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Abstract 
 

Quantum entanglement has been a topic of much research in modern physics, and an application 

in quantum computing is envisioned. This thesis address the use of polarization entangled photon pairs 

produced by spontaneous parametric down-conversion (SPDC) in entanglement transfer process and 

quantum computing. The simplicity of SPDC entanglement relative to other quantum phenomena is 

first emphasized by developing a complete classical theory of the photon-crystal interactions 

characteristic of SPDC. The methods of achieving polarization superposition via the Type-I and Type-II 

SPDC are described. A combination of superposition and polarization correlation between down-

converted photons is shown to violate Bell’s inequality, thus revealing the entangled nature of the 

photon pairs. Finally, the possibility of controlling entangled photons through the manipulation of 

surface plasmons is highlighted as a way to transfer entanglement from photons to material particles. 

 

Introduction 
 

Spontaneous parametric down-conversion (SPDC) is a 2
nd

 order optical effect where the dipole 

polarization depends quadratically on the electric field and photons incident on a non-linear crystal can 

be “converted” into two photons. It is an important process in quantum optics, used especially to 

produce entangled photon pairs
1
, and also constitutes an excellent method to produce a source of single 

photons
2
. An incident photon in SPDC is often referred to as the “pump” while the outgoing photons 

are called the “signal” and “idler”. SPDC is said to be “spontaneous” because there is no input signal 

or idler field to stimulate the process; they are generated spontaneously inside the crystal. The process 

is “parametric” because it depends on the electric fields (and not just their intensities), implying that 

there exists a phase relationship between input and output fields. “Down-conversion” refers to that fact 

that the signal and idler fields always have a lower frequency than the pump.
3
 Splitting of the pump 

photons into pairs of photons occurs in accordance with conservation laws, namely, having combined 

energies and momenta equal to the energy and momentum of the original photon. These conservation 

laws are given by 

 

 �� � �� � ��          (1a) 

 �� � �� � �� ,           (1b) 

 

where ω�, ω�, ω�, ��, ��, and ��, are the frequencies and wave vectors of the pump (subscript 3), 

signal (subscript 1), and idler (subscript 2). 

SPDC, as analyzed in this paper, is a phenomenon that requires photon-crystal interactions 

among the three photons within a uniaxial crystal, where the pump photon is partially or fully polarized 

in an extraordinary direction relative to the crystal’s optical axis. SPDC can be implemented in two 

different varieties, characterized by the polarizations of the signal and idler. If both outgoing photons 

are ordinary in their polarization it is deemed Type-I down-conversion. If one of the photons is 

extraordinarily polarized while the other is ordinary, it is called Type-II. The possible paths of the 

outgoing photons (schematically shown in Fig. 1) are determined by conservation laws and constraints 

on polarization. In either case, the outgoing photons are correlated in their polarizations. 

 The direction of propagation for the signal and idler waves depend upon several factors, such as 

their respective frequencies, the ordinary and extraordinary refractive indexes of the non-linear crystal, 

no and ne, the angle between the pump and the crystal axis, and the conservation laws (1a) and (1b).  

Additionally, the strength of the down-converted fields is determined by phase matching conditions
4
, 

which are dependent upon crystal thickness and propagation speeds. Because propagation speeds 

depend upon indices of refraction, Type-I and Type-II SPDC have different phase matching conditions. 



 
Fig 1: The two types of Parametric Down-Conversion from a 2

nd
 order crystal. LEFT: Type-I down-conversion, where the 

pump beam is converted into two beams with paths constrained to a cone centered on the pump. The output photons have 

ordinary polarization relative to the crystal axis. RIGHT: Type-II down-conversion, where the pump beam is converted into 

two beams which each appear anywhere on their respective cones, on opposite sides of the pump beam. One of the outgoing 

photons will be ordinarily polarized, while the other will be extraordinary.  

 

Both types can be attained by tuning the orientation of the non-linear crystal relative to the incident 

beam direction. For example, in one experiment, Type-I SPDC was attained using a 413 nm pump 

beam propagating at 28.3° from the crystal axis of a 1 mm thick BBO crystal (β-barium borate, β-

BaB2O4)
5
. In another experiment, Type-II SPDC was attained using a 341 nm pump at 49.6° from the 

crystal axis of a 3 mm thick BBO crystal
6
. 

The correlation between down-converted photon polarization states makes possible the 

production of polarization-entangled photons. Entanglement is the quantum phenomenon where the 

state a system of two or more particles is not determined by the states of the individual particles alone, 

and only occurs when the particles of the system are in a quantum superposition of states and share a 

correlation. If two photons are correlated in their polarizations, measuring the polarization state of one 

determines the state of the other, without having to measure it. SPDC is adequate to produce photons 

which are both correlated and in superposition. For Type-II, the outgoing photons are in superposition 

where the cones intersect, because the polarization at that point is uncertain. For Type-I, two crystals 

must be aligned in such a way that their cones overlap. This will be further explained in chapter 2 of 

this paper. 

In the first chapter of this paper, a theory of SPDC will be developed from first principles 

(Maxwell’s equations). In chapter 2, the methods for attaining entanglement of photon polarizations for 

both Type-I and Type-II SPDC will be given. It will also be shown that correlation between down-

converted photon polarizations puts into doubt local-realism, a viewpoint that considers reality as 

deterministic, independent of the observer, and that no information travels faster than light. 

Consequences of the violation of local-realism will be explored. Chapter 3 presents methods of 

manipulating polarization entangled photons, and proposes a use for SPDC in entanglement transfer 

experiments. 

 

1.1 Classical Theory of SPDC - Introduction 
 

 We present here a theory of SPDC based on the Maxwell equations and the concept of non-

linear polarization. This treatment leads to three coupled equations for both Type-I and Type-II down-

conversion. The derivation of these equations requires many steps and several approximations. It is the 

objective of this chapter to present a complete derivation of these coupled equations in a thorough and 

logical manner. Throughout this chapter, it will be assumed that the non-linear crystal through which 



SPDC occurs is KDP (KH2PO4). The results of this chapter can be extended to other uniaxial crystals. 

