
Transforming Tensor Transformation Trauma’s
Deep down into the (rabbit) hole

Roel Andringa-Boxum

January 14, 2021

1 Introduction

I have a confession to make. Even though I worked a lot with the theory of
General Relativity and even have a PhD in the field of Quantum Gravity, I
always found the precise meaning of general covariance and diffeomorphism in-
variance, the discussion between active and passive coordinate transformations,
how to interpret a Lie derivative etcetera very confusing. Especially the passive
versus active discussion was (and still can be!) frustrating; whenever I thought
I had figured everything out from one point of view, I found a discrepancy in
my understanding of the other one. It seemed like conservation of confusion.
My confusion was like the components of the connection and my transformation
from the active to the passive point of view like a coordinate transformation:
whenever the confusion disappeared in one frame, it popped up again in the
other, and vice versa. What made this confusion even more frustrating, was
that a lot of my collegues simply didn’t seem to care so much about these sub-
tleties. We applied (infinitesimal) general coordinate transformations all the
time, but somehow I felt I (and they?) didn’t truly understand what was go-
ing on. I experienced it as a ’shut up and calculate’ kind of attitude. From
the philosophical side there are quite some papers about the meaning of ’dif-
feomorphism invariance’, and especially Einstein’s ’hole argument’,1 which kept
Einstein away from his field equations for nearly two years. Even Einstein was
confused! But many authors of these papers apparently really like the abstract
mathematical approach to this issue, leaving aside concrete examples and co-
ordinate representations. It was like they thought coordinate representations
of tensors are for the dummie-physicists. In combination with different usages
of terminology and notation, and differing opinions about something which I
considered to be the very heart of General Relativity, my frustration grew. So
with these highly personal notes I hope to transform away mine (and your?)
confusion about some of these issues once and for all. But be prepared: expos-
ing this stuff in all of its gory glory details can look very ugly notationally.

Some knowledge about relativity and differential geometry is assumed, espe-
cially the way manifolds and tensor fields are defined. I’ll start from the very
basics though, and hope to emphasize some conceptual points which a lot of
textbooks simply omit. At the end you find some resources I used. If every

1See e.g. the papers by John3 , i.e. John Norton, John Stachel and John Earman, of which
some are mentioned in the sources at the end.
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now and then you feel like changing the title of these notes to ’how to interpret
tensors for the mentally retarded’, I don’t mind; being excruciatingly explicit
can uncover many misunderstandings. After all, the topic of these notes was
Einstein’s greatest stumbling block to his field equations of General Relativity,
so I’m in good company being a retard. Let’s get started.

2 Transformations . . . more than meets the eye

In a course on classical mechanics you often encounter coordinate transforma-
tions for the first time. A well-known example is the group of rotations. If we
decompose a vector in a basis {e(i)}, where the i labels a whole vector (not its
components!) and runs from 1 to 3, we have2

V = V ie(i) . (summation convention) (1)

The vector components V i transform in the opposite way compared to the basis
vectors {e(i)}, such that the combination (1) doesn’t change. The lesson here
is that the vector V doesn’t care about your choice of basis, i.e. your choice of
coordinates, while separately the components and basis vectors do care. In this
view, the vector stays untouched, and we simply change the coordinate axes.
We call this the passive view.

But we could also rotate the vector itself, keeping the coordinate axes fixed.
After all, if a painting hangs tilded on the wall, a mathematician can’t tell the
difference between a straight painting on a tilded wall, or an oppositely tilded
painting on a straight wall; the orientation of the painting with respect to the
wall remains the same in both cases. So, a rotation of the axis over an angle of
θ with a fixed vector, or a rotation of the vector over an angle of −θ in a fixed
coordinate frame gives us the same vector components, because the vector’s
position with respect to the coordinate frame (or axes) is the same. We’ll come
back to this issue later on.

Let’s think passively now. If you consider general coordinate transformations in
General Relativity, you’ll experience that most of these coordinate transforma-
tions are hard to interpret physically; they’re mainly for mathematical conve-
nience. But let’s start simple: classical mechanics. If we switch from Cartesian
to spherical coordinates (because our problem is spherically symmetric, for ex-
ample), the origin stays the same and we can regard this transformation as the
very same observer sitting in her origin simply relabeling the points in space.
But in classical mechanics we can also perform a Galilei boost,

t′ = t ,

x
′i = xi + vit , (2)

which we can interpret as a change of observer. This new observer, using coor-
dinates {t′, x′i}, labels events in space differently then the original observer who
uses the coordinates {t, xi}. So a Galilei boost is also a relabeling of events, but
physically we also have a change of observer in mind. Something similar goes

2I’ll use boldface letters as coordinate-free notation for tensors.
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for Lorentz boosts, and this is the whole point of relativity: how do different
observers look at the same event?

