Chapter 5

The Kinetic Theory
of Gases (2)

Topics

Development of the kinetic theory. The pressure according to kinetic theory, p =
%nmﬁ. The internal energy of a gas and the ideal gas law. Miztures of gases, Dal-
ton’s law of partial pressures. Heat capacities, Cy = %nk The number of collisions
per second J = %n@. Random walks in physics; survival equation and the distribution

of free paths, mean free path; random walks. Brownian motion, the determination

of k.

5.1 Calculating the pressure

We now apply the concepts of Chapter 4 to per-
fect gases. We begin by calculating the pressure
exerted by our model gas. This calculation will
demonstrate how to tackle calculations of this type
in kinetic theory. We consider the behaviour of a
small number of typical particles and use Newton’s
laws of mechanics to calculate their behaviour. We
then average over all the particles using the distri-
bution functions derived in the Chapter 4.

The pressure is the normal force per unit area which
arises from the rate of change of momentum per
unit area of all the particles striking the wall elasti-
cally. Because of collisions, the pressure is isotropic,
that is, the same in all directions, throughout the
volume of the box.
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To calculate the pressure we start by considering
the impact of a single particle on one wall of the
container, say the wall which is in the y — z plane
(Figure 5.1). The pressure on the y — z wall is
only associated with the change in the x-component
of the momentum. The collision with the wall is
elastic and the wall does not move. Therefore the z-
momentum of the particle changes by Ap, = 2p, =
2muy.

To calculate the rate of change of momentum we
need to know the total number of particles hitting
the wall per unit time:

Figure 5.1. Illustrating the origin of pressure.

e in a time At, particles with positive z-components

of velocity of v, which are within a distance
vz At of the wall will reach it;

e the fraction of particles with this positive z-
component of velocity is fi(vy) dvg;

e if the number of particles per unit volume is
n, then the number hitting unit area in At is
n vy f1(vy) dvy At.

The change in momentum per unit area due to
these collision is therefore

Ap, = 2muy X nug f1(vy) dog At. (5.1)

We now average over all the particles by integrating
with respect to v, and identify the pressure as the
rate of change of momentum per unit area

_Ap,
LN

= 2mn /OO v2 f1(vg) dvy. (5.2)
0

The limits of this integral are from 0 to oo since
only positive values of v, can be included, that is,
only particles which will collide with the wall.

We can simplify this result without using the ex-
plicit form of the distribution function; since fi(v;)
is symmetrical about the origin, the integral be-
comes

/ 11926 fl(va:) dv, = %/ 11926 fl(vx) dv, = %@
0 —0
(5.3)
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Therefore, from (5.2),

p = nmv2. (5.4)
Because the distribution of velocities is isotropic,
the pressure is also isotropic. This is entirely con-
sistent with our demonstration in the last chapter
that

E:Ug:zg and U2:v§,+v§+@. (5.5)
Therefore, o o
v2 = 102, (5.6)
and so o
p = snmuv?. (5.7)

This is an important equation — it relates the pres-
sure p to processes occurring at the molecular level.

5.2 The internal energy and the link to
the ideal gas law

Energy is stored in the gas and this is referred to
as its internal energy. According to the present
model, the internal energy of our ideal gas is the
kinetic energy of the individual particles, since there
are no long-range forces between the particles or
between the particles and the walls of the enclosure.
They also have no internal structure. The kinetic
energy of a particle with speed v is %mqﬂ. We can
therefore find the kinetic energy of the particles per
unit volume and hence the internal energy per unit
volume u, the energy density, by averaging over the
population. Since the fraction of particles with this
speed is f(v)dv, we find:

o0 —_—
u= n/ mu? f(v) dv = Inmo?. (5.8)
0
The perfect gas law is p = nkT’, and hence
p= %nm? = nkT. (5.9)
Therefore o
SKT = imo2, (5.10)
and

u = inmv? = 3nkT. (5.11)

Kinetic Theory:
pressure and internal energy

p = znmv? = nkT,
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However, this is precisely the result for %mmT2 ob-

tained by calculating v2 directly from the distribu-
tion function (4.16).

These are key results. Most importantly, we have
shown that the internal energy is just a function
of the temperature T, consistent with the null re-
sult of Joule’s experiment, and consistent with our
macroscopic equation of state.