 

1.2 The Wave Equation 
 

Spontaneous parametric down-conversion (SPDC) is a 2
nd

 order optical effect which requires 

non-linear uniaxial crystals. The behavior of light in a non-linear crystal can be determined from first 

principles. We can begin with Maxwell's equations in matter. If we assume no electric currents or free 

charges are present in the medium, then the electric field E, magnetic field B, and electric displacement 

field D, are related by 

 
�� � 
 ��� �           (2) 

 
�� � � ��� �,           (3) 

 

where µ is the permeability constant of the material. Given equation (3), the curl of equation (2) is 

 

 
�
�� � 
� ��
��� �.          (4) 

 

The curl operators on the left side of equation (4) can be replaced using the following identity, 

 ∇x∇xE E E E � ∇(∇⋅EEEE) - ∇2EEEE.         (5) 

 

In a linear material, the polarization P is related to the electric field by Plinear = ε0χlinearE, where ε0 is the 

permittivity of a vacuum. Therefore, the electric displacement vector D   ε0E + P in a linear material 

can be written as D   ε0E + P = ε0 (1+χlinear) E   εE. In the non-linear case, P = Plinear + PNL = ε0χlinearE 

+ PNL. Therefore, the electric displacement in a non-linear material is  

 

 �  !"� � # � !� � #$%.         (6) 

 

 Using equations (5) and (6), equation (4) can be written as 

 

 
�� 
 
(
 ⋅ �) 
 �! ��
��� � � � ��

��� #$%.       (7) 

 

Equation (7) is a wave equation which explicitly shows how the polarization of a non-linear crystal is 

related to the electric field within it. This equation holds for each vector component of any basis, hence, 

projecting E and PNL on any particular axis results in a scalar relationship, which can be replace in 

equation (7). 

SPDC is a three-photon phenomenon, so E is the summation of three fields (the pump, signal, 

and idler). Let E be written as, 

 

 � � �(&, (, ��) � �(&, (, ��) � �(&, (, ��), 

 

with 

 

 �(&, (, ��) � �� ��(&))*(�+⋅,-.+�) � /. /.        (8a) 

 



 �(&, (, ��) � �� ��(&))*(��⋅,-.��) � /. /.        (8b) 

 

 �(&, (, ��) � �� ��(&))*(�0⋅,-.0�) � /. /.,        (8c) 

 

where s is the distance propagated through the crystal and c.c. is the complex conjugate of the 

preceding term. 

The amplitudes from equations (8a-c) are complex values containing phase information. Note 

that we allow for the amplitudes to change as the waves propagate. This is because in SPDC, some of 

the energy of the pump beam represented here as the third wave with frequency ω�, gets “converted” 

into the other two waves. Therefore the pump beam decreases in intensity along the crystal length.We 

are assuming that none of the three amplitudes have components in the direction of propagation 12. In 

reality, the signal and idler are usually measured along a very small angle relative to the pump direction 

of propagation. 

 Using equation (7), we want to determine the relationship between electric fields and 

polarizations that are functions oscillating at frequencies ω�, ω�, and ω�. Equation (7) is a linear 

equation, so each term of E can be differentiated separately, the results being added together afterwards 

to attain the left side of equation (7). Let us focus on the pump. If the pump is defined as in (8c), then 

 

 
��(&, (, ��) � 3
4���� � 254�,6 776 �� � ��
�6� ��8 9�� )*(�0⋅,-.0�): � /. /.    

 

 

;
 ⋅ �(&, (, ��)< � 3(�� ⋅ ��)�� 
 5 9�� ⋅ 776 ��: 128 9�� )*(�0⋅,-.0�): � /. /.    

 

 
�! ��
��� �(&, (, ��) � �!����� 9�� )*(�0⋅,-.0�): � /. /.       

 

where k3,S is the component of k3 in the direction of propagation 12, k3 is the absolute value of k3, and 

c.c. is the complex conjugate of the preceding terms. The sum of these terms is 

 

 
��(&, (, ��) 
 
;
 ⋅ �(&, (, ��)< 
 �! ��
��� �(&, (, ��) � =�)*(�0⋅,-.0�) � /. /.  (9a) 

 

where 

 

 =� � �� 9
4���� � ��
�6� �� � 254�,6 776 �� 
 5 9�� ⋅ 776 ��: 12 � (�� ⋅ ��)�� � �!�����:, 

 

where the complex conjugate is omitted for convenience. Two more equations similar to (9a) exist for 

both >(s, t, ω�) and >(s, t, ω�) respectively. 

 

  
��(&, (, ��) 
 
;
 ⋅ �(&, (, ��)< 
 �! ��
��� �(&, (, ��) � =�)*(�+⋅,-.+�) � /. /.  (9b) 

  
��(&, (, ��) 
 
;
 ⋅ �(&, (, ��)< 
 �! ��
��� �(&, (, ��) � =�)*(��⋅,-.��) � /. /.  (9c) 

 

where 

 

 =� � �� 9
4���� � ��
�6� �� � 254�,6 776 �� 
 5 9�� ⋅ 776 ��: 12 � (�� ⋅ ��)�� � �!�����: 



 =� � �� 9
4���� � ��
�6� �� � 254�,6 776 �� 
 5 9�� ⋅ 776 ��: 12 � (�� ⋅ ��)�� � �!�����: 

 

The left side of equation (7) is the sum of equations (8a-c). 

 

 
�� 
 
(
 ⋅ �) 
 �! ��
��� � � =�)*(�+⋅,-.+�) � =�)*(��⋅,-.��) � =�)*(�0⋅,-.0�).  (10) 

 

Now that the form of the left side of equation (7) is known, we turn our focus to polarization in order to 

determine the form the right side. The i
th

 term of the total 2
nd

 order non-linear polarization is given by  

 

 (A$%)* � !"B*CDECED ,         (11) 

 

where Ej is the j
th

 component of E, and χGHI is a component of a 3x3x3 tensor, the value of which 

depends on the crystal and the reference frame. This formula assumes repeated summation over the 

indices. If E is the sum of the pump, signal, and idler as defined in (8a-c), then equation (11) takes the 

form 

 

 (A$%)* � !"B*CD ∑ 9�� EK,C)*(�L⋅,-.L�) � /. /. :�,�,�K ∑ 9�� EM,D)*(�N⋅,-.N�) � /. /. :�,�,�M . (12) 

 

When equation (12) is expanded, it can be written as the sum of several polarization terms, each a 

function of a different frequency; 

 

 (A$%)* � A*(2��) � A*(2��) � A*(2��) � A*(�� � ��) � A*(�� � ��) � A*(�� � ��) �A*(�� 
 ��) � A*(�� 
 ��) � A*(�� 
 ��) � A*(0). 

