do not recover
any multi-planet systems.
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Table 3 summarizes the fraction of stars with
planets from the combination of Kepler transit and
radial velocity data, as a function of mass and pe-
riod. The end result is that for our 260 million
simulated stars to r = 17.5, we simulated 254 mil-
lion planets (with 79 million representing addi-
tional planets within a multiple planet system),
accompanying 175 million stars.

We stress that our treatment of multi-planet
systems is incomplete. First, we do not allow for
more than one (low-mass) planet in one mass bin.
However, in practice, the entire region of param-
eter space covered by the Fressin et al. (2013)
distribution yields just 1 marginally detectable
Gaia planet (with Mp = 0.29MJ, P = 389d, and
α = 1.15σfov). To this extent, our simplistic as-
sumptions do not affect the question of astrometric
detectability. Second, we have assumed that the
astrometric motion of the host star is dominated
by a single massive planet. To go further is beyond
the scope of this paper: current knowledge of or-
bit statistics for multiple gas giants at large ap is
limited, while the astrometric motion of the star
with respect to the system barycenter for multi-
ple massive planets rapidly becomes more complex
(see, e.g. Perryman & Schulze-Hartung 2011, Fig-
ures 2–3). We refer to Casertano et al. (2008) for
further insight into the detectability (although not
the occurrence) of multiple massive systems.

4. Detectability based on S/N per field
crossing

From their numerical double-blind simulations
Casertano et al. (2008) argued that a planet is
detectable by Gaia if the astrometric signature
exceeds some three times the accuracy of a sin-
gle field crossing, α & 3σfov. The latter, we re-
call, is only a function of magnitude (it is only
the scanning density that depends on ecliptic lat-
itude). Using the relation between σfov and the
sky-averaged parallax accuracy σ$ (Equation 4)
gives a rough indication that planets become de-
tectable for α & σ$.

While a (single) S/N threshold per field cross-
ing provides some indication of exoplanet detec-
tion numbers, it is evidently simplistic. Shortcom-
ings include: (i) the number of field crossings, and
their distribution in projection angle and time, is
variable over the sky; (ii) the number and distribu-

tion of geometrically-independent measurements
depends on orbit period; (iii) the detectability of
elliptical orbits varies over orbit phase (cf. Equa-
tion 6); (iv) all of these effects also depend on
the actual mission duration. Deeper insight into
these and other effects requires Monte Carlo-type
simulations spanning a range of planetary system
parameters, representative satellite observations,
and the construction of some statistic quantifying
detectability based on orbit modeling. We defer
this more detailed treatment to Section 5.

We start by determining zero-order detection
numbers for a range of S/N thresholds per field
crossing (in which the star counts and exoplanet
distributions remain fixed)

S/N ≡ α/σfov > n , (13)

where n is a detection threshold parameter in the
range n = 0.5 − 6. Our justification for this ap-
proach is that candidates can be easily identified
according to such a S/N criterion, yielding insights
and results which can be replicated without re-
course to more detailed simulations, and which can
be compared directly with previous estimates.

Resulting provisional detections can then be
estimated from the parameters of the 240 mil-
lion simulated exoplanet systems (Section 3.2),
the resulting astrometric signature calculated on
a system-by-system basis (Equation 6), and the
simple detection criterion given by Equation 13,
in which the along-scan accuracy per field crossing
as a function of G magnitude (σfov, Equation 1) is
as tabulated in Table 2.

Table 4 summarizes the results versus distance
intervals from the Sun, as a function of S/N
threshold. For comparison with previous work,
NC08

FGK gives the number of FGK dwarfs from the
Besançon Galaxy model as derived by Casertano
et al. (2008), and NC08

det gives the corresponding
numbers of giant planets they detected with their
criterion α > 3σfov. NP14

? gives our star counts
from the TRILEGAL model (Section 3.1). Sub-
sequent pairs of Ndet and Ntran give the resulting
numbers of detected planets for values of the S/N
threshold in the range n = 0.5 − 6, and the cor-
responding number of predicted transiting astro-
metric detections, which we expand on further in
Section 6.

The criterion α > 3σfov corresponds to that
used by Casertano et al. (2008), albeit with our
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more realistic values of σfov (∼34µas for G < 12,
compared to their ∼11µas), while α > 6σfov cor-
responds to their ‘twice the detection limit’ crite-
rion for good orbit determination. The criterion
α > 1σfov (roughly) corresponds to a 2σfov de-
tection threshold that would have applied to the
accuracies targeted at the time of the mission ac-
ceptance by the ESA Science Programme Com-
mittee in 2000 (σ$ = 10µas at G = 15mag)
compared to the current accuracies (σ$ = 25µas
at G = 15mag). We note in passing that in its
accepted form (before descoping), and according
to this simplified detection criterion, Gaia would
have detected some 20 000 (at 3σ) to 30 000 (at
2σ) planets, consistent with the preliminary esti-
mates of around 30 000 given at that time (Perry-
man et al. 2001).

We will show, through the more detailed anal-
ysis in Section 5, that a threshold of α > 2σfov

(more liberal than the 3σ condition used by Caser-
tano et al. 2008), provides a reasonable approx-
imation to the final numbers that we consider
can be detected. Table 4 then indicates that
we can expect a total of 16 668 recovered plan-
ets around stars with r < 17.5mag, log g > 3.0
and log Teff < 4.0. Histograms of these 16 668 exo-
planets, showing the distributions ofGmagnitude,
d, and Mp are given in Figure 2a–c, and relevant
scatter diagrams in Figure 3a–f. Detected planets
have masses in the rangeMp = 0.12−15MJ, semi-
major axes in the range ap = 0.037 − 6.87AU,
and are around stars with masses in the range
M? = 0.07 − 3.27M�. Periods range between
7.4 d–10 yr, with 327 below 1 yr, and 7390 below
our provisional upper limit for orbit solutions of
∼ 6 yr.

The distribution of planet masses in our recov-
ered sample (Figure 2c) continues to increase to
the highest planet masses included in the sim-
ulations (15MJ). This contrasts with the input
power-law distribution (∝ M−1.31

P ) of simulated
planet masses (Figure 2d). The increasing num-
bers of high-mass planets results from the com-
petition between a falling occurrence rate for the
more massive planets and the increasing astro-
metric signatures for larger planets, and thus a
greater volume of space and number of stars for
which these planets can be detected. To extrap-
olate much above 15MJ goes beyond the scope of
this study: it would require a suitable transition to

the (very different) stellar binary mass ratio distri-
bution, extending the Galactic models to include
more massive objects around the faintest stars,
and wider questions of the Gaia detectability of
binary stars more generally.

5. Orbit fitting and an improved de-
tectability metric

We now turn to the problem of orbit reconstruc-
tion based on simulated Gaia data. We will show
that due consideration of the orbit fit allows us
to quantify detectability more rigorously. In the
process we can estimate the precision that can be
obtained on some of the key orbital parameters,
such as the orbit inclination and period.

5.1. Simulated data and orbit fitting

We generate simulated observations of large
numbers of exoplanet systems using tools provided
by the Gaia AGISLab project (Holl et al. 2012,
their Appendix B). Developed as part of the as-
trometric global iterative solution (AGIS, Linde-
gren et al. 2012) AGISLab allows the simulation of
millions of sources at the level of individual CCD
transits, using a comprehensive instrument model,
including the scanning law. Using this we can gen-
erate, for any target star based on its sky coordi-
nates, a listing of all field crossings over the mis-
sion, giving the time, position angle of the scan,
and the parallax factor for each observation. This,
together with the assumed along-scan standard er-
ror per field crossing (as a function of G), and the
seven specified orbital elements of the star’s reflex
motion, allows us to simulate a full set of represen-
tative (‘intermediate astrometry’) observations.

We then subject these simulated observations
for each system to a least-squares orbit fitting al-
gorithm. The objective is to recover the 12 pa-
rameters (5 astrometric and 7 Keplerian) describ-
ing the star position at each epoch of observation
(Figure 4), making the (reasonable) assumption
that other deterministic effects incorporated into
AGIS (aberration, relativistic light bending, and
perspective acceleration) are fully accounted for.

For this investigation we recast the classical or-
bit elements (a, e, P , tp, i, Ω, ω) into an equiv-
alent set consisting of the four Thiele–Innes con-
stants (A, B, F , G), together with the frequency
f = 1/P , eccentricity e, and mean anomaly at
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the reference epoch, M0. While certain aspects of
this orbit fitting are rather standard, a number of
specific considerations are relevant for Gaia, such
as the range of the period search, and the use of
a prior density of the orbit eccentricity. Further
details are given in Appendix A.