5.3 The pressure of a mixture of gases -
Dalton’s law of partial pressures

Let us modify our simulation of how a gas of parti-
cles comes into statistical equilibrium by consider-
ing the case of a mixture of two types of particles
of masses m and msg. The outcome of the collision
between two particles with momenta

mi: P = [p1a:7p1y}

ma: Py = P2z, P2y

can be evaluated in exactly the same way as in
Section 3.3, but now the particles have different
masses. The analysis is left as an exercise for the
enthusiast, and is entirely straightforward. The
outcome of the collision is that the momentum of
particle 1 is

"

P1x = m[(mﬂ)lx - m1p2x) cos 0
+ (map1y — mapay) sin @ + mi(p1z + P2z,
(5.12)
1" ]. .
P1y = m[—(mﬂ?lx — Mmipa;) sin @

+ (map1y — mipay) cos O + my(p1y + pay)]-
(5.13)
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Similarly, for particle 2

"

Doy = m[(m1p2m - m?plm) cos 0

+ (m1pay — map1y) sin @ + ma(p1z + pas)l,
(5.14)

" 1

Doy = ) [—(m1p2z — Map1,)sinf

(m1 + mo

+ (m1p2y — map1y) cos O + ma(p1y + p2y)]-
(5.15)

Once again the new components of the momenta
depend only upon 6, the rotation angle of the colli-
sion in the centre of momentum frame of reference.
Therefore, we can set up the same array of cells
including the p, and p, components in each cell as
in the previous simulation, but there are now two
different species present (Table 5.1). We divide the
array into two halves, all those in one half having
masses m and the other half my. Again, we ensure
that the system has no net momentum and so we
have to arrange the initial state of the particles of
the gas so that

S pei=0, > pu=0. (5.16)
7 7

An arbitrary example of the new array is shown in
Table 5.1, where the momenta are given integral
values.

The simulation proceeds as follows:

1. Choose any element i of the complete array
at random.

2. Choose another element of the complete array
at random j.

3. Allow 7 and j to collide and choose the angle
0 at random. The possible collisions which
can occur are mq with mq, m1 with mo, mo
with mq and mo with mao.

1"

4. Determine the values of [plx,ply] and [p%,pzy]
using the expressions (5.12) to (5.15).

5. Replace the original values of the [plx,ply]
and [pag, p2y] by the new [plx,ply] and [p%,pgy]

Table 5.1. An array of pu;, py; values.

m1 | my
-7,71-6,21-5,-3|-7,7|-6,21-5,-3
-4,61-3,1-2,-4|-4,6|-3,1]-2,4
-1,510,0 | 1,-5|-1,5]0,0 | 1,-5
2,4 13,-1] 4,-6 2,4 13,-1] 4,6
5,3 16,-2 | 7,-71] 5,3 16,-2]| 7,-7
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6. Choose a new pair of cells at random and re-
peat the process.

7. Repeat this procedure thousands of times and
plot the histogram of velocities of the parti-
cles with masses m1 and my separately.

The results of these simulations are shown in Fig-
ure 5.2. It can be seen that the distributions tend
very rapidly to gaussian distributions in both the x
and y directions for both types of particles, but the
standard deviations are in the ratio (m;/mg)/2.
Thus, under the randomising effect of many colli-
sions, the two sets of particles come into statistical
equilibrium with

1/2
Tma _ ml)
Omq mo
1oy 02 1,0 2
MV = 5Mav; (5.17)

Therefore, under the action of random collisions,
the particles come into statistical equilibrium at the
same temperature 7' such that

mov3 = SkT. (5.18)

Sl
Ll V)
D=

m1

N[

We can now work out the total pressure acting on
the walls due to the effects of both types of parti-
cles:

p=mnmKkT + nokT = p1 + po, (5.19)

which is Dalton’s law of partial pressures.