             (13) 

At first glance it appears as though none of the terms in (13) are functions of ω�, ω�, or ω�. If we 

employ the condition of conservation of energy, from equation (1a), we see that ω� � ω� � ω�, ω� � ω� 
 ω�, and ω� � ω� 
 ω�. Therefore, 

 

 A*(�� 
 ��) � A*(��) 

 A*(�� 
 ��) � A*(��) 

 A*(�� � ��) � A*(��), 

 

so, using equation (13) and (1), 

 

 A*(��) � P�,*)*(�+⋅,-.+�) � /. /.        (14a) 

 A*(��) � P�,*)*(��⋅,-.��) � /. /.        (14b) 

 A*(��) � P�,*)*(�0⋅,-.0�) � /. /.,        (14c) 

 

where, 

  

 P�,* � �Q !"B*CD;E�,CE�,DR � E�,DE�,CR< 

 P�,* � �Q !"B*CD;E�,CE�,DR � E�,DE�,CR< 

 P�,* � �Q !"B*CD;E�,CE�,D � E�,DE�,C<, 

 

assuming repeated summation over the indices. As said before, we are interested in the relationship 



between electric fields and polarizations oscillating at frequencies ω�, ω�, and ω�. Therefore, the sum 

of equations (14a-c) should be replaced into the right side of equation (7). 

 

 � ��
��� #(��) � 
������)*(�+⋅,-.+�) � /. /.       (15a) 

 � ��
��� #(��) � 
������)*(��⋅,-.��) � /. /.       (15b) 

 � ��
��� #(��) � 
������)*(�0⋅,-.0�) � /. /.       (15c) 

 

Replacing equations (9) and (15a-c) into equation (7) results in 

 

 =�)*(�+⋅,-.+�) � =�)*(��⋅,-.��) � =�)*(�0⋅,-.0�) � /. /. � 
������)*(�+⋅,-.+�) 
������)*(��⋅,-.��) 
 ������)*(�0⋅,-.0�) � /. /.,       (16) 

 

Note that because equation (16) must be true for any location r within the crystal at any time t, it must 

be that case that 

 

 =K � 
��K��K for n = 1,2,3.        (17) 

 

The equations which describe the coupled relationship between pump, signal, and idler are derived 

from this relationship, which will be the main result of this section. Before that is done, we must be 

able to express equation (17) in vector format. This cannot be done in their current form because χGHI 

are components of a 3x3x3 tensor, which cannot easily be written in matrix notation. We must make 

use of coordinate transformations and symmetries in our equations to simplify equation (17). 

 

1.3 Ordinary and Extraordinary Polarization Directions 
 

We now define the ordinary, extraordinary, and propagation directions in terms of polar 

coordinates. This coordinate system will eventually allow for �K to be written in its entirety in one line. 

Let the optical axis of the birefringent crystal be in the S2 direction, and let the direction of the 

propagation of energy for the pump beam 12, be oriented such that the wave is propagating at an angle θ 

from the z axis. Also, let 12 be an azimuth angle φ from the xz-plane (see Fig 2 below). The direction of 

propagation in terms of the principle axis is therefore 

 

 12 � TU /V& W &5X Y � ZU &5X W &5X Y � S2 /V& Y.        

 

The ordinary direction must be perpendicular to the optical axis as well as to the direction of 

propagation 12. This direction can be found with a cross product. As shown in Fig 2, |12 x S2 | = sin θ, so 

the ordinary direction [U must be 

 

 [U � 12 T S26*K \ � TU &5X W 
 ZU /V& W.        (18) 

 

If we define the extraordinary direction ]2 as being perpendicular to 12 and the ordinary direction [U, then 

the cross product between [U and 12 shows us that 

 

 ]2 � TU /V& Y /V& W � ZU /V& Y &5X W 
 S2 &5X Y.      (19) 

 

 



 
Fig 2: Diagram of wave propagating in direction s at angle θ from optical axis and φ from x-axis 

 

Now we look at the projection of some vector V = (Vx, Vy, Vz) along the extraordinary direction. 

This projection will be used to compare the components of equation (17) in the extraordinary direction. 

The projection of V along ]2 is 

 

 |̂| � ^̀ /V& Y /V& W � â /V& Y &5X W 
 b̂ &5X Y.      (20) 

 

We now employ equations (18), (19) and (20) to simplify equation (17) in the case of Type-I and Type-

II down-conversion in KDP crystal. 

 

1.4 Non-linear Polarization and the [d] Matrix 
 

In simplifying equation (17), we shall again focus on the pump beam, and then extend the results to the 

signal and idler. The i
th

 component of B3 is given by 

 

 P�,* � �Q !"B*CD;E�,CE�,D � E�,DE�,C<.        (21) 

 

Notice that there is no difference in the sum E�,HE�,I � E�,IE�,H if the j and k indices are swapped ;E�,IE�,H � E�,HE�,I<. Because it does not change the summation of these amplitudes if j and k are 

interchanged, we can define a new optical matrix [d] with coefficients defined in terms of χijk. Let 

 

 c*d � �� ;B*CD � B*CD<,           

 

where M is related to j and k in the manner described in Fig 3 below. 

 

 



jk xx yy zz yz or zy xz or zx xy or yx 

M 1 2 3 4 5 6 
Fig 3: Prescription for defining index values of the matrix [d]. 

 

For the [d] matrix, index i is also typically written as 1, 2, or 3. Note that when j = k, diM = χijk. This 

new optical matrix [d] has dimensions 3x6 and takes the place of the 3x3x3 χ tensor, which allows us to 

write the B3 in a contracted 2-dimensional matrix notation. 

 

 �� � 12 !0 fc11 c12 c13c21 c22 c23c31 c32 c33
   c14 c15 c16c24 c25 c26c34 c35 c36

j
kl
ll
ll
m E1,�E2,�E1,nE2,nE1,oE2,oE1,nE2,o � E1,oE2,nE1,oE2,� � E1,�E2,oE1,�E2,n � E1,nE2,�pq

qq
qq
r
 .  (22) 

 

Each non-linear crystal has different values of diM based upon their chemical and geometrical structures. 

KDP crystals are tetragonal
7
 crystals of the 42m space group.

4
 The optical tensor for KDP in contracted 

notation is given by expression (21) below.
4
 

 

 s0 0 00 0 00 0 0   c�Q 0 00 c�Q 00 0 c�t
u .        (23) 

 

From here, the final form of equation (17) depends upon whether we are studying Type-I or Type-II 

down-conversion. We shall first focus on Type-I down-conversion, where both the signal and idler 

photons are ordinary waves and the pump is an extraordinary wave. We shall deal with Type-II 

afterwards.  