Formal uncertainties of the fitted orbit param-
eters can be quite misleading, due to the strongly
non-linear nature of the fitting procedure, and we
use instead a Monte Carlo approach. For a given
system (with fixed orbit and observation geome-
try), we generateN observation sets with indepen-
dent noise realizations, leading to N different sets
of estimated orbit parameters, from which their
precision can be estimated. Depending on the kind
of investigation, N could range from 1 (when gen-
erating the statistics for a large sample of different
systems), to 100 or more (when assessing the pre-
cision of a specific system).

For illustration, we show results from the Monte
Carlo simulations for two transiting systems, i.e.
for two systems with ‘true’ i = 90◦, and randomly
assigned elements ω, Ω, and ttransit. Remaining
parameters were simulated as described in Sec-
tion 3.2.

Our first example has G = 7.8mag, P =
0.65 yr, e = 0.32, and α = 83µas, correspond-
ing to a detection at α = 2.4σfov. The num-
ber of field crossings (including 20% dead time)
is Nfov = 59. Figure 5 shows scatter plots of ap,
P , e, and cos i, and the predicted transit times,
for 100 different noise realizations (in all diagrams
the long dashed lines show the true values). The
predicted transit times are for ω+ν = 90◦ or 270◦,
where ν is the true anomaly. Because astrometry
alone cannot determine ω unambiguously, we as-
sume 0 ≤ ω < 180◦, and consequently have to
predict two possible transit times per estimated
orbit period, but only one true transit time [long-
dashed line] per true period.

Our second example (Figure 6) has G =
15.5mag, P = 4.12 yr, e = 0.015, α = 1196µas
(11.5σfov), and Nfov = 40. Despite its unusually
small number of field crossings (even for its eclip-
tic latitude of β = −5◦, cf. Table 1) and fainter
magnitude (G = 15.5), this orbit is even better-
determined due to the much higher S/N, and the
larger ratio of Mp (= 13.8MJ) to M? (= 0.2M�).
Interestingly, cos i is about equally well deter-
mined in all solutions, even when ap, P , or e is

significantly wrong. We also note that the predic-
tions for ttransit are only good for a few times P
around the Gaia observing epoch, because of the
relatively large uncertainty in P . This will always
be a problem for periods larger than a few years,
but one that can be improved by radial velocity
observations to constrain the period.

5.2. The ∆χ2 metric

As discussed in Section 4 the astrometric S/N
ratio (α/σfov) is a useful zero-order indicator of
detectability, but one which in reality depends on
the number and distribution of observations, the
inclination and eccentricity of the system, and the
orbital period in relation to the total length of the
observations. We will show that a more precise
criterion is given by the likelihood ratio, or equiv-
alently the reduction in the minimum χ2, when
going from the 5-parameter solution to the 12-
parameter solution.

Let χ2
min(12 parameter) be the minimum χ2 ob-

tained when adjusting all 12 parameters (Equa-
tion A5). Omitting the orbit parameters (i.e. set-
ting y = 0 in Equation A5) and fitting only the
astrometric parameters (x) results in a fit with
χ2 (5 parameter) ≥ χ2

min(12 parameter). The in-
crease in χ2 when omitting the orbit parameters
is

∆χ2 = χ2
min(5 parameter)− χ2

min(12 parameter) ,
(14)

which can therefore be used as a test statistic for
the significance of the orbit. In contrast to the S/N
this quantity can be calculated without knowledge
of the orbit, and is therefore applicable to real
data. We note that ∆χ2 can be small even when
α/σfov is very large, e.g. if the observations cover
only a small part of the orbit. On the other hand,
for a fixed S/N per field crossing, ∆χ2 increases
with the number of observations.

Since exp(−χ2/2) is proportional to the like-
lihood of the model (assuming Gaussian observa-
tion noise with the stated standard deviation), this
is effectively a likelihood ratio test and therefore
close to optimal in terms of its power to detect
orbital motion. Based on Wilks’ theorem (e.g.
Kendall et al. 1983), the distribution of ∆χ2 in
the absence of a companion is expected to follow
the chi-squared distribution with 7 degrees of free-
dom. This provides a useful guide for setting the
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detection threshold. A possible criterion could be
∆χ2 > 30, with a reasonably low probability of
false detection (theoretically ∼ 10−4). Higher val-
ues of ∆χ2 give both a more reliable detection and
a higher precision of the estimated orbit. In prac-
tice, solutions with ∆χ2 ' 30 may be considered
marginal, while those with ∆χ2 > 50 are generally
found to be reliable and ∆χ2 > 100 typically gives
orbital parameters determined to 10% or better.
The two examples shown in Figures 5 and 6 have
∆χ2 ' 42 and 970, respectively.

For our present primary purpose of assessing
detectable numbers, we proceed by provisionally
selecting systems above a certain S/N per field
crossing (e.g. α > 2σfov, cf. Table 4). We then con-
firm these provisional detections by also requiring
that the fit improves significantly, as measured by
∆χ2, when proceeding from a 5-parameter to a
12-parameter solution.

The estimation of the number of detectable sys-
tems is vastly sped up by using λ + 7 as a proxy
for ∆χ2. Here, λ is the noncentrality parameter
(Appendix B) which can be calculated, for simu-
lated data, without actually fitting an orbit. All
statistics reported below for ∆χ2 > X were in fact
derived using the criterion λ+ 7 > X.

This additional ∆χ2 criterion is reflected in the
bottom part of Table 4. We can see, for ex-
ample, that the 16 668 planets provisionally de-
tected according to α > 2σfov result in 12 893
secure detections according to ∆χ2 > 30, or to
10 297 detections according to the more restric-
tive ∆χ2 > 50. This substantiates our claim (Sec-
tion 4) that α > 2σfov rather than α > 3σfov pro-
vides a reasonable zero-order estimate of the num-
bers detectable. In practice, final detection results
are then somewhat insensitive to the actual choice
of α/σfov, in the sense that additional provisional
candidates revealed by lowering the S/N thresh-
old are in any case subject to confirmation by the
∆χ2 criterion. Below α . 0.5σfov more candi-
dates naturally continue to be selected, but the
vast majority fail to result in additional confirmed
detections.

Our best estimates, pre-selected with α >
0.5σfov (lower thresholds are evidently required
when assessing results for a 10-yr mission dura-
tion), are indicated in bold in the lower part of
Table 4. At ∆χ2 > 50− 30 we find 14 806–27 505
(∼ 21 000 ± 6000) systems discoverable over the

nominal 5-yr mission duration. As we will quan-
tify in Section 6, some 25–42 of these are likely to
be transiting.

5.3. Dependency on mission lifetime

Gaia has the potential to observe for consider-
ably longer than the nominal 5 years (currently
limited by its cold-gas attitude control mass), and
a longer mission would bring very substantial im-
provements for exoplanet detection. Specifically:
(a) it will be possible to detect and reconstruct
orbits with periods P & 5 yr; (b) a larger num-
ber of systems with P < 5 yr will be detected;
(c) the number of false detections will decrease;
and (d) the accuracy of the orbit solutions will be
greatly improved. To quantify this we have re-
peated the orbit determinations for the 3500 sim-
ulated systems described in Section 6 (viz., 100
realizations of 35 predicted transiting astrometric
detections with S/N> 2) and an assumed mission
length of 10 yr. Resulting ∆χ2 are typically a fac-
tor 3–4 larger.

Table 4 contains our estimated detection num-
bers at various levels of S/N and ∆χ2 (to obtain
complete statistics S/N ratios down to 0.5 per field
crossing must be considered). We find that about
3–4 times as many systems could be detected with
a comparable ∆χ2, and that the subset of tran-
siting systems would increase by the same factor.
We find 90 751, 53 015, and 25 958 detections at
∆χ2 > 30, 50, and 100 respectively, with the corre-
sponding numbers of transiting planets being 135,
82, and 31 respectively.

6. Transiting exoplanets from Gaia as-
trometry

As noted in Section 2.2, few if any of the exo-
planets discovered to date by ground- or space-
based photometric transit searches will induce
measurable displacements on their host stars (due
to their typically small semi-major axes and low
masses). Long-period transiting planets will also
probably remain rather elusive even with future
transit surveys. Thus the Gaia photometric dis-
coveries are likely to be restricted to P . 5− 10 d
(Dzigan & Zucker 2012), the planned HATPI
(with its goal of imaging π sr of the sky with high
cadence and high photometric precision; Bakos,
priv. comm.) and the Transiting Exoplanet Sur-
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vey Satellite (TESS, Ricker 2014) to P ' 40−50 d,
although PLATO (Rauer et al. 2013) should ex-
tend the discovery space out to 1AU or so.

In this context, we draw attention to a class of
transiting planet which should be discovered from
Gaia astrometry: systems with large astrometric
signature and which can be inferred, statistically
or explicitly from their reconstructed orbit param-
eters, to lie edge-on to the line-of-sight. The statis-
tical existence of such astrometric transiting plan-
ets was also noted by Sozzetti et al. (2014) in their
assessment of giant planets around M dwarfs de-
tectable by Gaia.