Imagine we have a stick of length L at rest as measured by the observer with
coordinate {t, xi}. If we denote the coordinates of the left and right side of this
stick as xL and xR, then the length is defined as

L = xR − xL . (3)

The subtlety is that, because the stick is at rest for the observer using {t, xi}, she
can measure xL and xR at any time she wants. But a Galilei-boosted observer
in the x-direction measures

x′R−x′L = (xR+vtR)−(xL+vtL) = xR−xL−v
(
tR−tL

)
= L−v

(
tR−tL

)
. (4)

Here t′ = tL and t′ = tR are the moments where the boosted observer mea-
sures x′L and x′R respectively. If the boosted observer measures e.g. first the x-
coordinate x′R of the right side of the stick, and waits a few seconds ∆t′ = tR−tL
to measure the x-coordinate x′L of the left side of the stick, the value of x′L has
increased with an amount of v ·∆t because the observer is moving with respect
to the stick. Whatever he’s measuring, it doesn’t resemble the length of the
stick anymore. So ’length’ has to be defined as the spatial distance between
two events at the same time. Because ’the same time’ has the same meaning
for all observers, ∆t = ∆t′ = 0, this length-definition gives the same value for
all observers. Of course, in Special Relativity things become more subtle, with
simultanity being frame dependent.

That in a mathematical abstract space we can relabel our points as we please
and that geometrical objects like tensors don’t care about our labeling of points
is quite easy to understand: the formal definition of tensors in general don’t
mention any coordinate chart. But that the tensorial laws of physics, where
we consider objects on space and time, also don’t care about a relabeling of
events is less trivial3. . . but, as we will see, more trivial than a first course on
classical mechanics would make you think! In classical mechanics, we know that
Newton’s second law for a point particle traversing a trajectory in space with
coordinate representation xi(t),

m
d2xi

dt2
= F i (5)

only keeps the same form under the group of Galilei transformations, of which
the Galilei boost (2) is just one. We also say that Newton’s second law is
covariant under the Galilei group. Mathematically, this is because a Galilei
boost is linear in time, while Newton’s second law is of second order. But if we
apply a constant acceleration

t′ = t ,

x
′i = xi +

1

2
ait2 ,

3At least, for me. I’m a dummie, remember?
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to Newton’s second law (5), we get

m
d2x′i

dt′2
= F i −mai (6)

Physically, we say that the non-inertial observer with coordinates {t′, x′i} ex-
periences an inertial force F iinert = −mai in her frame. We could also write

m
d2x′i

dt′2
= F ′i = F i −mai , (7)

from which it is clear that, unlike for constant rotations, the force F does not
transform as a vector under accelerations. Something similar can be done by
applying a time-dependent rotation; in that case you’ll find after some algebra
(using properties of rotation matrices) that two extra inertial forces pop up:4

the Coriolis force and the centrifugal force. If you followed a course on General
Relativity, you know that Newton’s second law will be replaced by the geodesic
equation, which remains its form (or: is covariant) under general coordinate
transformations. The Coriolis and centrifugal forces for example can then be
identified as the components of the connection in the rotating frame. We’ll en-
counter connections later on again; now we will encounter the difference between
passive and active transformations in the context of the simplest of tensor fields:
scalars.

3 Heating up the debate

Just as Newtonian mechanics without vectors is an akward business, in General
Relativity we use tensors all the time. Tensors (or more precisely: tensor fields)
are, formally, multilinear maps from products of (co)tangent spaces to the real
numbers. This multilinear property, and the property that tensors are geometric
objects defined without any reference to coordinates, gives us the famous trans-
formation law for the tensor components under coordinate transformations:

T
′α···′β
µ···ν (x

′
) =

∂x
′α

∂xλ
· · · ∂x

′β

∂xγ
∂xσ

∂x′µ
· · · ∂x

ρ

∂x′ν
Tλ···γσ···ρ (x) . (8)

Because we are talking tensor fields here, a general tensor field T (x) of arbitrary
rank depends on the coordinate value at which it is evaluated. We can evaluate
it for different coordinate values like a normal function, e.g.