5.4 Heat Capacities

One of the basic properties of all forms of matter
is that of heat capacity. Heat capacities describe
the change in temperature of a substance when it
is supplied with a given amount of heat. In general
we can write,

AQ = CAT, (5.20)

where AQ is the heat supplied and AT is the re-
sultant temperature change. In the case of gases,
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Figure 5.2: The evolution of the momentum distributions for particles of two different
masses. The left hand plots are for a particles of mass m and the right hand plots for particles
of mass 4m. Initially (top) all particles have the same momentum distribution. After 10000
collisions the momentum distributions shown in the middle two plots are obtained; a fraction
of the lighter particles are beginning to acquire larger velocities. After 50000 collisions both
distribution functions have become gaussians (bottom); the width of the distribution for
the lighter particles is exactly twice that of the heavier particles indicating that the mean
kinetic energy, and hence temperature, is the same for both masses of particles.
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there is the complication that the gas can expand
on heating if it is not constrained. We therefore
define two heat capacities for a gas — the heat ca-
pacity per mole if the gas is maintained at constant
volume, Cy/, and the heat capacity per mole at con-
stant pressure, Cp.

In the latter case, we allow the volume of the enclos-
ing vessel to expand at constant pressure. Clearly
work has to be done in this process and so more
heat has to be supplied to achieve the same temper-
ature change. Thus, for one mole of any substance,
we can define the molar heat capacities at constant
volume and constant pressure by the expressions:

_ (99 _ (99
a-(2) . a-(R) e

One of the objectives of the theory will be to ac-
count for the experimentally measured variation of
the heat capacities of different gases with temper-
ature, two examples of which are shown in Figure
5.3.

In the same way, it is a challenge to account for the
variation of the molar heat capacities of solids with
temperature as shown in Figure 5.4 for copper. We
will find that we need quantum concepts to explain
the detailed form of Figure 5.4.

Let us make a first attempt to account for at least
part of the variation of the heat capacity of gases at
constant volume with temperature 1" on the basis
of kinetic theory. If we add or remove energy in the
form of heat, we change the internal energy of the
gas and also the temperature. The heat capacity
at constant volume is

Cy = (gg)v (5.22)

and for one mole of an ideal gas
0 d

oy = (2¢) _dU

or ), dr

= 3NkT = 3RT.

We can also define a heat capacity per particle
which is ¢y = %kT.

e decomposes
normal H,

specific heat C. cal. g -mol.-

10 20 50 (ﬁO 260 500 1000 2000 5060 10000

temperature “K.

Figure 5.3. The variation of the molar heat
capacity at constant volume with
temperature for molecular hydrogen and
chlorine.

specific heat C cal. g mol.™*
N

\ s '
100 200 300
temperature ‘K.

° experimental

Figure 5.4. The variation of the molar heat
capacity with temperature for copper.
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Returning to Figure 5.3, we see that at low temper-
atures, the heat capacity of hydrogen is 3 calories
per mole. The gas constant R is 8.31 J K~! mole™!
and there are 4.186 Joules per calorie. Therefore,
the heat capacity per mole is (1.5 x8.31)/4.186 = 3
calories per mole, in agreement with the data shown
in Figure 5.3 at low temperatures. Indeed, for all
monatomic gases, the heat capacity per particle is
cy = %kT. There is, however, much more to be
explained about these diagrams, which are for di-
atomic molecules, and we will deal with these in

due course.

5.5 The number of collisions per unit area
per second

In our derivation of the pressure of a perfect gas,
particles continually hit the walls of the container.
We showed that the number of collisions per unit
area in time At for particles with = velocities in the
interval v, to v, + dv, was given by

AN = nvg fi1(vg) dog At

The rate of collisions per unit area, that is, the
number of collisions per unit area per unit time,
or the flux density, is found by integrating over all
positive values of v,

AN o
J:At:n/o Vg f1(vy) dug
where the limits of the integral include only positive |Reminder - The One-dimensional

velocities as these are the particles which reach the Maxwell Distribution

wall. Using (4.12) for the one-dimensional velocity

distribution, we can evaluate this integral using the f1(vg) dvy = m o—™Mv3/2kT dv,
s _ 2kT
substitution x = v;/m/2kT.

m o 7mv2/2kT
J=n kT ), vy e e doy,
[2kT [ [2KT [ 1
=n / re ™ dr=n / —e Ydy,
mm Jo mm Jg 2
_n¢%T
2V mn’

Now we have already shown that v = /8kT/mm

and so we can rewrite this result in the form

J = Inv. (5.23)
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Although we have worked out this result assuming |Flux density of particles onto a
a Maxwellian distribution of velocities, it is in fact |surface
true for any distribution function fi(vs).
J = inv

5.6 Random walks in Physics

We have emphasised the crucial importance of col-
lisions between particles for the kinetic theory of
gases. We need to quantify in more detail the mo-
tions of individual particles. The key ideas are:

e the concept of mean free path;
e survival probabilities;

e the mathematics of random walks.