Because both the signal and idler are ordinary, E1 and E2 both point in the ordinary direction, 

and therefore their components will be determined by equation (18). 

 

 E�,` � E� &5X W 

 E�,` � E� &5X W 

 E�,a � 
E� /V& W 

 E�,a � 
E� /V& W 

 E�,b � 0 

 E�,b � 0. 
 

Using the optical [d] matrix for the KDP crystal (23), expression (22) allows us to calculate the 

individual components of B3. 

 

 B�,w � 0           (24a) 

 B�,x � 0           (24b) 

 B�,y � 
 12 ε"E1E2d�t sin 2φ.        (24c) 

 

The projection of B3 onto the extraordinary direction ]2, according to equation (20), is therefore 



 

 P�,|| � 12 !"E1E2c�t &5X 2W &5X Y.        (25) 

 

Expression (25) gives us the extraordinary component of B3. This completes the right side of equation 

(17) for Type-I down-conversion where n=3. We now focus on A3. 

 

1.5 Coupled Equations for Type-I and Type-II SPDC 
 

A3 is given by 

 

 �� � �� 9
k��>� � ��
��� >� � 2ik�,� ��� >� 
 i 9�� ⋅ ��� >�: �2 � (�� ⋅ >�)�� � µεω��>�:. (26) 

 

Firstly, k
2
 = µεω

2
 in matter, so the first and final terms of (26) cancel out. We also make the 

approximation that the amplitude E3 varies slowly over s, so that the second derivative terms is dwarfed 

by the first derivative terms, and vanishes. 

 

 � ��
�6� E��  « �254�,6 776 E��.           

 

Next, we project (26) onto the extraordinary direction. The term in the 12 direction immediately 

vanishes because ]2 and 12 are orthogonal, while any terms in the E3 direction remain unchanged in 

magnitude because the pump is assumed to be an extraordinary wave. Given these assumptions, (26) 

now takes the form 

 

 ��,|| � 254�,6 776 E� � 4�,��E� .        (27) 

 

Finally, we use the fact that the angle between E3 and D3 (the same angle between k3 and 12) is very 

small for KDP (see Appendix), and also make a low-power approximation for E3, so that the second 

term of expression (27) becomes much smaller than the first and vanishes. Therefore, 

 

 ��,|| � 254�,6 776 E�.          (28) 

 

Now replace equation (28) and (25) into equation (17) and solve in terms of E3 to attain 

 

 
776 E� � 
 54 �.0���D0,� E1E2c�t &5X 2W &5X Y.       (29) 

 

If we start again at Section 1.3 with 

 

 P�,* � �Q !"B*CD;E�,CE�,DR � E�,DE�,CR<, 

 

in place of equation (21) and 

 

 =� � �� 9
4���� � ��
�6� �� � 254�,6 776 �� 
 5 9�� ⋅ 776 ��: 12 � (�� ⋅ ��)�� � �!�����:, 

 

in place of equation (26), while repeating the same steps, we attain an equation analogous to (29): 



 

 
776 E� � 
 54 �.+���D+,� E3E2Rc�t &5X 2W &5X Y.       (30) 

 

Finally, we follow the same steps with 

 

 P�,* � �Q !"B*CD;E�,CE�,DR � E�,DE�,CR<, 

 

in place of equation (21) and 

 

 =� � �� 9
4���� � ��
�6� �� � 254�,6 776 �� 
 5 9�� ⋅ 776 ��: 12 � (�� ⋅ ��)�� � �!�����:, 

 

in place of (26) to achieve a third equation: 

 

 
776 E� � 
 54 �.����D0,� E3E1Rc�t &5X 2W &5X Y.       (31) 

 

Equations (29), (30), and (31) show the coupled nature of the three plane waves involved in Type-I 

down-conversion from a KDP crystal. Similar equations are found in several textbooks on the subject 

of non-linear optics.
4, 8, 9

 

Type-II down-conversion has similar coupled equations. The difference is that one of the 

outgoing photons is an extraordinary wave. To find the coupled equations for Type-II SPDC, the 

components of the electric fields in the matrix equation (22) are determined by using equation (18) for 

one of the waves, say E1, and equation (19) for the other, say E2.  

 

 E�,` � E� &5X W 

 E�,` � E� /V& Y /V& W 

 E�,a � 
E� /V& W 

 E�,a � E� /V& Y &5X W 

 E�,b � 0 

 E�,b � 
E� &5X Y. 

 

Using these components and matrix (23) in equation (22), the components of B3 for Type-II are 

 

 P�,` � 12 !0E1E2c�Q /V& W &5X Y        (32a) 

 P�,a � 
 12 !0E1E2c�Q &5X W &5X Y        (32b) 

 P�,a � 12 !0E1E2c�t /V& Y (&5X W� 
 /V& W�).      (32c) 

 

To take the projection of B3 along ]2, replace (32) into equation (20). 

 

 P�,|| � �� !"E1E2(c�Q � c�t)(/V& W� 
 &5X W�) &5X Y /V& Y.    (33) 

 

From equation (33), the derivation is identical to Type-I. The coupled equations for Type-II SPDC are 

 



 
776 E� � 
 *Q �.0���D0,� E�E�(c�Q � c�t)(/V& W� 
 &5X W�) &5X Y /V& Y   (34) 

 

 
776 E� � 
 *Q �.+���D+,� E�E�R(c�Q � c�t)(/V& W� 
 &5X W�) &5X Y /V& Y   (35) 

 

 
776 E� � 
 *Q �.����D�,� E�E�R(c�Q � c�t)(/V& W� 
 &5X W�) &5X Y /V& Y.   (36) 

 

The only difference between the Type-I coupled equations (29), (30), and (31) and the Type-II coupled 

equations (34), (35), and (36) is the last constant containing components of the [d] matrix and polar 

coordinates. These factors can be condensed into a single constant, deff. For Type-I SPDC, 

 

 c��� � c�t &5X 2W &5X Y. 

 

For Type-II, 

 

 c��� � (c�Q � c�t)(/V& W� 
 &5X W�) &5X Y /V& Y. 

 

2.1 Polarization Entanglement for Type-I and Type-II SPDC 
 

Now that a theory has been developed for the creation of polarization-correlated photons using 

a single frequency laser (the pump) and a uniaxial crystal, we analyze entanglement of the polarization 

states of the signal and idler. This chapter will describe methods for attaining polarization entanglement 

for both Type-I and Type-II SPDC. 