Tµν(xρ) , Tµν(x
′ρ) , . . . (9)

with e.g. xρ = (0, 0, 0, 0) and x
′ρ = (1, 1, 1, 1). Here we use a prime simply to

denote that the coordinates at which we evaluate the tensor field components
Tµν are different. If we work in one single coordinate chart, these different

coordinate values xρ and x
′ρ represent different points on the manifold. But

the crucial difference between a tensor field T (x) and a normal function f(x)
is that if we interpret the transition from one coordinate to another as a coor-
dinate transformation (!), the tensor components Tµν also change functionally

4Two, because Newton’s second law is of second order.

4



according to the transformation law (8). We denote that corresponding func-
tional change with a prime on the field itself. E.g., for a scalar field Φ, the
simplest of all tensors, one has per definition

Φ(xν) = Φ′(x
′ν) . (10)

So the new field Φ′ at the new coordinate value x
′ν has the same numerical value

as the old field Φ at the old coordinate value xν . If we are careful, we state
under which group of transformations exactly this is a scalar; in e.g. textbooks
on Quantum Field Theory, we would take the Poincaré transformations

x
′ν = Λνµx

µ + ζµ , (11)

with Λνµ ∈ SO(3, 1) being Lorentz transformations and ζµ spacetime transla-
tions. Let’s take, as an explicit example, the Klein-Gordon equation(

∂µ∂
µ +m2

)
Φ(xν) = 0 . (12)

The transformed scalar field Φ′(x
′ν) then obeys(

∂′µ∂
′µ +m′2

)
Φ′(x

′ν) = 0 , (13)

where m = m′, i.e. mass is a scalar. Let’s take the solution (C is a constant)

Φ(xν) = Cei·x
νpν , (14)

which is a solution due to Einstein’s energy-momentum relation pνp
ν +m2 = 0.

The transformed field Φ′(x
′ν) is completely determined by the condition (10)

and the fact that it solves eqn. (13):

Φ′(x
′ν) = Cei·x

′νp′ν . (15)

The condition (10) is satisfied because the inner product xνpν is a scalar. If
you wish, you can read the prime on the field Φ′ in the solution (15) as the
prime on the transformed four-momentum p′ν . Then it also becomes clear that
Φ′(xν) 6= Φ(xν), because

Φ′(xν) = Cei·x
νp′ν , (16)

and xνpν 6= xνp′ν in general. So with this example we made explicit that the
functional dependence of Φ′ on xν differs from that of Φ. If you want it even
more explicit, you can consider a Lorentz transformation in some direction, cal-
culate the p′ν components and put them into Φ′.

Another often used example for a scalar is that of a temperature field T (x).
Let’s say we have such a temperature field defined on a metal plate (which
mathematically is a subset of the plane R2), which takes coordinate values
xi ∈ R2 and spits out a temperature T (xi) ∈ R:

T (xi) : R2 → R . (17)

Now imagine there is a heater underneath our (very large) plate, which causes
a certain temperature distribution on the plate. If we shift the heater with
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the vector vi, the whole temperature distribution is shifted. So, if at a fixed
coordinate value xi0 the temperature is T (xi0) = 100oC, then we have after the
shift that the old temperature distribution T at the old coordinate value xi0 has
the same value as the new ’shifted along’ temperature distribution T ′ at the
new coordinate value xi0 + vi:

T ′(xi0 + vi) = T (xi0) = 100oC . (18)

Notice the prime on T ! In general, T (xi + vi) has a different value then T (xi)
because T (xi + vi) denotes the old temperature distribution evaluated at the
shifted coordinate xi+vi. We are not interested in that; we want to stress that, if
we shift our heater, the temperature distribution is shifted along with it. That’s
why we interpret the temperature distribution T (xi) as a scalar field. Notice
that we are talking about shifting the heater, i.e. the points which make up
the temperature distribution on the plate. So different coordinate values mean
different points on the plate! This makes sense: we stay in one and the same co-
ordinate chart, so different points have different coordinate values per definition.

But this is not the only way we can interpret the coordinate shift

x
′i = xi + vi . (19)

We could also interpret this as if we keep the heater at the same place, but
merely shift the coordinate grid we layed upon our plate to label the points on
the plate. Eqn.(18) would, in that case, mean that after this relabeling of the
coordinates on the plate the new temperature distribution at the new coordi-
nate value has the same numerical value as the old temperature distribution at
the old coordinate value. But note that now, different coordinate values refer
to the very same point on the plate! This makes also sense, because that’s the
very definition of a passive coordinate transformation: the same point on the
manifold obtains a new coordinate value, i.e. is relabeled.