We can estimate the numbers of the astrometric
discoveries that will transit as follows. Consider-
ing first the case of circular orbits, the probability
for a randomly-oriented planet to be favourably
aligned for a transit (or secondary eclipse) is given
by the solid angle on the sphere swept out by the
planet’s shadow (e.g. Borucki & Summers 1984)

p =
R?
ap
' 0.005

(
R?
R�

) ( ap

1 AU

)−1

, (15)

Evaluation of i and p for realistic cases demon-
strates the well-known result that transits only oc-
cur for i ' 90◦, while p is very small. The transit
probability is independent of star distance, but the
corresponding photometric accuracy decreases.

The situation is subtly different for elliptical or-
bits: although an eccentric planet spends the ma-
jority of its time at distances from the star larger
than its semi-major axis, the majority of its true
anomaly, ν(t), is spent at smaller distances. This
results in a larger fraction of the celestial sphere
being intercepted by the planet’s shadow, and a
higher probability that the planet will transit (al-
though the time spent in transit at these locations
will be shorter). The transit probability is a func-
tion of both the true anomaly, ν, and the polar
angle from the orbit plane. From the expression
for the star–planet distance as a function of ν, and
integrating over the planet’s shadow for all values
of ω (Barnes 2007, Equation 1–8) leads to the re-
sult that for planets on eccentric orbits

p =

(
R? +Rp

ap

) (
1

1− e2

)
, (16)

where e is the true eccentricity (not the projected
eccentricity), and the small term +Rp includes the

contribution from grazing transits. This reduces
to Equation 15 for e = 0, and shows that plan-
ets on eccentric orbits are more likely to transit,
by a factor (1 − e2)−1, than those in circular or-
bits with the same semi-major axis. For a circu-
lar orbit, the geometric conditions for transits and
secondary eclipses are identical, while for eccen-
tric orbits transits may occur without a secondary
eclipse, and vice versa.

To quantify the transit probabilities, we have
assumed Rp = 1RJ for all Mp > 0.3MJ. For
planets below this limit, we draw Rp from the
Kepler planet occurrence distribution of Fressin
et al. (2013), then estimate the planet mass from
its radius according to Equation 12. We then draw
a uniform random number, Arand in the interval
[0, 1) for each planet, and consider it as transiting
if Arand < p. Our predicted transiting numbers
as a function of star distance and astrometric S/N
are listed together with the total number of de-
tections in Table 4. Specifically, using the same
provisional sample of 16 668 recovered planets at
2σfov (Section 4), the mean number of transiting
planets is 35± 6.

Figure 7 shows their expected properties as a
function of the astrometric S/N (α/σfov) in which,
to provide more representative distributions of
their expected properties in view of their small
numbers, we have generated 100 simulated sam-
ples of each transiting system using different ran-
dom number seeds for each (thus 3500 systems in
total). Being a statistical sub-sample of the de-
tected planets, their properties represent just a
corresponding scaling of those shown in Figure 2.
The magnitude distribution of the host stars, of
relevance for the feasibility of follow-up photomet-
ric and radial velocity observations considered be-
low, is shown in Figure 7(c).

Figure 8 shows ∆χ2 versus S/N for the 3500
realizations. (To emphasize the trend for small
S/N, a similar number of simulations with S/N
down to 1 were added; hence the discontinuity at
S/N = 2.) For a given S/N there is a significant
spread in ∆χ2, but for systems with P < 5 yr the
trend is much better defined, roughly correspond-
ing to the quadratic relation ∆χ2 = 14 (S/N)2

shown by the straight line.
The quality of our orbital solutions in general,

and for these transiting astrometric detections in
particular, improves considerably with increasing
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∆χ2. Figure 9 shows the distribution of ∆χ2 for
the same 3500 simulations of the expected tran-
siting systems. With the criterion ∆χ2 > 100 we
expect to retain 32% of the transiting systems with
S/N greater than 2, or about 11 systems. The his-
togram in Figure 10 gives the probability density
of the estimated cos i for these systems. Clearly, to
catch most (≥ 80%) of them one must consider es-
timated inclinations with | cos i | . 0.1. The time
of transit is similarly estimated to within ±0.1P
for these systems, but with the ambiguity in ω
this means that some 40% of the period needs to
be monitored. Depending on the period and the
uncertainty in the estimated period, this fraction
will increase further at epochs more removed from
the mean observation epoch of Gaia. Nevertheless,
the Gaia data will make it possible to identify a
sample containing at least some 10 transiting sys-
tems.

The distribution of transit depths, ∆F ≡
(Rp/R?)

2, for the same 3500 simulated transit
events is shown in Figure 12. The distribution
has a median of about 0.008, increasing steeply
for small values, but showing a few very pro-
nounced transits (∼1500 with ∆F > 0.01 and
∼150 with ∆F > 0.1, compared with the deepest
currently known of ∼0.03 for HATS–6 b, Hartman
et al. 2014). The most prominent are long-period
massive planets (1 − 10MJ) around the nearby
(d . 100 pc) lowest mass (. 0.35M�) M dwarfs.
The systems show a mean transit duration of
0.89 day, and a mean duration as a fraction of
the orbital period of 0.000 64.

A number of these transits may actually be
present in the Gaia photometric data. To estimate
the numbers, we have taken the 3500 candidate
transit events (again, corresponding to 100 realiza-
tions for the 35 predicted transiting systems) and,
for an improved statistical representation, made
a further 10 different random initializations of the
unspecified orbital parameters, subject to the con-
straint that it was a transiting system. We neglect
the field crossing duration (about 60 s) in compar-
ison with the transit duration, and the effect of
(possible) successive great-circle scannings during
a transit event. We found that among a total of
2 428 545 field crossings (corresponding to an av-
erage of 69.4 per system), 1467 (0.042± 0.001 per
system) occurred during transits. Thus 1 out of
some 1700 field crossings of the actually transit-

ing systems occurs during a transit (the median
semi-major axis of the 3500 planet orbits is about
3AU, or 300R?, so that the orbit circumference is
about 1800R?, roughly consistent with one transit
out of 1700 random samplings). Consequently, we
conclude that for our expected 25–42 astrometric
detections that are predicted to transit, just one
or two will have transits present in the Gaia epoch
photometry itself.

Further transits may already exist within
ground-based transit data bases, and these rare
but often deep transit events may also make
searches for them attractive within a Planet
Hunters-type human inspection of suitable pho-
tometric data sets (cf. Schmitt et al. 2014). A
single transit will confirm the planet and refine
the orbit.

The effort required to discover such a transit de-
pends on the number of potential systems filtered
out from the Gaia data. Assuming random incli-
nations (i.e. a uniform probability density of cos i),
we estimate that ' 6 500 systems have ∆χ2 > 100
(Table 4). Of these, about 10% or 650 will have
| cos i | < 0.1 and would have to be monitored
for up to 40% of the time to find the expected
∼ 10 transiting systems. Since we expect only 1
in every ∼3700 dwarfs stars to have a planet with
Mp > 0.1MJ and 1 yr< P <10 yr, such a targeted
follow-up of candidate edge-on Gaia planets would
still be ∼50 times more efficient than a blind tran-
sit survey in terms of the number of targets that
need to be observed.

There may be other prospects for improving es-
timates of the orbit inclination and transit times.
Radial velocity observations would resolve the am-
biguity in ω, indicating which of the two predicted
times per period should be considered. They
would also provide improved estimates of P , im-
proving the transit time predictions, and restrict-
ing the generally rapid divergence between pre-
dicted and true transit epochs over time which is
a consequence of the rather imprecise value of P
derived from Gaia alone. Accurate radial velocity
measures for systems showing long-period secular
trends at epochs far from those of Gaia’s astrom-
etry may also assist the astrometric orbit fitting
for the long-period planets.

Properties including e, Mp, and (inferred) den-
sities for this unexplored class of high-mass planet
orbiting at ap ∼ 2 − 3AU will provide useful
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new constraints for exoplanet formation and evolu-
tion. Additionally, they may be prime candidates
for detecting planetary moons and rings (Ohta
et al. 2009), and in searching for shorter-period
or slightly misaligned companions. As discussed
by Sozzetti et al. (2014, Section 4.5) astromet-
ric orbits in general (and for these transiting sys-
tems in particular) would also allow the epochs of
favorable elongation to be identified, permitting
(for the most nearby systems) optimized schedul-
ing for imaging instruments such as Gemini–GPI
(McBride et al. 2011), VLT–SPHERE (Zurlo et al.
2014), and E–ELT–EPICS (Kasper et al. 2010).

7. Discussion

7.1. Dependency on spectral type

Use of a population synthesis Galaxy model
means that we have estimates of the numbers of
host stars also as a function of spectral type. In
this section we expand on the results for FGK
dwarfs and M dwarfs, comparing our findings to
previous evaluations.