Quantum mechanics is a fundamentally statistical theory. This means that it does not attempt to 

predict what will happen, only the probabilities of certain events. Mathematically, a system that could 

be in one of multiple states is represented as a linear combination of those states. For example, if the 

polarization of a photon is going to be measured, and can either be polarized horizontally or vertically, 

the state of the photon, �, is given by 

 

 |���� � �|���� � �|�^��, 
 

where a and b are complex numbers which give weight to |����, the horizontal state, and |�^��, the 

vertical state, based upon their probabilities, such that |a|
2
+|b|

2
=1. The photon is said to be in a 

superposition of horizontal and vertical polarization if neither a nor b is equal to zero. 

Quantum entanglement between two particles occurs when the particles are in a quantum 

superposition of states, and their states are correlated. Both types of SPDC have correlated photon 

polarization. In Type-II down-conversion, photons can be found in a superposition of polarization states 

where the signal and idler cones intersect (Fig 4). On one cone lie extraordinarily polarized rays, while 

the other has ordinary rays. At the intersection points, it cannot be determined from which cone a 

photon originated, and therefore it cannot be determined what the polarization of a photon is before a 

measurement is taken. This means a photon at an intersection point is in a superposition of ordinary and 

extraordinary (or horizontal and vertical) polarization states. Because the photons produced also have 

correlated polarizations, the photons found at the intersection points are entangled. The state of this 

system is given by 

 �|��� � ��|��� �|^�� � ��|^�� �|���,        (37) 

 



Fig 4: Type-II entangled photons from SPDC crystal
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An entangled state is said to be 

by coefficient a is just as likely to be measured as the state weighted by coefficient 

entangled pair is called a Bell state. For Type

incoming photon to have polarization at a 45

entangled photons are always produced in a Bell state in Type
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II entangled photons from SPDC crystal. When a photon from one cone has horizontal polarization, another 

photon exists on the other cone with vertical polarization. This is correlation. When a photon exists on an intersection poin

it cannot be said from which cone it came from, and it is thus in a superposition of polarization states. 

correlation and superposition leads to entanglement.
 

where subscripts A and B refer to photon A and photon B. 

, the signal and idler are both ordinarily polarized, so although t

polarizations are correlated, neither are in a superposition of states. Entangled photons 

conversion, but it requires the use of two crystals with identical optical 

axes. When the crystals are placed back to back, their axes must be orientated such that one is rotated 

about the direction of pump propagation by 90° from the other. Using the two crystal axis directions as 

a basis, the pump will be seen as being in a superposition of ordinary and extraordinary polari

until it interacts with one of the crystals. SPDC may occur if one of the crystals “observes” an 

s long as the pump beam was not polarized exactly along one of the crystal axes, 

it will be unknown through which crystal the pump beam was down-converted (see Fig 5

must be thin enough so that the cones cannot be distinguished at the detection zone, usually about 1 

. For more on the effects of crystal length on down-conversion, see Ramirez et. al.

A and B, are entangled through Type-I down-conversion and measured in the and vertical polarization |V�, then the state of the system is 
.       

state is said to be maximally entangled if a = b. In this case, 

is just as likely to be measured as the state weighted by coefficient b

entangled pair is called a Bell state. For Type-I entanglement, this can be achieved by setting the 

incoming photon to have polarization at a 45° angle relative to both crystal axes. Polarizations 

entangled photons are always produced in a Bell state in Type-II SPDC because the signal and idler 

e polarizations. 

 
. When a photon from one cone has horizontal polarization, another 

photon exists on the other cone with vertical polarization. This is correlation. When a photon exists on an intersection point, 

s in a superposition of polarization states. The combination of 

, so although their 

photons can still be 
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measured, the result of a similar spin measurement on the positron will be immediately known to the 
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One such assumption is known as realism, which is the idea that particles exist in definite 

states before being observed. In other words, if a tree falls in a forest and no one is around to hear it, a 

nd. Another idea we hold about the universe is that no 

information can be transmitted faster than the speed of light (locality), though this idea is backed by 

uperposition of states and 



entanglement, which are not part of our classical world view, create problems for us under these 

assumptions. 

For some time, the apparent randomness of quantum mechanics was thought to be due to 

unknown effects that were not taken into account by quantum theory. The Bell Inequality was the first 

rigorous mathematical theory to both challenge our perception of local-realism and hidden variables in 

a testable and predictable manner. Bell’s theorem invoked the use of expectation values. 

When photons are produced via Type-II down-conversion, they are always measured to have 

opposite polarization when measured using similarly oriented polarizers. If there is a local hidden 

variable, say §, which hides a deterministic explanation of quantum theory, then there must be 

functions of § and polarizer direction which give the polarizations of photons A and B. Let these 

functions be defined as �(�̈, §) and P;�©̈ , §< respectively. Let horizontal polarization be given a value of 

+1, and vertical polarization be given -1. Therefore, these functions are limited to: 

 �(�̈, §) � ª1           (38a) 

 

and P;�©̈ , §< � ª1.           (38b) 

 

Because these photons always have opposite polarization, if they are measured in the same direction �̈, 

 �(�̈, §) � 
P(�̈, §).          (39) 

 

If p;�̈, �©̈ < is the expectation value of the products of �(�̈, §) and P;�©̈ , §<, then 

 

 «;�̈, �©̈ < � ¬ ­(§)�(�̈, §) P;�©̈ , §<c§,        (40) 

 

where ­(§) is the probability density for the hidden variable, supposing it exists. Using equation (39), P;�©̈ , §< can be replaced with 
�;�©̈ , §<. If we introduce another polarizer direction using the unit vector /̈, we can find a difference value between two different expectation values. 

 «;�̈, �©̈ < 
 «(�̈, /̈) �  
 ¬ ­(§)®�(�̈, §)�;�©̈ , §< 
 �(�̈, §)�(/̈, §)¯c§.   (41) 

 

Given that the hidden variable function can only result in we see ª1 for any polarizer direction, we see 

that ®�;�©̈ , §<¯� � 1. Therefore we are safe to multiply by ®�;�©̈ , §<¯� without changing any values. 

 «;�̈, �©̈ < 
 «(�̈, /̈) �  
 ¬ ­(§)®�(�̈, §)�;�©̈ , §< 
 �(�̈, §)�(/̈, §)¯®�;�©̈ , §<¯�c§.  (42) 

 

We can now rearrange equation (42) by factoring out �(�̈, §) and distributing �;�©̈ , §<. 