Because of these subtleties I talked about ’coordinate values’ instead of ’points’
earlier on. The reason for this carefulness is the two ways we can interpret
coordinate transformations for tensors. And although these interpretations are
conceptually quite different, they turn out to be the same at the calculational
level. In the heating example, the first transformation was an active one: we
shifted the points actively. The second interpretation was a passive one: we
merely relabeled our coordinates. We also saw that there is a deep connection
between these two interpretations. This is what I’ll call the passive-active dual-
ity. To dive into that duality, we first repeat some basic differential geometry,
with the assumption that you have all seen this before; see e.g. Wald, Carroll
or Nakahara.

4 Differential geometry

An n-dimensional manifold M is per definition locally homeomorphic to flat
Rn, which means that we can use Cartesian coordinates to label points on this
manifold, and we can apply all the calculus we love and hate. In General Rel-
ativity this M represents spacetime, and Rn represents Minkowski spacetime.
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This means in particular that in an open neighbourhood of a point on the man-
ifold, we can approximate this manifold with Rn; in General Relativity this is
the equivalence principle saying that locally in spacetime we can approximate a
gravitational field (= spacetime curvature) by a flat spacetime; the correspond-
ing coordinate transformation brings us to a freely falling observer. But such a
coordinate system is just one choice; points on the manifold can be represented
by many different coordinate systems. In formal treatments, like Nakahara
chapter 5.1 or Wald chapter 2, you will see that the coordinates on a manifold
are provided by a map ψ : M → Rn, sucht that for a point p ∈ M we can
write ψ(p) = xµ. Together with the submanifold on which this map is defined
(often this is not the whole of the manifold M ) this map ψ is called a chart. If
we have two such charts ψ1 and ψ2 of which the corresponding subsets of M
overlap, then the composed map ψ2 ◦ ψ−1

1 : Rn → Rn provides the transition
from one coordinate chart to the other. We however shall abuse this notation.
We will denote coordinate maps like ψ simply by xµ, and if we go to another
chart the transition function ψ2 ◦ ψ−1

1 will be denoted by x
′ν(xµ).

So let’s consider two different coordinate systems {xµ} and {x′ν}, where µ, ν =
{0, 1, . . . , n− 1}. Such a coordinate function is in our notation a map from the
manifold to Rn,

xµ : M → Rn (20)

and the coordinate value of a point p ∈ M will be denoted as xµ(p). With
these coordinate functions we’re free to label our points on the manifold as we
please, and we’re also free to jump from one coordinate system to the other via
the transition

x
′ν(xµ) : Rn → Rn (21)

This function x
′ν(xµ) is actually a diffeomorphism on Rn, meaning that every

coordinate in the chart of xµ is uniquely mapped to a coordinate in the chart
of x

′ν and vice versa such that it is invertible.

We can also define tensor fields on this manifold, which are multilinear maps
from the (co)tangent spaces of the manifold to the real line. E.g., at the point
p the metric tensor g acts as a bilinear map at vectors V in the tangent space
at p, g(V ,V ), and returns its norm:

g : Tp ⊗ Tp → R . (22)

If we choose a basis, we can denote g(V ,V ) in component-form as

gµνV
µV ν ∈ R . (23)

Under the transformation (21) the metric components transform as

g′µν(x′) =
∂xρ

∂x′µ

∂xλ

∂x′ν
gρλ(x) . (24)

This is the usual, passive view as most physicists are often exposed at if they
follow their first course on General Relativity: we leave the points on the man-
ifold untouched, but simply change the labeling. So, if we calculate an interval
like

ds2 = gµν(x)dxµdxν = g′µν(x′)dx
′µdx

′ν = ds′2 , (25)
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at one and the same point p on the manifold in two different coordinate charts,
the scalar property of ds expresses that this geometric feature does not depend
on how we choose to represent the differentials dx and the metric tensor g with
coordinates.

We conclude that the passive point of view of coordinate transformations in-
volves diffeomorphisms from Rn to itself. It turns out that the active point of
view involves diffeomorphisms on the manifold to itself.