Rather than attempting detailed predictions in
view of largely unknown occurrence rates around
rare spectral types more generally, we simply em-
phasize that the Gaia census should place many
new constraints on the wider occurrence of plan-
etary systems across the entire HR diagram. For
example, some 1.2% of our recovered planets ac-
company very low mass pre-main sequence stars,
while some 0.1% (13 out of 16 668 down to r < 17.5
in our simulations at 2σfov) are around white
dwarfs (identified in the M? − R? plane as R? ∼
R⊕). The numbers around white dwarfs may
be conservative since we have used the current
M? (viz. 0.64 − 0.74M�) to scale the planet oc-
currence rate, rather than the mass of the main
sequence progenitor. More significantly, the ex-
pected numbers of white dwarfs detectable by
Gaia is a strongly increasing function of the limit-
ing magnitude: estimates suggest that some 230 00
disk white dwarfs and some 1100 halo white dwarfs
will be detected to G = 20 (Figueras et al. 1999;
Carrasco et al. 2014), with the majority of these
within 300–400 pc. We have not extended our
simulations to r > 17.5mag since the planet oc-
currence rate around white dwarfs, and especially
over the relevant values of Mp and P , are essen-
tially unknown. The Gaia results will provide an

effective exoplanet survey for these nearby systems
and will establish, for example, whether the occur-
rence of gas giants in wide orbits around white
dwarfs is consistent with that around main se-
quence stars.

7.1.1. FGK dwarfs

Casertano et al. (2008) focused their assesse-
ment on FGK dwarfs, constrained to V < 13 and
d < 200 pc to provide constant astrometic preci-
sion and hence uniform Gaia detectability thresh-
olds for their orbit-fitting experiments. With
their adopted along-scan single-epoch measure-
ment error of ∼11µas (their σψ ∼ 8µas for suc-
cessive crossings of the two fields of view) they
estimated the detection of ∼8000 single planet
systems and 1000 multiple planet systems (their
Table 6). Their 3σ detection criterion would
correspond to a 1σ detection for our adopted
along-scan value of σfov = 34.2µas for G < 12.
Our corresponding 1σ results around FGK stars
within 200 pc (recovered from TRILEGAL assum-
ing 4000K < Teff < 7500K) yields 11 572 planet
detections.

For the same S/N-based detection criterion,
these two assesments of detection numbers are
therefore comparable. We stress, however, that
our present overall detection numbers refer to a
current Gaia astrometric performance degraded by
a factor 3 with respect to that assumed by Caser-
tano et al. (2008). Their detection numbers for
FGK stars within 200 pc assuming the more plau-
sible σfov = 34.2µas (which corresponds to their
σψ ∼ 24µas in their Table 6) drops to 296 single
planet systems and 148 multiple planet systems.

Notwithstanding this astrometric accuracy
degradation, our overall planet detection num-
bers are significantly larger due to our inclusion
of a wider range of spectral types, a fainter ap-
parent magnitude (Figure 2a) yielding more low-
luminosity stars (Figure 3a), and our inclusion of
host stars and associated planet detections beyond
200 pc.

7.1.2. M dwarfs

M dwarfs provide an interesting subset of host
stars for more detailed consideration, given their
large numbers at relatively small distances from
the Sun, their low stellar mass resulting in large
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astrometric displacements for a given planet mass,
and their topical interest as habitable zone host
stars (e.g. Bonfils et al. 2013). Of the 16 668 ex-
oplanets recovered at 2σfov for our TRILEGAL
magnitude limit of r < 17.5mag (Table 4), 2097
are around M dwarfs, identified from our simula-
tion as stars with M? < 0.6M�.

Sozzetti et al. (2014) made a detailed evalua-
tion of the number of planets detectable around
M dwarfs with Gaia, focusing on the 33 pc dis-
tance limit of the volume-limited LSPM sample
(Lépine 2005), and on an extrapolated volume-
limited sample out to 100 pc. They adopted
magnitude-dependent single measurement errors
from recent Gaia models with a typical error of
σfov = 100µas for G . 16mag. They used similar
criteria for astrometric detection and orbit char-
acterization as derived by Casertano et al. (2008).
They assumed a distribution of planet occurrences
defined by Mp = 1MJ, P uniformly distributed
over 0.01−15 yr, and e uniformly distributed over
0− 0.6, with an overall frequency of fp = 0.03 (as
given by Johnson et al. 2010).

As summarized in Table 5, they predicted some
100 planets detected at 3σ within the 33 pc horizon
of the volume-limited LSPM sample (noting that
LSPM is neither complete, nor entirely comprised
of M dwarfs), and 2600 detected planets (and 500
accurate orbits) out of an estimated 4 × 105 ob-
jects within 100 pc based on the Besançon Galaxy
model. They identified a statistical subset of tran-
siting systems based on a random distribution of
orbit inclinations, estimating that ∼40 transiting
objects would be sampled out to 100 pc, with ac-
curate orbits for ∼10 (with uncertainties on i of
≈ 2− 10◦ for i ∼ 90◦).

To compare these results with those from our
own simulations, we proceeded as follows. Fol-
lowing Sozzetti et al. (2014), we selected the 3150
reddest (in V − J) non-subgiant sources from the
LSPM sample (not all are M dwarfs, but Lépine
(2005) does mention that some K dwarfs are in
this sample as well). Our own estimates of planet
occurrences rates around M dwarfs are depen-
dent on both stellar mass and metallicity (Equa-
tion 9). For the former, we followed Sozzetti et al.
(2014) in using the mass–luminosity (in MJ) re-
lation. We estimated G magnitudes based on
the LSPM V and J values, adopting V − I =
0.8(V − J) − 0.331 as a fit to the M dwarfs in

Lépine & Gaidos (2011, Table 2), then using the
G(V − I) relation by Jordi et al. (2010, Table 6).
Since metallicities are not available for all LSPM
stars, we drew metallicities from the distribution
of [Fe/H] values in the solar neighborhood given
by Haywood (2001, Table 3). For R?, required to
determine transit probabilities, we used an ana-
lytic fit to the M? − R? relation at 4.5Gyr, and
solar metallicity, from the Dartmouth stellar mod-
els (Dotter et al. 2008).

Finally, as detailed in Section 3.2, we used the
Montet et al. (2014) planet occurrence distribu-
tion for M < 0.6M�, and the Johnson–Cumming
distribution for M > 0.6M� (79 of our simulated
stars have M? > 0.6M�, with the highest mass
star being 0.85M�). We then simulated planets
as before, estimating the number of detections,
and the subset of transiting systems. For the
corresponding numbers for complete samples of
M dwarfs within 33 pc and 100 pc, we simply se-
lect stars from our TRILEGAL simulations with
M? < 0.6M� within these distance limits, and run
our detection and transit simulations as before.

The various results, including those based on
our ∆χ2 detection metric, are collected in Table 5,
in the same form as for Table 4, for two distance
limits (d < 33 pc and d < 100 pc), and for two
mission durations (the nominal 5 yr, and a hypo-
thetical 10 yr).

For the LSPM sample our estimate of the plan-
ets detected at 3σ is comparable to, if a little lower
than, the estimates by Sozzetti et al. (2014), viz.
64 and 100 respectively.

For our complete sample within 33 pc, our num-
ber of M stars increases by a factor 3, while the de-
tected planet numbers increase by only 25%: this
is because most of the additional stars have very
low masses (63% have M < 0.2M�, compared
with 27% in LSPM), while the Montet et al. (2014)
relation identifies a decreasing planet occurrence
for decreasing stellar mass. Selecting detections
through the combination of a lower S/N threshold
(α/σfov > 0.5) and a ∆χ2 exceeding 50 and 30 re-
spectively, we estimate 121–157 detections in the
complete sample out to 33 pc, with formally only
0.2–0.3 transiting.

For the complete sample within 100 pc, our
TRILEGAL-based estimates of the total numbers
of M dwarfs (∼190 000) are lower than those of
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both Sozzetti et al. (2014) (∼415 000), and those
implied by the northern 100 pc M dwarf census of
Lépine & Gaidos (2013), from which we infer a
full-sky estimate of ∼270 000 (including a contri-
bution of 30% due to incompleteness). Our corre-
sponding numbers of planet detections at > 3σfov

are also somewhat less than those estimated by
Sozzetti et al. (635 compared to 2600): while
Sozzetti et al. (2014) predicted ∼40 transiting sys-
tems, we find essentially none (1.1±1.1). Including
our ∆χ2 metric exceeding 50 and 30 respectively,
we find 1047–1451 detections out to 100 pc, with
just 1.7–2.4 transiting. Again, it can be seen from
the lower part of the table that performances im-
prove significantly for an extended 10-yr mission.