 «;�̈, �©̈ < 
 «(�̈, /̈) �  
 ¬ ­(§)®1 
 �;�©̈ , §<�(/̈, §)¯�(�̈, §)�;�©̈ , §<c§.   (43) 

 

From equation (38a), we see that �(�̈, §)�;�©̈ , §< � ª1. This is also true of �;�©̈ , §<�(/̈, §). Because ­(§) is a positive number, it is also true that ­(§)®1 
 �;�©̈ , §<�(/̈, §)¯ ° 0. Therefore, if we take the 

absolute value of p;�̈, �©̈ < 
 p(�̈, /̈), 

 



 ±«;�̈, �©̈ < 
 «(�̈, /̈)± ² ¬ ­(§)®1 
 �;�©̈ , §<�(/̈, §)¯c§.     (44) 

 

Substituting P(/̈, §) for 
�(/̈, §), and taking the integration in equation (44), we end up with the Bell 

Inequality. 

 

 ± «;�̈, �©̈ < 
 «(�̈, /̈)± ² 1 � «(�©̈ , /̈).        (45) 

 

This inequality was developed in this form in 1964
11

 by J.S. Bell under the assumptions that the 

hidden variable was local (in that information does not travel faster than light) and that the measurable 

quantities exist regardless of whether or not a measurement was taken (realism). A violation of this 

inequality is therefore a violation of one or both of these assumptions. The same exact inequality can be 

derived for Type-I down-conversion as well. The only difference in the derivation is that in Type-I, 

polarizations are always the same if measured in the same way, so equation (39) becomes �(�̈, §) �P(�̈, §). 

After the development of equation (45), a more intuitive formulation was built by Hardy
12

 upon 

the same basic assumptions. Instead of using the expectation value of the product of the measurement 

results, Hardy simply used the probabilities of various states. 

The state of a photon of unknown polarization can be written as a function of the angle θ 

relative to the horizontal direction. 

 �|Y� � /V& Y �|�� � &5X Y �|^�.         (46) 

 

The probability to detect photons entangled by Type-I down-conversion in state (θAi ,θBj) can now be 

found. By taking the squared absolute value of the dot product of the initial entangled state Eq(3) with 

the final state A⟨θi| B⟨θj|, the probability is found to be 

 

 A;Y�*  , Y�C< � ±  ⟨Y�* �|�µY�C �|� � |���  ±�
  � ±(/V& Y�* ⟨��|� &5X Y�* ⟨^�|);/V& Y�C ⟨��±� &5X Y�C ⟨^�±<(��|��� �|��� � ��|^�� �|^��)±�

 

(57) 

Simplifying equation (57) we attain 

 A;Y�*  , Y�C< � ±� /V& Y�* /V& Y�C � � &5X Y�* &5X Y�C±�
.     (58) 

 

Hardys Inequality entangled photons is 

 A(Y�� , Y��) ° A(Y�� , Y��) 
 A(Y�� ª 90° , Y��) 
 A(Y�� , Y�� ª 90°).   (59) 

 

Though the Hardy Test can be used for any general quantum entanglement, in this paper, we apply it 

only to down-conversion and polarization states. This expression is derived more rigorously by 

Mermin
13

. Expression (59) inhibits P(θA2 ,θB2) from going below a certain threshold if local-realism is 

to stand. Each individual term of this inequality is experimentally determined using the number of 

coincident detections of photons in state (θAi ,θBj), given by N(θAi ,θBj). 

 A;Y�*  , Y�C< � $;\·¸ ,\¹º<$;\·¸ ,\¹º<»$;\·¸ª¼"° ,\¹º<»$;\·¸ ,\¹ºª¼"°<»$;\·¸ª¼"° ,\¹ºª¼"°< .  (60) 

 

In order to better understand the Hardys inequality, consider this thought experiment. Imagine a 



single photon source that produces pairs of entangled photons that are sent in different directions, such 

as a down-conversion crystal. One photon goes to detector A, and is observed by Alice, while the other 

goes to B and is observed by Bob. Before reaching their respective detector, the photons must pass 

through a respective polarizer. Polarizer A is oriented arbitrarily to either angle θA1 or θA2 just after the 

photons are produced and just before measurement. Polarizer B is similarly randomly oriented to either 

θB1 or θB2. This constraint is to make sure no information about one polarizer has time to reach the 

other before a measurement is taken. 

In this experiment, the probability for both Alice to detect a photon with polarization θAi and 

Bob to detect a photon with polarization θBj is P(θAi ,θBj). The probability of Alice to detect a photon 

with polarization θA1 given Bob detected a photon at θBj is P(θAi | θBj). 

After many trials are run, assume that Alice and Bob exchange and compare their data, and the 

following observations are made: 

1 If detector A is set to θA1 and detector B is set to θB1, there is a nonzero probability for both 

Alice and Bob to detect a photon at their counter. A(Y�� , Y��) ½ 0 

2 Given that Bob has detected a photon with polarizer θB1, Alice always detects a photon at 

angle θA2 A(Y��|Y��) � 1 

3 Given that Alice has detected a photon with polarizer θA1, Bob always detects a photon at 

angle θB2 A(Y��|Y��) � 1 

 

Applying our classical logic to these three observation, we can extrapolate what should logically be 

observed regarding P(θA2 ,θB2). As stated before, we shall assume that polarization states exist 

regardless of being measured. Given observation 2 and 3, whenever Bob detects a photon with 

polarization θB1 and Alice detects a photon with polarization θA1, had they instead chosen to orientate 

their polarizers at θB2 and θA2, they would be at least as likely to detect a photon at those positions as 

well. 

 A(Y�� , Y��) ° A(Y�� , Y��).         (61) 

 

This relationship does not take into account the probabilistic nature of the measurements. It could be 

that P(θA2 | θB1) and P(θB2 | θA1) are slightly less than 1, but the coincidental measurements simply 

happened to be made every time. We account for this possibility by restating observations 2 and 3 in a 

logically equivalent manner and then examining the effect of experimental error. According to 

observation 2, if Bob’s photon is found polarized along θB1, then Alice always find her photon with 

polarization θA2. This means that it would never be the case that Alice finds her photon along θA2 ± 90° 

and Bob finds his along θB1. 

 

 A(Y��|Y��) � 1  ¾  A(Y�� ª 90° , Y��) � 0. 

 

Similarly, according to observation 3, Bob will never find his photon along θB2 ± 90° if Alice’s is along 

θA1. 