5 The passive-active duality

With a general map we can map points on one manifold to the other. If we
choose these two manifolds to be the same, the map can be a diffeomorphism,
and we can ’move points around’. Since in these discussions the coordinate
chart is often not even mentioned, one then implicitly assumes a (one and the
same!) coordinate chart, and as a result moving points around on the manifold
changes the corresponding coordinate values. This is what we’ll repeat here,
although the usual discussion in textbooks is more general, by stressing that the
diffemorphisms ed between two different manifolds M and N . We’ll restrict
ourselves to one and the same manifold M . We denote such a diffeomorphism
as φ,

φ : M →M (26)

and write for the two points p ∈ M and q ∈ M for example φ(p) = q. The
natural question then is how the tangent spaces TpM and TqM are related via
this diffeomorphism φ. After all, these tangent spaces are the cosy homes of our
tensor fields. It turns out there is a naturally induced map between these two
tangent spaces, called the differential map φ∗:

φ∗ : TpM → Tφ(p)M . (27)

We can then consider maps f : M → R from the manifold to the real line, and
note that also f ◦ φ : M → R is a mapping between M and R. Whereas f
brings us e.g. from a point p to a number in R, the map f ◦ φ brings us from
another point φ(p) = q to another number in R. This action is denoted as

f ◦ φ = φ∗f . (28)

Such a map is a nice thing to have, because vector fields are defined as differ-
ential operators on precisely such maps f from the manifold to the real line.
So if we know how this diffeomorphism φ induces the map φ∗ between the tan-
gent spaces, we can write down a relation between the vectors sitting in these
different tangent spaces Tp and Tφ(p), and from there go on to induce maps
between dual vectors and higher rank tensor in these different tangent spaces.
This generalization can be done because dual vectors are defined by their action
on vectors, and higher rank tensors are defined as multilinear maps acting on
vectors and dual vectors.

So what are these naturally induced maps φ∗ and φ∗? For a vector V ∈ TpM
we define the action of the transformed vector (φ∗V ) on a map f as the action
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of the original vector V on f ◦ φ:

(φ∗V )(f) = V (f ◦ φ), φ∗V ∈ Tφ(p)N (29)

This is a very natural thing to do, which explains its name. Often the map φ∗ is
also called the pushforward, because if we would have stayed general, regarding
the diffeomorphism as a map between two different manifolds, it would look
like we ’pushed the vector from one manifold forwards to the other’. As you
can guess, the map φ∗ is then called the pullback for similar reasons, see e.g.
Carroll. However, if we consider one and the same manifold, the pushforward
can be regarded as the inverse of the pullback and vice versa:

φ∗ = (φ−1)∗ . (30)

Now, up to this point we haven’t mentioned the word ’coordinate’. Let’s say
we use coordinate functions xµ to describe our point p. Coordinate functions
are scalar functions (don’t be fooled by the index µ!), so when we shift points
on the manifold with a diffeomorphism φ the coordinates of this shifted point
become

(φ∗x)µ = (x ◦ φ)µ ≡ x′µ : M → Rn . (31)

In the first step I just applied the definition of φ∗ on the (scalar!) coordinate
functions xµ, and in the second step I’ve renamed these (φ∗x)µ as x′

µ
. But be

aware: contrary to what this x′
µ
-notation might suggest, we stay in the very

same coordinate chart after the shifting of the point p! After all, if we apply
the diffeomorphism φ to a point p, then

(x ◦ φ(p))µ = xµ
(
φ(p)

)
= xµ(q) . (32)

If we then apply φ∗ to e.g. a second-rank tensor like the metric, we get[
(φ∗g)µν

]
|φ(p) =

∂xρ

∂x′µ
∂xλ

∂x′ν
gρλ|p . (33)

The left hand side of eqn.(33) is evaluated at the point φ(p) = q with coordi-
nates x′

α
= (φ∗x)α, while the right hand side is evaluated at the point p with

coordinates xα. But this transformation has mathematically exactly the same
form as the transformation (24), although the interpretation is different. In the
active interpretation I just gave you, the diffeomorphism φ acts upon the metric
g at the point p (with coordinates xµ) and induces via φ∗ a new metric at the
new point φ(p) = q (with coordinates (φ∗x)µ) on the manifold! This means that
the very same transformation law for tensors can be interpreted in an active and
a passive way. This is the passive-active duality.