These differences in the number of M dwarfs,
and thererefore in the number of likely planets out
to 100 pc, arises in part from our magnitude limit
of r = 17.5 (compared to G = 20 adopted by
Sozzetti et al. 2014), such that our host star sam-
ple is incomplete for the lowest mass M dwarfs
(< 0.17M�). Other differences originate from the
Galaxy models, and the uncertainty on the known
planet occurrences. Since Gaia will quantify all
of these, we take this analysis no further, con-
cluding that the Sozzetti et al. (2014) estimates
are likely to be more complete, such that our esti-
mates of the detectable planets around M dwarfs
out to 100 pc (1047–1451) is probably underesti-
mated, perhaps by a factor 2.

7.2. Uncertainties on numbers

The uncertainties in our numbers remain rather
large (with one of the goals of Gaia being to resolve
these), perhaps by a factor 2 or more, due to a
number of reasons.

7.2.1. Galaxy model

There are various uncertainties on the num-
ber and distribution of host stars given by the
TRILEGAL simulations. Thus:
(i) the number counts are less reliable for |b| < 10◦,
where a smooth exponential dust disk is unrealis-
tic, and discrete dust clouds are important. Some
172×106 (66%) of the simulated stars to r = 17.5,
and 7500 (34%) of the recovered planets, are at
these low latitudes;
(ii) some 30% more exoplanets would be detected
should the star counts (and extinction) follow

more closely that of the Besançon (rather than
the TRILEGAL) Galaxy model;
(iii) our magnitude limit of r < 17.5mag means
that our host star sample is incomplete for the
lowest mass M dwarfs (Section 7.1.2), with the in-
vestigations by Sozzetti et al. (2014) suggesting
that our total planet detection numbers are ac-
cordingly underestimated numerically by perhaps
1000–2000.

7.2.2. Planet occurrence

There are also various uncertainties on the
planet distribution occurrences, including:
(i) the predicted yield is dominated by massive
planets on wide orbits, which lie outside the range
over which the distribution is well measured by ra-
dial velocity surveys, while we have assumed that
the power-law holds up to 15MJ and P ∼ 6−10 yr;
(ii) we have not considered massive multi-planet
systems, where the more complicated signals may
reduce the number of planets detectable in prac-
tice;
(iii) our treatment of binary systems is highly sim-
plistic. To provide estimates of planet detection
numbers which are not unduly optimistic, and
given the limited information on relevant planet
occurrences (e.g. as a function of binary mass ra-
tio, or depending on circumstellar or circumbi-
nary orbits) and some restrictions in TRILEGAL
(which does not simulated the binary star separa-
tion), we simply ignored the secondary stars of bi-
naries, and simulated planets around the primaries
according to the occurrence distributions for sin-
gle stars. Even so, some 35% of our detections are
around primaries in binaries with M2/M1 > 0.7.
Binary stars will complicate the signal, but also
provide more potential host targets, with many
wide binaries being resolved into separate compo-
nents by Gaia. We can get an indication of the
numbers of planets that may have been excluded
under two extreme assumptions (and ignoring cir-
cumbinary planets): either assuming that all bi-
naries are resolved, or that all are unresolved. In
the former case, we use the G magnitude of the
secondary to estimate the astrometric standard
error, while in the latter we use the G magni-
tude of the combined system, and assume that
α = (L2/(L1 + L2))α0 where Li are the compo-
nent luminosities, and α0 is the ‘undiluted’ α for
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the resolved case. With these assumptions, and
to be compared with the 16 668 planets detected
at α > 2σfov listed in Table 4, we find 3684 re-
covered planets (with 2 transiting) assuming all
are resolved, and 545 (with 1 transiting) if they
are unresolved. At α > 1σfov, and to be compared
with the 61 267 detections listed in Table 4, we find
13 201 and 2546 circumsecondary respectively;
(iv) for similar reasons, for our main simulations
we have simply excluded contributions from gi-
ant stars and massive main sequence stars (Sec-
tion 3.1) for which the occurrence rate of plan-
ets is poorly known empirically. We can get an
indication of the numbers of planets that may
have been excluded by assuming, for example, that
the planet occurrence rate for non-white-dwarf
stars with log Teff > 4.0 is fixed to the value at
log Teff = 4.0, and by using the planet occurrence
rate for giants based on the main sequence mass
(but rejecting planets on orbits within the stellar
envelope, a < R?). With these assumptions, and
to be compared with the 16 668 planets detected
at α > 2σfov listed in Table 4, we find just 412
recovered planets around giants (log g < 3.0), and
200 around hot stars (log Teff > 4.0), suggesting
their limited effect on overall detection numbers.

7.2.3. Instrument performance

Instrument performances post-commissioning
have been revised in mid-2014 primarily due to
increased scattered light (www.cosmos.esa.int/
web/gaia/science-performance). The latest as-
sessment gives sky-averaged parallax accuracies
σ$ = 26µas and 600µas for G = 15 and 20 re-
spectively. Compared with the pre-launch assess-
ment (Table 2) the astrometric degradation is thus
negligible at G = 15, but increases to a factor 2 at
G = 20. For G = 17 the degradation is expected
to be about 20%. The impact on planet detec-
tion numbers estimated here should therefore be
relatively small because of our adopted r = 17
magnitude limit, and because most of our recov-
ered systems are much brighter (cf. Figure 2).

7.2.4. Bright star limit

The gating scheme for the Gaia CCDs (Sec-
tion 2.1) restricts integration time, and hence sat-
uration, for stars brighter than G . 12. It is in-
tended to result in a more-or-less constant mea-

surement precision from the onset of gating to
G ∼ 3 or brighter (depending on calibration tech-
niques still to be developed). At the completion of
commissioning in 2014 August, the gating scheme
has been confirmed to operate nominally (J. de
Bruijne, priv. comm.), although it is too early for
secure estimates of the precise bright star limit, or
of the resulting accuracy floor in terms of calibra-
tion errors or attitude noise.

Accordingly, we have not imposed a bright star
limit in our simulations (the brightest star with a
recovered planet in our particular TRILEGAL run
has G = 3.9mag). While access to the brightest
systems will naturally be of scientific interest (for
example in terms of overlap with Doppler mea-
surements), the final exoplanet discovery numbers
are little affected by the detailed performance at
the brightest end. For example, of the 16 668 de-
tected planets at α/σfov > 2 (Table 4) just 339 are
around host stars with G < 7.

7.2.5. Mission accuracy

To underline the future prospects for astrom-
etry, we note that the factor of 2.5 improved ac-
curacy that was the original Gaia objective when
accepted by the ESA advisory committees in 2000
(10µas at 15mag) would formally extend the vol-
ume of space surveyed at a given relative distance
accuracy by a factor 2.53. Taking into account the
scale height of the Galactic disk and the distance
distribution of our detected planets we estimate
that, for such a mission, all of the detection statis-
tics presented in this paper would be scaled up by
a further factor of roughly 2.52 ∼ 6.

8. Conclusions

In addition to Gaia’s unique determination of
distances and space motions for many exoplanet
systems currently known, a major additional con-
tribution will be its unbiased magnitude-limited
exoplanet census for stars of all ages, spectral
types, and metallicities, with sensitivity over a
range of parameter space not well studied to date.
Our re-assessment of the numbers detectable by
Gaia astrometry takes into account the latest in-
strument performance estimates, a comprehensive
host star Galaxy population model, improved es-
timates of exoplanet frequencies, detailed simula-
tions of the satellite observations, and the develop-
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ment of a robust detection statistic based on orbit
fitting.

The ∆χ2 test statistic that we have developed
is effectively a likelihood ratio test, and is there-
fore close to optimal in terms of its power to de-
tect orbital motion. It is also closely related to
the orbit fitting procedures that could be applied
to the real data. Novel aspects of our treatment
include an eccentricity prior to impose a physi-
cally more plausible orbit (with higher predictive
power in terms of orientation and phase), and the
introduction of the noncentrality parameter λ to
characterize the ‘actual’ S/N of a given orbit. For
simulated data, λ can easily be computed for mil-
lions of orbits (as it does not involve actual orbit
fitting), and can thus be used to define very pre-
cisely the subset of detected systems.

Based on these considerations, we estimate that
Gaia should detect, by virtue of its astromet-
ric displacement measurements alone, some 21 000
(±6000) planets out to d ∼ 500 pc for the nominal
5-yr mission. At least 1000–1500 planets should
be detectable around M dwarfs out to ∼100 pc.
A significant fraction should have well-determined
orbits, although systems with P & 6 yr (for the
nominal 5 yr mission) will be poorly constrained.

With this large sample of astrometric discover-
ies, resulting insights into planet formation and
evolution will include determining the proper-
ties and frequencies as a function of host star
type, elucidating gas giant formation mechanisms,
probing dynamical interactions and the result-
ing system architecture, applications to terrestrial
planet studies based on the presence or absence of
Jupiter-type planets, and providing much tighter
constraints on population synthesis modeling in
general.