 A(Y��|Y��) � 1  ¾  A(Y�� , Y�� ª 90°) � 0. 

 

We must recognize that it is impossible to experimentally prove that any event has zero 

likelihood. Any seemingly impossible event may not occur after millions of trials, and yet it may occur 

on the next run. If P(θA2 ± 90° ,θB1) and P(θA1 , θB2 ± 90°) was nonzero, say 0.01 each, then there would 

be a reduction of 0.02 from P(θA2 ,θB2). Given this possibility, expression (61) must be modified. 



 

 

This is the Hardy inequality from expression (59

experimental data, assume that Alice and Bob compare notes regarding 

the two measurements never coincide.

 

 . 

 

This result would lead to a violation of the Hardy inequality

classical intuition. Indeed, real world examples of a violation of 

down-conversion and other quantum entanglement phenomena.

 

3.1 Quantum Teleportation using Entangled P
 

It has long been established that any measurement of a particle in a superposition of states 

replaces the probability distribution with a definitive state.

principle, we also know that it is also impossible to know all quantities related to a particle 

simultaneously. Given these facts, it seems impossible to scan a group of particles, and reconstruct 

them exactly as they were in another location. 

teleportation is impossible, but the answer to this problem is found in entanglement.

We start with a source of polarization entangled photons A and B. 

Type-I down-conversion, so that they will 

using similarly oriented polarizers. Make sure that the entangled pair is in a Bell state, so that the 

photons are just as likely to be horizontally or vertically polarized relative to the pump. 

another photon (let’s call it photon X) with photon A and measuring the type of entanglement that A 

and X share, we can then send that information to B through a classical signal

has the same polarization as X, all without e

Fig 6: Basic diagram for quantum teleportation of photon X. Photons A and B are entangled, usually through SPDC, and 

then photons A and X are also entangled. Information about the nature of the entanglement is sent to photon 

.  

from expression (59). Finally, after calculating each probability using their 

Alice and Bob compare notes regarding θA2 and θB2, and they find that 

the two measurements never coincide. 

to a violation of the Hardy inequality, which would mean a violation of our 

classical intuition. Indeed, real world examples of a violation of expression (59) have been verified for 

conversion and other quantum entanglement phenomena.
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: Basic diagram for quantum teleportation of photon X. Photons A and B are entangled, usually through SPDC, and 

then photons A and X are also entangled. Information about the nature of the entanglement is sent to photon B. 



 

The method of entangling photons A and X can be very difficult, and requires careful timing 

and precision. In general however, A and X can interact with a polarizing beam splitter simultaneously, 

and through that interaction become entangled in their polarization (see Fig 7). Following the beam 

splitter, two detectors can be placed in the paths of the photons (see Fig 8). If photons A and X have are 

polarized such that their polarizations will always be measured as orthogonal, then both detectors will 

click. If the photons are entangled such that they have the same polarization, only one of the detectors 

will click. Photon X could be produced using the same crystals to make sure that their polarizations are 

always either aligned or orthogonal. This shows that different Bell states can produce different effects. 

If two clicks are detected, rotating B by 90° with a polarization rotating crystal that can be 

controlled externally will make B have the same polarization as X. Likewise, if one click is detected, B 

is already the same as X. Although photons A and X must be destroyed in this process, the quantum 

state of X is transferred to B without ever having to measure it in a way that would give us unique 

information of its polarization. All that is measured is which kind of entanglement is shared between 

photons A and X. This information would have to be sent through the classical channel before photon B 

reached its destination. Information through the classical channel cannot travel faster than light, so 

photon B must be delayed in some way. This could be achieved by lengthening its path using mirrors, 

or by sending it through a medium which significantly slows its speed. Quantum teleportation could 

also be achieved through Type-II down-conversion if B is kept unchanged when two clicks are detected, 

and instead rotate B if one click is detected. 

 

 

 

 
Fig 7: Entangled photons interacting with a polarizing beam splitter simultaneously. TOP: When two photons are entangled 

such that they always have the same polarization, their probability waves will interfere such that they will only be detected 

on the same side of the beam splitter after interacting with it. BOTTOM: When polarized orthogonally, the photons will 

always exit on opposite sides of the beam splitter. It is impossible to tell whether they were reflected or if they passed 

through. 

 



Fig 8: Photons A and X are sent to a beam splitter si

be detected by either Detector 1, Detector 2, or both depending upon the entanglement relationship between the two photons. 

The result will not tell us the state of either photon, but i

 

3.2 Entanglement Transfer from
 

Now let us examine what happens when photon X is entangled with another photon before 

being entangled with photon A. If X is 
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Diagram for entanglement transfer from photons A and X to photons B and Y. Photons A and B are initially 

entangled, as are photons Y and X. Photons A and X are then entangled. Information about the nature of the entanglement is 



 

Entanglement transfer need not occur exclusively between photons. It has been observed that 

entangled photons can interact with plasmons on periodically perforated metal plates, be reradiated on 

the other side of their respective plates, and still retain their entanglement (see Fig 10).
15

 Plasmons are 

localized electromagnetic waves formed at a dielectric-metal interface, which are stimulated by 

interactions with light, usually heavily dependent on frequency. The propagation of plasmons are 

associated with the collective motion of a large number of electrons. The perforations on the metal 

plates are periodically spaced and smaller than the wavelength of the incident light, which leads to a 

very efficient light transmission where light tunnels through each sub-wavelength aperture. This is an 

indication of a cooperative effect where incident photons are scattered off the periodic arrangement of 

holes and converted into a surface-plasmon. In the case of plasmons incidnt down-converted photons, 

we expect them to pass through the holes to reradiate on the other side of the plate. If an incoming 

photon is horizontally polarized, the electron wave will transfer energy horizontally across the metal 

through horizontal oscillations. When the plasmons pass through the perforated surface, the direction of 

oscillation remains the same. Finally, when the plasmons reradiate another photon, these horizontal 

oscillations in the material will produce a horizontally polarized photon. Because entanglement can 

easily be destroyed through interactions, and given the collective nature of the surface plasmons, which 

involves large numbers of electrons, it seems remarkable that entanglement survives. It can be inferred 

that the plasmons on the metal plates retained the entanglement during transition from light to matter. 

The entanglement is transferred because the direction of polarization for either individual photon is 

unknown, so it is unknown which plate is experiencing horizontal oscillations, and which is 

experiencing vertical oscillations. 