To explore this passive-active duality further we note that a diffeomorphism
φ on the manifold, i.e. an active transformation, can also induce a passive coor-
dinate transformation. Wald explains this in his textbook on General Relativity
(Appendix C). The picture which accompanies this claim is fig.1.

In fig.1 we shift the point p with coordinates xµ(p) by a diffeomorphism to
the new point φ(p) having coordinates (φ∗x)µ. We can now can do the following:
assign (≡) to the point p the new coordinate function x

′µ(p), such that

xµ(φ(p)) ≡ x
′µ(p) . (34)
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Figure 1: How a diffeomorphism on the manifold can be used to induce a passive
coordinate transformation.

In words: we assign new coordinate values x
′µ to the point p in such a way that

the numerical values equal the numerical values of the shifted point φ(p) = q
in the old coordinate system. So beware: now the prime on x

′µ does mean a
passive coordinate transformation again! With the very specific choice (34) the
diffeomorphism φ induces the passive transformation xµ(p) → x

′µ(p). For all
tensors T we then have the following result: the components of the tensor φ∗T
at the point φ(p), in the coordinate system xµ(φ(p)) in the active viewpoint
have the very same numerical values as the components of the tensor T at the
point p in the coordinate system x

′µ in the passive viewpoint.

So why mention these ’passive’ coordinate transformations at all then? We can
just as well stick to diffeomorphisms on the manifold, recognize that apart from
shifting points actively they can also induce passive relabelings of our tensor
components by imposing the condition (34), and as such avoid any long discus-
sions and cluttered notation.5 No wonder these smart mathematicians scarcely
mention any coordinates in their formal textbooks on differential geometry and
General Relativity.

6 Passive versus active: an explicit example

In this section I’ll give you an explicit example of how a coordinate transfor-
mation can be interpreted both passively and actively. I stole this example and
the accompanying graphs shamelessly from a user on physics.stackexchange.com
who goes by the name twistor59. So twistor59, many thanks for your enlight-
ening example and nice graphs.

Let’s say we have the plane R2 with coordinates (x, y). We consider the following

5Or the other way around: we can use passive coordinate transformations to induce active
ones.
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Figure 2: The passive interpretation of the coordinate transformation eqn.(35).

coordinate transformation to the new coordinates (X,Y ):

X(x, y) = x
(

1 +
5

512
y2
)

Y (x, y) = y
(

1 +
5

512
x2
)

(35)

The blue coordinate lines are transformed to the red coordinate lines. In fig.2
you see the passive interpretation of the transformation (35): a point p first had
coordinates (x, y) = (8, 8) and now has coordinates (X,Y ) = (13, 13). The blue
lines denote the coordinate lines of (x, y) and the red lines denote the coordinate
lines of (X,Y ).

So what happens to the geometry? Well, if we denote the coordinates (x, y)
for the sake of argument as xi, and if we denote (X,Y ) as Xi, then according
to (24) we have

g′km(X) =
∂xi

∂Xk

∂xj

∂Xm
gij(x) . (36)

and
g′km(X)dXkdXm = gij(x)dxidxj . (37)

In fig.3 however you see the active interpretation of eqn.(35): the point p is
moved (’stretched out’) from (x, y) = (8, 8) to the new point q with coordinates
(x, y) = (13, 13). But after that, we also stretch along the coordinate lines
with this transformation, giving us the coordinate system (X,Y ) (the red lines
in fig.3), such that the new point q in the new coordinate system (X,Y ) now
has the old coordinate values of p: (X,Y ) = (8, 8)! In other words: the active
transformation on the manifold is followed by a passive one!

The metric is also ’dragged along’ from the point p to the point q, such that

g′km(X)|q dXkdXm = gij(x)|pdxidxj . (38)
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Figure 3: The active interpretation of the coordinate transformation eqn.(35).

Compare this with eqn.(33); the notation here is that φ(p) = q, andXi = (φ∗x)i.
If the metric is the good old Euclidean metric in the Cartesian coordinates xi,
gij(x

k) = δij , then eqn.(38) states that g′ij(X
k) also equals δij :

dx2 + dy2 = dX2 + dY 2 . (39)

Note: this equation equates two expressions at two different points p and φ(p) =
q on the manifold! If you take a look at figure 4, this means that the angle
between the two basis vector (∂x, ∂y) at p, which is 90o, is the same as the angle
between the basis vectors (∂X , ∂Y ) at q. Notice however that the red vectors
in fig.4 surely don’t look orthogonal, but at q we use the new metric φ∗g with
metric components g′km(X)|q to measure angles.