An interesting statistically secure subset of the
astrometric detections will be some 25–42 systems
with i ' 90◦ that should harbor transiting plan-
ets. Although identifying the transiting systems
will not be straightforward due to the relatively
large errors on i and ttransit, the resulting transit
depths will often be large because of their large
masses and radii, in particular for the subset of
M dwarf host stars. One or two such transits
should be present in the Gaia photometry data
stream. A single transit per system will provide
improved prospects for estimating the radii and
densities of an important class of the exoplanet

population that has not been well studied to date.
Gaia has the potential to observe for consid-

erably longer than the nominal 5 years, and we
have quantified how a longer mission would bring
substantial improvements for the detection, orbit
determination, and period coverage. Our simula-
tions indicate that astrometric detection and or-
bit characterization numbers would rise to some
70 000 (±20 000) exoplanets for a 10-yr mission.
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A. Orbit fitting to the Gaia astrometry

The objective of orbit fitting is to recover the 7 Keplerian parameters, for example the classical elements
a, e, P , tp, i, Ω, ω (Section 2.3). For the present investigation we use an equivalent set consisting of the four
Thiele–Innes constants A, B, F , G (which are functions of a, i, Ω, ω; see, e.g., Heintz 1978; Perryman 2011,
Section 3.6) together with the frequency f = 1/P , eccentricity e, and mean anomaly at the reference epoch,
M0.

The use of the Thiele–Innes constants means that the least-squares problem is non-linear only with respect
to the last three parameters f , e, and M0. The use of f instead of P is convenient because the frequency
resolution is largely independent of the period (other factors being constant), while the resolution in P varies
as P 2. Thus the period search, described below, can be carried out on a regular grid in frequency. The
use of M0 rather than tp limits the range of this parameter to the fixed interval [0, 2π) and eliminates the
ambiguity of tp modulo P .

The least-squares fitting of the 7 orbit parameters is done simultaneously with the fitting of the 5 pa-
rameters describing the uniform space motion of the system’s center of mass: ∆α∗0 ≡ ∆α0 cos δ0, ∆δ0 (the
corrections to the position components at the reference epoch t0), $, µα∗, µδ. This is important because
some part of the orbital motion is generally absorbed by the astrometric parameters, which limits its de-
tectability. This is particularly the case for long-period orbits (P � T ), where the orbital motion may be
almost completely absorbed by the proper motion parameters. Similarly, orbital motion with a period close
to 1 yr may be absorbed by the parallax parameter. In tangential coordinates the linearised observation
equation for the along-scan field angle η at time t is

∆η = [∆α∗0 + (t− t0)µα∗ +BX(t) +GY (t)] sin θ

+ [∆δ0 + (t− t0)µδ +AX(t) + FY (t)] cos θ + Πη$ , (A1)

where θ is the position angle of the scan and Πη the along-scan parallax factor. The non-linear orbital
parameters f , e, M0 only appear via the functions

X(t) = cosE − e , Y (t) =
√

1− e2 sinE , (A2)

where the eccentric anomaly E is obtained from Kepler’s equation

E − e sinE = M0 + 2πf(t− t0) . (A3)

Given the position of an object, the AGISLab software (Holl et al. 2012) computes a list of all expected field
crossings of the object, including t, θ, and Πη of each crossing, based on the nominal scanning law.

Equation A1 is the basis for our simulation of the observations, and for the orbit fitting. It gives, for all
observations of a given object, the expected along-scan displacement of the stellar image as a function of
the 12 astrometric and orbit parameters. Formally, we write this ∆ηi(x, y), where i is the index of the field
crossing, and x, y are vectors of length 5 and 7 respectively, containing the astrometric and orbit parameters.
Given the assumed set of ‘true’ parameter values and the corresponding list of field crossings, observations
are simulated as

∆ηobs
i = ∆ηi(x

true, ytrue) + νi , (A4)

where νi is Gaussian observation noise with standard deviation σi (Equation 1). The simulated observations
are input to the orbit fitting algorithm, in which all 12 parameters, or a subset of them, are fitted. The
goodness-of-fit is measured by the chi-squared statistic

χ2(x, y) =
∑
i

(
∆ηobs

i −∆ηi(x, y)

σi

)2

. (A5)

The least-squares solution is equivalent to the minimization of this χ2, subject to certain constraints and
modifications discussed below. For Gaussian noise the likelihood of the model is proportional to exp(−χ2/2),
so minimizing χ2 is equivalent to maximum-likelihood estimation.
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For a given set of the three non-linear parameters f , e, M0, the fitting of the other nine parameters
(∆α∗0, ∆δ0, $, µα∗, µδ, A, B, F , G) is completely linear and can therefore be computed very quickly,
effectively defining the goodness-of-fit as a non-linear function χ2(f, e, M0) of the remaining parameters.
Its minimization is difficult mainly due to the many local minima obtained as a function of f . By contrast,
for a given f the dependence on e and M0 is much simpler, but constrained (0 ≤ e < 1, 0 ≤ M0 < 2π) and
complicated by the degeneracy of M0 for e = 0. Mapping (e, M0) to the transformed pair

u =
e

1− e
cosM0 , v =

e

1− e
sinM0 , (A6)

solves the degeneracy (by making M0 undefined for e = 0) and eliminates the need for a constrained
minimization. Empirically, we find that for a given f the topology of χ2(u, v) is quite simple so that the
minimum can be found by any standard non-linear optimization method (we used the Nelder–Mead simplex
algorithm). The problem is thus reduced to finding the minimum with respect to f . We do this simply by
searching a regular grid of frequencies fmin ≤ f ≤ fmax in steps of ∆f ' 0.05/T , where T is the mission
length. The frequency range of the search is discussed below. When the grid point with the smallest χ2 has
been found, an optimum f is estimated by parabolic interpolation around the minimum, and the remaining
astrometric and orbital parameters are determined as described above.

The quasi-random temporal sampling produced by the Gaia scanning law (with a minimum time interval
of ∼2 hr between successive observations, and a minimum of 6 distinct epochs per year) in principle allows
to determine orbital periods shorter than a day, but the upper limit of the frequency search, fmax, must
in practice be limited by the minimum physically realistic period and the risk of the global minimum not
being close to the true frequency (aliasing). This risk is roughly proportional to fmax (the more frequencies
that are searched, the higher is the risk of finding one that accidentally fits the data better than the true
frequency), and thus inversely proportional to the shortest period in the search. It also depends strongly
on the actual time sampling of the object, and is much higher in a wide band along the ecliptic (where the
time sampling is relatively poor) than for objects further from the ecliptic (|β| ≥ 45◦). In the experiments
reported here we generally use fmax = 1.6 yr−1, except for the relatively few (∼ 5%) systems with true
period < 0.7 yr, where the search is extended to 1.1 times the true frequency.

The minimum frequency searched is always fmin = 0.016 yr−1 (P ∼ 63 yr). We choose this low limit
because it sometimes allows the detection of a companion from the non-linear segment of the orbit, although
no orbital elements could be reliably estimated.

A common phenomenon encountered when fitting orbits with true P > 4 yr is that the best fit is obtained
for a very eccentric orbit (e > 0.7), even though the true eccentricity is typically much smaller (< 0.3). The
minimum χ2 versus e is very shallow in these cases, and the fitted high eccentricity merely an accidental
effect of the noise. If a circular orbit had been adopted instead, the result would often have been a physically
more plausible orbit with higher predictive power in terms of its orientation and phase. To address this
problem we take a Bayesian viewpoint and maximize the posterior probability density

P(f, e, M0) ∝ P(e) exp

[
−1

2
χ2(f, e, M0)

]
. (A7)

Here P(e) is the prior density of the eccentricity, and the exponential is the (relative) likelihood of the model
for Gaussian errors. Taking the logarithm of Equation A7 we see that the prior is included by minimizing
χ2 − 2 ln P(e) instead of χ2, resulting in a fit with a slightly larger χ2 than if the prior had not been used.
All orbit fits are obtained in this way, using as prior the Beta distribution (Equation 11) with a = 1, b = 3.
Using a = 1 (instead of a = 0.867 used in Section 3.1) regularizes the behaviour at e = 0. For some very
eccentric orbits this will bias the solution towards more circular orbits, but with the merit of avoiding a much
larger number of spurious high-eccentricity solutions. For well-determined solutions the use of the prior has
little influence on the fitted parameters.
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B. The noncentrality parameter, λ

Use of the ∆χ2 statistic as a measure of detectability (Equation 14) has the advantage that it can be
computed from the simulated data in the same way as for real data. For simulations it has however two
disadvantages. First, it is time-consuming to compute, as it requires the fitting of orbit parameters including
the period search. This makes it inconvenient in applications with large simulated samples, or for mapping
the detectability over a dense grid of orbit parameters. Second, the outcome for a given system depends on
the particular noise realization νi of the simulations, and is therefore only repeatable in a statistical sense.
The latter disadvantage could be remedied by computing an average ∆χ2 over many noise realizations, but
with a correspondingly higher computational penalty.