These ideas have very wide applicability in essen-
tially all aspects of physics and many other sub-
jects.

We consider the particles to be hard spheres with
finite diameters a. Some typical values are given
in Table 5.2. Although some of the molecules are
compounds, they are treated as spheres for the pur-
poses of the calculations which follow.

Table 5.2

Atom or molecule Symbol (a/nm)
Argon Ar 0.340
Carbon dioxide CO9 0.390
How far do molecules travel before they collide with Nitrogen N» 0.375
other molecules? We imagine the gas to consist of a Oxygen (0D 0.354
random distribution of n spheres per unit volume,
each of diameter a. First, we consider them to be
stationary. Now, suppose we choose a molecule at
random and that it moves through the gas at speed
v. Then, there will be collisions with molecules of
the gas, if they lie within a cylinder of radius a
about the path of the centre of the molecule, as
illustrated in Figure 5.5.

The shaded sphere No. 1 travels at speed v and
sweeps out the volume indicated by the cylinder
drawn in solid lines. The spheres Nos. 2 and 3
are stationary. There will certainly be a collision
with No. 3 and a grazing collision with No. 2. It
can be seen that, if the centres of the molecules
lie within the dashed cylinder, which has radius a,
sphere No. 1 will collide with them. Now suppose
molecule No. 1 travels a length [ through the gas.
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The number of molecules which lie within radial
distance a of the path, and with which collisions
will occur, is N = ma?ln, where n is the number
density of molecules. Therefore, the molecule will
make one collision with the other molecules when
it has travelled a typical distance A such that N =
1 = ma®Mn, that is

A= 1 where o = Ta’. (5.24)
on
This is an important formula and provides a defi-
nition of the mean free path A of the molecule trav-
elling through the gas. o is known as the cross-
section for scattering of the particle.

A= —. (5.25)

an

The above calculation has a number of unsatisfac-
tory features. In fact, all the particles are in motion
and so it is a crude approximation to assume that
the other molecules are stationary. This slightly
changes the expression for the cross-section, which
is 0 = v/2ma? for a gas which has a Maxwellian
distribution of velocities. We will simply write A\ =
1/on, understanding that the mean-free path will
always be given by a suitably defined cross-section
o, so that A = (on)~! gives the correct expression
for the mean free path.

In the same way, we can define a mean free time
T between collisions by 7 = A\/T, where v is the
mean speed of the particles. Some values for the
mean speeds, mean free paths and mean free times
for the gases listed above at Standard Temperature
and Pressure (STP) are listed in Table 5.3. Thus,
atoms or molecules are scattered many times per
second as they move through a gas under normal
atmospheric conditions.

5.7 The Survival Probability and the Dis-
tribution of Free Paths

The calculation carried out in the last section tells
us the mean distance between collisions, but it does
not tell us anything about the distribution of the

Figure 5.5. Collision of moving molecule
with random stationary molecules.

STP means to “standard temperature and

pressure”. This corresponds to T = 273 K
and a pressure of 1 standard atmosphere or
p ~ 10° Pa.
Table 5.3
Atom Mean Mean free Mean free
or speed path time
molecule (v/ms~!)  (\/nm) (7 /ns)
Ar 380 63 0.165
COq 362 39 0.108
Ns 454 59 0.130
(O] 425 63 0.149
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free paths of particles, in other words, what is the
likelihood of the particle having a collision after
travelling a certain distance.

Let us analyse the problem in terms of the survival
probability p(x), meaning the probability that the
particle travels a distance x before it collides with
another molecule. We can understand the general
form of the function. If the particle has travelled no
distance, x = 0, it cannot have had any collisions at
all and so p(0) = 1. On the other hand, after a very
long path length through the gas, the probability
of surviving tends to zero, p(co) — 0.