One application for entanglement has been in quantum computing, where the classical two-state 

bit is replaced with the qubit, which can be in multiple states simultaneously. By entangling multiple 

qubits, quantum computers are theorized to be able to excel in parallel computing where classical 

computers cannot compare. The main limitation has been in both creating many entangled states and 

storing them so that their entanglement is stable. While it is easy to entangle a number of photons, it is 

very difficult to store them for future use. Also, while even single particles can be contained and 

arranged, such as charged particles within ion traps
16

, it can be difficult to arrange and manipulate them 

after they have been entangled. Transferring entanglement from light to matter could potentially ease 

these difficulties, as it combines the simplicity of entangling photons with SPDC with the ease of 

storage of particles. 

 
Fig 10: Schematic for photon-to-plasmon entanglement transfer. Down-converted photons stimulate plasmons on 

metal plates with regular perforations. Reradiated photons pass through identical polarizers then to photon detectors. The 

entanglement is verified using the coincidence counter. 



 

Conclusion 
 

A theory of spontaneous parametric down-conversion has been presented using Maxwell’s 

equations to describe electromagnetic wave propagation in quadratic non-linear uniaxial crystals. It has 

been shown that through SPDC, quantum entanglement can be achieved via a process that is simple to 

implement in a lab and can be understood using classical theory. The polarization entanglement of 

photons through SPDC has been shown to violate the Bell and Hardy inequalities, and throw local-

realism into doubt. The simple SPDC methods for entanglement gives way to the possibility that light 

to matter entanglement transfer is the preferable method in creating stable and easily containable multi-

particle entangled states, and thus simplifying the production of quantum computers. In general, it is 

difficult to localize and store photons, so usually one prefers choosing matter as quantum memory 

elements. The interface between quantum carrier and memory is a key component in the realization of 

scalable quantum networks. A scheme has been proposed to transfer entanglement from photons to 

nano-scale resonators constructed from movable mirror cavities, which oscillate at frequencies 

dependent upon the radiation pressure within the cavity when at cryogenic temperatures
17

. Each of the 

down-converted photons is absorbed into one of the mirror cavities (see Fig 11). This setup takes 

advantage of the superposition of frequency states of the signal and idler photons, so it is unknown 

which nanoresonator has absorbed ��, and which has absorbed ��.This causes the nanoresonators to 

be in a superposition of oscillation modes and be correlated with each other, and therefore be entangled. 

The quantum computing industry could benefit from producing and transferring entanglement 

from light to matter using the relatively simple process of spontaneous parametric down-conversion. 

Further research is required to determine how to best utilize plasmons for quantum computing. Photons 

are the fastest carriers of quantum information for transmission, and the transmission of that 

information to matter could circumvent difficulties in localizing and storing photons for manipulation 

in quantum computers. 

 

 
Fig 11: Two down-converted photons are each sent to and absorbed by a nanoresonating mirror cavity, which oscillate upon 

absorption. The mode of oscillation depends upon the energy (frequency) of the absorbed light. The two photons have 

frequencies that are related by �� � �� � ��, but it is unknown which photon is of frequency ��, and which is of ��. 

Therefore, the mirror cavities M1 and M2 are entangled in their modes of oscillation. 
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Appendix – Vector Orientation Relative to the Principle Axis 

 

In the most general case, E and D in a non-linear material can be related by 

 ¿C � ∑ εHGEG*   , where j,i = 1,2,3. 

 

However, in the principle axis reference frame, the relationship can be written using the principal 

dielectric permittivities, 

 

 � � ;εwEw , εxEx , εyEy <. 

 

In this frame, E and D are always parallel when along the x, y, and z directions. In a uniaxial medium 

such as a KDP crystal (KH2PO4), where εw � εx À εy, the z-axis has a different index of refraction 

from the other two axes. Therefore, the behavior of light within a uniaxial medium will depend upon 

whether or not its polarization has a z-component. Because of this, the z-axis is often referred to as the 

extraordinary axis or optical axis. The indices are also given special names: 

 

 X� � ÁÂÃÂ� � ÁÂÄÂ�  Ordinary refractive index 

 X� � ÁÂÅÂ�   Extraordinary refractive index 

 

Let E and D be plane waves described by 

 

 �(,, () � �")*(�⋅,-ÆÇ)         (A-1) 

 �(,, () � �")*(�⋅,-ÆÇ),         (A-2) 

 

where Eo and Do are constants, k is the wave vector, and ω is the frequency. Replacing (A-1) and (A-2) 

into equation (4) results in 

 

 � x (� x �) � 
µω��, 

 

which shows that D and k are perpendicular, and that E lies in the same plane as D and k. If E and D 

lie in the xz-plane, then 

 

 ¿` � εwEw � ε"X��E`         (A-3) 

 

 ¿b � εyEy � ε"X��Eb.         (A-4) 

 



 
Figure A-1: Several vectors of an extraordinary wave in the principle axis reference frame. Angle ϕ is between E and D, 

and θ is between k and z. 

 

If E is an angle ϕ from D, and k is an angle θ from the optical axis as in Fig A-1, then 

 

 
ÈÉÈÊ � 
 tan θ           (A-5) 

 
ÌÉÌÊ � 
 tan(θ � Í).          (A-6) 

 

Replacing (A-3) and (A-4) into (A-5), 

 

 
ÌÉÌÊ � 
 KÎ�

KÏ� tan θ.          (A-7) 

 

Replacing (A-6) into (A-7), after some algebra, results in 

 

 Í � tan-� 9KÎ�
KÏ� tan θ: 
 θ.         (A-8) 

 

The values of the ordinary and extraordinary refractive indices can be calculated from the Sellmeier 

equations for KDP crystal (Kwiat, pg. 17)
18

, 

 

 X�� � 2.259276 � "."�""Ñ¼ÒtÓ�-"."��¼Q�t�Ò � Ó���.""Ò��Ó�-Q""       (A-9) 

 

 X�� � 2.132668 � ".""Ñt�ÕQ¼QÓ�-"."���Ñ�"Q� � Ó��.��Õ¼¼�QÓ�-Q"" ,      (A-10) 

 

where § is the wavelength of light in micrometers. The ratio of the squares of the refractive indices 

from (A-9) and (A-10) ranges from 1.05 to 1.06 when § is confined to the visible spectrum. In that case, 

according to (A-8), the value of Í is very small in KDP, with a maximum of about 1.67 degrees or 0.03 

radians. This result is used in section 1.5 to approximate that the component of k in the direction of E is 

negligible when compared to the component of k in the direction of s. 
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