Both disadvantages can be avoided if the fitting is made to noiseless observations, which eliminates the
random elements as well as the need for a 12-parameter fit, since the minimum χ2 in this case is 0. In the
notation of Appendix A, we may thus take

λ = min
x

∑
i

(
∆ηi(x

true, ytrue)−∆ηi(x, 0)

σi

)2

(B1)

as a measure of the distance between the 12- and 5-parameter models. Note that λ is deterministic, as
it does not include the observation noise (νi). It can also be calculated very quickly as it only involves a
linear least-squares fit of the astrometric parameters to the (noiseless) observations weighted by the formal
standard errors. Clearly λ = 0 if y = 0, or more generally if the stellar motion is perfectly represented by
the 5-parameter astrometric model. Naturally λ (in contrast to ∆χ2) can only be used with simulated data,
as it requires the true parameters to be known.

This λ corresponds to the noncentrality parameter of the noncentral chi-squared distribution, which would
be the exact distribution of ∆χ2 for a linear model with Gaussian noise. In the linearized regime of the orbit
fitting algorithm we thus expect ∆χ2 to follow the noncentral chi-squared distribution with k = 7 degrees of
freedom and noncentrality parameter λ. This distribution has the mean value k+ λ and standard deviation√

2(k + 2λ).
As illustrated in Figure 11, this holds to a reasonable approximation in actual orbit fitting simulations.

The mean value of ∆χ2 is slightly greater than λ+7 for small values of λ (possibly an effect of the eccentricity
prior), but agrees very well with the theoretical expectation for higher λ. The scatter of the points is also in
good agreement with theory. Thus λ+ 7 can effectively be used as a proxy for ∆χ2 in simulations.

24



Table 1: Average number of field of view passages per star, < Nfov >, versus ecliptic latitude. The column
< N ′fov > includes a mission-level contribution of 20% ‘dead time’.

| b | (◦) 〈Nfov〉 〈N ′fov〉

0 – 5 64.8 51.9
5 – 10 65.4 52.3
10 – 15 67.2 53.7
15 – 20 69.5 55.6
20 – 25 73.1 58.5
25 – 30 78.3 62.6
30 – 35 86.4 69.1
35 – 40 99.0 79.2
40 – 45 134.3 107.4
45 – 50 138.3 110.6
50 – 55 106.3 85.0
55 – 60 95.2 76.2
60 – 65 88.8 71.0
65 – 70 84.6 67.7
70 – 75 81.5 65.2
75 – 80 79.4 63.5
80 – 85 78.5 62.8
85 – 90 77.6 62.1
0 – 90 86.1 68.9
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Table 2: Accuracy of Gaia observations versus G magnitude. z gives the inverse relative number of photons in
the image (Equation 2), ση is the centroiding accuracy for each of the 9 along-scan CCDs in the astrometric
field (Equation 3), σfov is the along-scan accuracy per field of view passage (Equation 1), and σ$ is the
sky-averaged parallax accuracy for the nominal mission duration of 5 yr (Equation 4).

G z ση σfov σ$
(mag) (µas) (µas) (µas)

6 0.063 57.8 34.2 10.6
7 0.063 57.8 34.2 10.6
8 0.063 57.8 34.2 10.6
9 0.063 57.8 34.2 10.6
10 0.063 57.8 34.2 10.6
11 0.063 57.8 34.2 10.6
12 0.063 57.8 34.2 10.6
13 0.158 91.7 41.6 12.9
14 0.398 145.4 56.1 17.5
15 1.000 230.9 82.0 25.5
16 2.512 367.5 125.7 39.1
17 6.310 588.9 198.3 61.7
18 15.849 958.1 320.6 99.7
19 39.811 1612.8 538.4 167.4
20 100.000 2898.3 966.5 300.6
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Table 3: Summary of the adopted planet occurrence frequencies, f , as a function of planet mass, Mp and
period, P . For the lower mass planets, we follow the size classification adopted by Fressin et al. (2013),
along with the occurrence frequences given in their Table 3, and transform their adopted Rp/R⊕ limits to
Mp/MJ using Equation 12. Notes: (a) Fressin et al. give a single bin for planets in the range 6− 22R⊕ (in
parentheses) which we interpolate to give f = 0.0114 for the restricted range 0.1 − 0.3MJ to avoid overlap
with the region defined by the Johnson–Cumming distribution. (b) the frequencies apply for a Sun-like star
(1M�, [Fe/H]=0), and have been extrapolated to cover the range 0.1− 15MJ and P < 10 yr.

Class Rp Mp P f Reference
(R⊕) (MJ)

Earth 0.8–1.25 0.002–0.007 0.8– 85 d 0.1840 Fressin et al. 2013
super Earth 1.25–2 0.007–0.018 0.8–145 d 0.2960 Fressin et al. 2013
small Neptune 2–4 0.018–0.033 0.8–245 d 0.3090 Fressin et al. 2013
large Neptune 4–6 0.033–0.077 0.8–418 d 0.0318 Fressin et al. 2013
(giant 6–22 0.077–1.274 0.8–418 d (0.0524) Fressin et al. 2013a)
‘restricted’ giant 0.077–0.3 0.8–418 d 0.0114 Fressin et al. 2013a
giant 0.1–0.3 418 d–10 yr 0.0388 Johnson–Cummingb
giant 0.3–15 2 d–10 yr 0.1339 Johnson–Cummingb
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Table 4: For increasing distance intervals, NC08
FGK lists FGK dwarf numbers from Casertano et al. (2008,

their Table 2), and NC08
det their planet detections (their Table 6). N? gives our total star numbers from

TRILEGAL (all spectral types). Ndet and Ntran are the planets detected and transiting for various S/N

thresholds, α/σfov (Section 4). The lower part of the table gives the cumulative numbers, at that S/N, which

also pass detection defined by ∆χ2 (Section 5). Our best estimates of Ndet and Ntran are in bold. Results

are given for the nominal 5-yr mission, and for an extended 10-yr mission.
∆d NC08

FGK NC08
det N? Ndet Ntran Ndet Ntran Ndet Ntran Ndet Ntran Ndet Ntran

(pc) α > 0.5σfov α > 1σfov α > 2σfov α > 3σfov α > 6σfov

0– 50 10 000 1400 39 000 1508 5.4 897 2.8 512 1.4 359 0.9 186 0.4
50–100 51 000 2500 203 000 5914 20.6 3344 9.9 1789 4.4 1195 2.6 502 0.9

100–150 114 000 2600 476 000 8598 30.1 4877 14.3 2435 5.8 1466 3.0 452 0.7
150–200 295 000 2150 889 000 11737 37.2 6309 16.7 2851 6.2 1589 3.1 289 0.4
200–250 – – 859 000 8976 26.9 4601 11.5 1860 3.8 862 1.5 51 0.0
250–300 – – 1 298 000 11734 33.8 5677 13.5 2026 4.0 832 1.5 12 0.0
300–350 – – 1 793 000 14972 42.2 6857 15.9 2008 3.8 636 1.0 – –
350–400 – – 1 775 000 13091 35.7 5464 12.4 1308 2.4 264 0.4 – –
400–450 – – 1 411 000 9019 24.3 3394 7.5 642 1.2 63 0.1 – –
450–500 – – 1 718 000 10439 27.3 3691 8.0 533 1.0 25 0.0 – –
500–600 – – 4 267 000 21172 53.8 6411 13.9 572 1.1 8 0.0 – –
600–700 – – 5 732 000 21286 53.7 4984 10.9 127 0.3 – – – –
700–800 – – 5 462 000 15434 37.9 2678 5.9 5 0.0 – – – –
800–1400 – – 36 500 000 35219 88.0 2083 4.7 – – – – – –

Total 470 000 8750 62 000 000 189099 517 61267 148 16668 35 7299 14 1492 2

∆χ2 Ndet Ntran Ndet Ntran Ndet Ntran Ndet Ntran Ndet Ntran

α > 0.5σfov α > 1σfov α > 2σfov α > 3σfov α > 6σfov

nominal 5-year mission > 30 27505 42 26038 42 12893 25 6541 12 1475 2
" > 50 14806 25 14755 25 10297 20 5762 10 1444 2
" >100 6488 11 6488 11 6116 11 4393 8 1353 2

extended 10-year mission > 30 90751 135 58674 117 16666 35 7299 14 1492 2
" > 50 53015 82 47630 80 16648 35 7299 14 1492 2
" >100 25958 39 25882 39 15836 30 7285 14 1492 2
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Table 5: Planets around M dwarfs detectable by Gaia, for two distance limits from the Sun. NS14
? and

NS14
det are from Sozzetti et al. (2014), for which their predicted number of astrometrically detected transiting

systems are 0 (to 33 pc) and 40 (to 100 pc) respectively. For the 0–33 pc volume, results are given for both

the LSPM sample (L; Lépine 2005, with N? = 3150) and for the predicted complete volume (C), for which

N? is estimated from Galaxy models (TRILEGAL here, and Besançon for S14). Other details are as Table 4.