In our analysis of the mean free path, we showed
that the number of collisions was proportional to I,
the distance travelled though the gas. Therefore,
the probability of a collision occurring in the ele-
mentary distance dz is proportional to dx and we
write this as e dz. Now, p(x) is the probability that
the particle survives to distance x without making a
collision. Recalling that we multiply probabilities if
the events are statistically independent, the prob-
ability that the collision occurs in the next small
increment of distance dz is p(x) x awdx. Thus, we
can write

p(z) —p(x +dz) = —j—i dz = p(z)adz. (5.26)

This results in an exponential integral

p() z
/ dr _ —/ adz. (5.27)
p(0) p 0

Therefore,
)] _ —azx z) = exp(—ax
|25 | = e plo) = p(0) exp(-aa).
p(x) = exp(—ax), (5.28)

since p(0) = 1. This is the expression for the prob-
ability that the particle travels a distance x before
colliding.

Now, let us work out the mean distance which a
particle travels before it collides. This is just the
mean free path A. The probability that the particle
has a collision in the small distance increment dx is

Survival probabilities

The term ‘survival’ here simply refers to
the distance before something happens. A
more direct example of this usage is in ra-
dioactive decay, where p(t) would mean
that the probability that the radioactive
nucleus decays after time ¢t. In other
words, it really is a survival probability
for the nucleus.

If the events A and B are statistically in-
dependent, we multiply the probabilities,

P(AandB) = PAPB
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p(z) adz. Therefore, the average distance travelled
is

)\:/ mxp(a:)ada:—/ arxe *dz. (5.29)
0 0

This is a simple integration by parts which gives
the result A = a1,

Thus, the survival probability, in the sense that
the molecule travels a distance x without suffering
a collision, is

pla) =exp (3.

where ) is the mean free path. Thus, A has a much
greater significance than simply the average dis-
tance travelled before a collision occurs — it also
tells us about the probability distribution of free
paths as well. Notice that the probability distri-
bution of free paths f(x) is

(5.30)

dx

A

f(z)dx (5.31)

p(z) adxr = exp (—;)

This type of analysis occurs in many different branches

of the physical sciences — for example, exactly the
same analysis applies to the decay of radioactive
isotopes.

Example: Check that the probability distribution
of free paths is correctly normalised, [;° f(x)dx =

L.
/OOO flz)dz = /Ooo exp (-3) d%

= /O exp(—y)

5.8 Random Walks

Let us now work out what happens when particles
diffuse through a gas under the influence of colli-
sions between particles. There are two key features
of this process.

Integrating by parts

o0
)\:/ are “*dz,
0

[e_m}m
@ g

1
o

|:Oé$ ea:p:| oo /oo

[0—0] + / e “du,
0
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e There is a distribution of free paths between
collisions, given by (5.31) and so sometimes
there is only a short time between collisions,
and sometimes a long time.

e When a collision occurs the velocity vector of
the particle changes. As demonstrated by our
similation in Chapter 3, it is a very good ap-
proximation that the particles lose all mem-
ory of their initial directions of motion after
one or two collisions. In other words, we can
assume that each particle’s velocity vector is
randomised following each collision. The sort
of motion envisaged is illustrated in Figure
5.6.

If we repeat the experiment of determining how
far the particle moves away from the origin many,
many times and take an average in the z, y and z
directions, the average distance must be zero since
the particles are just as likely to move in any di-
rection with the same distribution of free paths be-
tween collisions. To put it another way, if we start
lots of particles off at the origin and allow them
to make random walks away from the centre, we
would expect them all to drift away from the cen-
tre. Although the average displacement is zero, any
individual particle will have moved away from the
origin.

Let us determine this distance using vectors. We
start from the origin and make a vector displace-
ment 1. We then add another vector r5 to r1 so
that the displacement from the origin is r1 + ro.
Then we add another vector to r3 to r1 + ry to
produce a vector r1 + ro + r3 and so on. We see
that the total displacement from the origin is the
vector sum

R:T1+T2+T3—|—---:Z’ri (532)
)

Let us now work out the length of the vector R.
We recall that we take the scalar product of R with
itself to find the square of its magnitude and so we

Figure 5.6. A Random Walk
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find

IR>=(ri+ro+m3+...)-(ri+ra+rz+...)
= |'I‘1|2+|T‘2|2+|T’3’2+...

+2r1 1o+ 2r1-r3+2r9-7r3+ ...
(5.33)

The term |rq|? +|ra|? +|r3|?+. .. is the sum of the
magnitudes of all the individual vectors. The sec-
ond line of (5.33) contains a very large number of
scalar products of pairs of vectors pointing in ran-
dom directions. Therefore, on average, there will
be as many positive as negative scalar products.
Furthermore, although the magnitudes of the vec-
tors involved in the scalar products are different,
they are all drawn from the same probability dis-
tribution (5.31) and therefore, on averaging over a
very large number of random displacements, all the
scalar products average to zero. We can therefore
write

|R‘2 — ‘r1‘2+‘r2|2+|,”.3|2+... = Z|’l"i|2 (534)

(2

In other words, the total displacement is the root
mean square sum of all the individual displace-
ments. We can write this as

_ 1
|R|?> = Nr2 where r2 = N Z |73 ]2 (5.35)
i

In other words, if I = (r2)'/2 is the root mean square
displacement,

1
P = ¥ > il
%

the typical distance from the origin moved by a
particle after N encounters is

R =+V/NI.

We can show that [ = A, the mean free path. This
is the characteristic behaviour found in diffusion
processes.

(5.36)

Thus, in a random walk of N steps, the particle
diffuses on average a distance R ~ v/ N A from the
origin. Let us work out the time dependence of

Relation of [ and A\

/0 ” 2 p(z) dz

= /OO 22 A d(z/\),

0
(o, ¢]
=\’ / yPe v dy,
0

Now, integrate by parts:

S [y2 e_y]go + 2/\2/
0

1> =

12 =2)\2%.

oo

ye Y dy,
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this diffusion process. We assume that the particles
travel with the mean speed ¥ between collisions.
Therefore, the time to make N collisions is ¢t =
NM/v. Substituting into the above expression for
R, we find,

R=+VNX\= (vtA)/? (5.37)

Thus,

e the distance from the origin increases only as
the square root of time;

e the distance depends upon the square root
of the average speed. We have shown that,
in equilibrium, each particle has the same ki-
netic energy %va and so in this case the dis-
tance would be proportional to m~1/4. This
is a weak dependence, but it proved to be
enough to separate the isotopes of radioac-
tive species, if no other process was available.
This was the original process by which the fis-
sile isotope uranium-235 was separated from
uranium 238. These gaseous diffusion plants
were very expensive, requiring huge factories
and vast amounts of power.

5.9 Brownian Motion

Let us demonstrate experimentally that these pro-
cesses actually take place at the microscopic level.

The phenomenon of Brownian motion played a key
role in the revolution in physics which took place in
the first decade of the 20th century. If tiny specks
of dust are observed in a liquid such as water, they
are observed to move about randomly. In 1905,
Einstein showed that this motion is due to random
collisions of the molecules of the fluid with the dust
particle. Their motions mimic exactly processes
happening at the microscopic level and indeed the
specks of dust are in thermal equilibrium with the
molecules of the fluid.

Einstein’s paper is a beautiful analysis of the statis-
tics of the random motion of the particles. He
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showed that, in a time interval ¢, the mean-square
displacement of a sphere of radius a is

(o) — KTt

= 5.38
3mna ( )

where 7 is the viscosity of the fluid and 1" the tem-
perature. The key experiments was carried out in
1908 by Jean Perrin. We can repeat his experiment
using microspheres, which are identical polythene
spheres, all 1 micron in diameter. We can observe
random movement of the microspheres and, if we
wish, use the typical distance travelled to determine
Boltzmann’s constant. The experimental arrange-
ment is shown in Figure 5.7. The motion of the
microspheres is observed with a CCD camera.

An example of the data from such an experiment
using microspheres at room temperature is shown
in Table 5.4. This experiment was of great impor-
tance because it provided direct evidence for the
reality of atoms and molecules. Once Boltzmann’s
constant k = 1.38 x 10723 J K~! was determined, it
was possible to work out the number of atoms in a
mole of gas, knowing the value of the gas constant
R = Njk. This was one of the earliest accurate
determinations of N4 and was used by Einstein in
his other great papers of 1905.

?

Drop of water with
microspheres

Microscope

Figure 5.7. Perrin’s observation of Brownian

motion.
Table 5.4. Determination of Boltzmann’s constant
Temperature 293 K
Time interval t = 5 seconds
Radius of microsphere a = 0.545 pm
Viscosity of water n=103kgm s !
Mean square displacement | 5.1 ym?

H Boltzmann’s constant 1.8 x 10723 JK— L.

|