Again, our best estimates of the range of Ndet and Ntran are given in bold.
∆d NS14

? NS14
det N? Ndet Ntran Ndet Ntran Ndet Ntran Ndet Ntran Ndet Ntran

(pc) α > 0.5σfov α > 1σfov α > 2σfov α > 3σfov α > 6σfov

0– 33(L) 3 150 100 3 150 257 1.2 167 0.6 93 0.3 64 0.2 32 0.1
0– 33(C) – – 9 944 344 1.2 225 0.6 122 0.3 91 0.2 42 0.1
0–100(C) 415 000 2600 191 567 4149 11.1 2090 4.7 986 1.8 635 1.1 267 0.4

∆χ2 Ndet Ntran Ndet Ntran Ndet Ntran Ndet Ntran Ndet Ntran

α > 0.5σfov α > 1σfov α > 2σfov α > 3σfov α > 6σfov

0– 33 pc (C), 5-year mission > 30 157 0.3 154 0.3 114 0.3 90 0.2 42 0.1
" > 50 121 0.2 121 0.2 107 0.2 87 0.2 42 0.1
" >100 87 0.2 87 0.2 85 0.2 78 0.2 41 0.1

0–100 pc (C), 5-year mission > 30 1451 2.4 1415 2.4 912 1.7 625 1.1 267 0.4
" > 50 1047 1.7 1047 1.7 840 1.5 595 1.1 263 0.4
" >100 644 1.1 644 1.1 625 1.1 517 1.0 255 0.4

0– 33 pc (C), 10-year mission > 30 259 0.5 219 0.5 122 0.3 91 0.2 42 0.1
" > 50 193 0.4 187 0.4 122 0.3 91 0.2 42 0.1
" >100 140 0.3 140 0.3 118 0.3 91 0.2 42 0.1

0–100 pc (C), 10-year mission > 30 2609 4.3 2033 3.9 986 1.8 635 1.1 267 0.4
" > 50 1862 3.1 1782 3.1 986 1.8 635 1.1 267 0.4
" >100 1246 1.9 1246 1.9 956 1.7 635 1.1 267 0.4
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Fig. 1.— Astrometric signature versus period calculated for the objects listed in exoplanet.eu at 2014
September 1 for all 1821 confirmed planets (left), and for the subset of 1129 transiting planets with appro-
priately known data (right). Note the different scales in abscissa and ordinate. Circle sizes are proportional
to planet mass; the prominent object (left) at P = 0.7 yr, α = 6300µas, is the 28.5MJ astrometric detection
DE0823–49 b. Unknown distances are set to d = 1000pc. Transiting planets with α > 1µas are labelled
by (abbreviated) star name, indicating the discovery instrument, both ground (H=HAT, W=WASP) and
space (C=CoRoT, K=Kepler). For the transiting planets above this threshold, the unknown distance af-
fects only Kepler–27 b and c, and Kepler–31 b and c. Assuming d = 500pc, α would increase by a factor 2,
but their astrometric motion would remain undetectable by Gaia.
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Fig. 2.— Histograms of the predicted planet detections with Gaia, for α > 2σfov, as a function of: (a) Gmag-
nitude; (b) distance d; and (c) planet mass Mp, where the rising distribution up to the adopted occurrence
threshold of 15MJ contrasts with the mass distribution for the simulated planets (d, which is a 1 in 104

re-sampling of the simulated planet distribution, showing the M−1.31
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31



0 5 10 15

0

5

10

15

0

5

10

15

0 5 10 15

20
G (mag)

0 5 10 15 20
G (mag)

0 5 10 15 20

G (mag)

0 200 400 600 800

d (pc)
0 200 400 600 800

d (pc)

Mp (MJ)

M
p 

(M
J)

M
p 

(M
J)

(a) (b)

(c) (d)

(e) (f )

a 
(A

U
)

a 
(A

U
)

a 
(A

U
)

M
* (

M
⊙

)

0

1

2

3

0

2

4

6

0

2

4

6

0

2

4

6

Fig. 3.— Scatter diagrams (with a random 1 in 10 sampling) of the predicted planet detections with Gaia (for
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the most massive planets, with (d) the largest semi-major axes up to the period limit of Gaia detectability;
(e) there is a broad range of Mp versus a; and (f) planets around the fainter stars have smaller a, related to
the decreasing M?. Granularity in distance is due to the discrete absolute magnitude steps in TRILEGAL.
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Fig. 4.— The path on the sky of a star from the Hipparcos catalogue, over 3 years, illustrating the principle
of the intermediate astrometric data used for object multiplicity fitting. Each line indicates the observed
position of the star at a particular epoch: because the measurement is 1-d, the precise location along each
line is undetermined. Curves show the (5-parameter) modelled stellar path fitted to all measurements. The
inferred position at each epoch determined by the fit is indicated by a small filled circle, and the residual by
the short line joining the circle to the corresponding position line. The amplitude of the oscillatory motion
gives the star’s parallax, with the linear component defining the star’s proper motion.
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Fig. 5.— Orbit fits to 100 simulations of one of the astrometric transiting planets (with ∆χ2 = 41.8± 11.8),
showing scatter plots of the parameters α (Equation 6), P , e, and cos i, along with (top right) the transit
time displacement from tref . In all diagrams the long dashed lines show the true values. There were 17
non-detections (defined as ∆χ2 < 30) among the 100 experiments. These are marked with crosses (instead
of circles). With reasonable scales some of the points fall outside the plotted areas. The number (percentage)
of such outliers is shown in brackets in the top right corner of each subplot.
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Fig. 6.— As Figure 5 for another of the astrometric transiting planets, with ∆χ2 = 972 ± 58. Noteworthy
is the high S/N and well-behaved solution despite the relatively faint magnitude (G = 15), the relatively
long orbit period, and the small number of field crossings. In this case there were no non-detections, and no
outliers.
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Fig. 7.— The expected properties of the astrometrically-detected transiting planets as a function of as-
trometric S/N (α/σfov), based on 100 realizations of the transit samples. Even at high S/N (α/σfov & 8)
there is a broad distribution of expected planet properties, and we see that: (a) nearby planets (d . 200 pc)
are preferentially represented; (b) transiting planets will be found around low- to intermediate-mass stars
(0.5−2M�); (c) detections will continue to faint magnitudes (G . 15). These will span a range of: (d) planet
masses, Mp ∼ 2− 15MJ, (e) semi-major axes, ap ∼ 1− 5AU, and (f) orbit eccentricities, e ∼ 0− 0.8.
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Fig. 8.— Astrometric detectability, characterized by the quantity ∆χ2, viz., the reduction in χ2 when going
from the 5-parameter to the 12-parameter solution (Equation 14). In principle, ∆χ2 > 30 may be considered
as a reasonable detection criterion, although we use ∆χ2 > 100 to identify the systems with the most accurate
orbits. A mission length of 5 yr is assumed. The trend in detectability versus S/N is rather well defined for
orbit periods P < 5 yr, as suggested by the straight dashed line, given by ∆χ2 = 14(S/N)2.
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Fig. 9.— Histogram showing the distribution of ∆χ2 for 100 realizations of systems with transiting planets
and S/N > 2. The solid curve is their cumulative distribution.
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Fig. 10.— Histogram showing the probability density of estimated cos i for transiting systems (true cos i ' 0)
with ∆χ2 > 100. The curve gives the corresponding probability density function for random-inclination
systems with ∆χ2 > 100.
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Fig. 11.— ∆χ2 versus the noncentrality parameter λ for the 3500 exoplanet systems corresponding to
100 realizations of our estimated number of 35 transiting astrometric detections (circles). The thick grey
curve is a 21-point running average. The thin black curve is the theoretical relation E(∆χ2) = λ+ 7.

40



1

10

100

1000

Transit depth, (Rp/R*)2

N
um

be
r

0 0.2 0.4 0.6 0.8 1

Fig. 12.— Histogram of predicted transit depths, (Rp/R?)
2, for the 3500 simulated transit events (corre-

sponding to 100 realizations of the 35 transiting astrometric detections at α > 2σfov from Table 4). The
distribution has a median of about 0.008, increasing steeply for small values, but showing a few very pro-
nounced transits attributed to long-period massive planets (1 − 10MJ) around the lowest mass M dwarfs.
See Section 6 for further details.
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