7 The Lie derivative

You probably know about the subtleties to introduce a derivative operator on a
manifold. After all, a derivative consists of comparing two different points, and
on a manifold there is not a unique way to compare two different points on a
manifold. More technically: if we want to take derivatives of a tensor, we have
to compare the tensor at two infinitesimally separated points on the manifold,
but that means comparing two different tangent spaces. There is not a unique
way to drag the tensors between those two points if there is curvature. In order
to compare two tangents spaces at different points, we need to introduce a con-
nection. But without such a connection we’re still not lost: we can use curves
which are induced by diffeomorphisms!

So here’s the idea. Instead of a connection we will use a curve. For that we
first introduce so-called one-parameter families of diffeomorphisms φt. These
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Figure 4: The angle between the basis vectors at the two different points.

diffeomorphisms are smooth (i.e. infinitely differentiable) maps,

φt : R×M →M , (40)

such that for every value of t the map φt is a diffeomorphism. This map satisfies
certain conditions, like φt ◦ φs = φs+t and φ0 being the identity operator. An
example would be the following families of diffeomorphisms on the plane M =
R2 defined by

φt(x, y) = (x+ t, y) , (41)

i.e. a ’flow’ along the x-direction. As such these φt can be regarded as curves on
the manifold, and we can also think about these curves as arising from vector
fields ξ. After all, a vector field is defined by its action on precisely such curves!
If we denote a coordinate representation of such a curve as xµ(t), this means

ξµ =
dxµ

dt
. (42)

For a given vector field ξ a solution could be parametrised as

xµ(t) = xµ(0) + t ξµ . (43)

Hence every (equivalence class of) curve(s) defines a vector and vice versa. Now
we can use these curves to pushforward and pullback tensors as in figure 5.

Before I give you my definition of the Lie derivative, a word of warning: you
should be aware of different definitions of the Lie derivative; see e.g. Nakahara
chapter 5.2. One reason is that already a normal derivative can be written down
in different ways. E.g., for a function f(x) we define

df

dx
= lim
h→0

f(x+ h)− f(x)

h
, (44)
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Figure 5: The idea of the Lie derivative.

but we can just as well replace h by −h to get

df

dx
= lim
−h→0

f(x− h)− f(x)

−h
= lim
−h→0

f(x)− f(x− h)

h
= lim
h→0

f(x)− f(x− h)

h
.

(45)
I.e., now we compare the function in the points x and x−h. For the Lie derivative
you can similarly encounter different expressions. So having said that, we will
definie the Lie derivative with the help of figure 6 as follows:

LξT = lim
t→0

(
T (φt(p))− φ∗t

[
T (p)

]
t

)
. (46)

You can compare this definition with the one of e.g. Carroll. What we do
mathematically, is to pushforward the tensor from the old point p towards the
new point φt(p), and compare that result with the (old) tensor simply evaluated

at the new point φt(p). Note that φ∗t

[
T (p)

]
is a tensor evaluated at the point

φt(p). After all, that’s what our naturally induced map φ∗t does: it’s a map
from the tangent space at p to the tangent space at φt(p). If we want to apply
this definition to a covariant tensor, then we have to use the map φt∗, but being
a diffeomorphism this map equals [φ∗t ]

−1 = φ∗−t; see eqn.(30).

The simplest way to calculate an explicit expression for this Lie derivative is
given by the coordinate representations of the tensor field T of interest and the
vector field ξ. We stick to one single chart, and then we give the point p the
coordinates xµ. The point φt(p) then has different coordinate values, which we
will call x

′µ. Doing things infinitesimally in t, we can then write the solution
(43) as

x
′µ = xµ + t ξµ . (47)

Note that we now write x
′µ for the coordinate xµ(t) which denotes the point

φt(p), and xµ for the coordinate xµ(0) of the point p. With this we can then
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Figure 6: The hypersurface Σ with adapted coordinates, with the vector field
ξ. Adapted from Harvey Reall’s lecture notes on General Relativity.

also define our Lie derivative of a tensor T with respect to ξ as

LξT = lim
t→0

(T (x′)− T ′(x′)
t

)
. (48)

You should compare this expression with eqn.(46). For e.g. a rank 2 contravari-
ant tensor with components Tµν(xα) this becomes

LξT
µν = lim

t→0

(Tµν(x
′α)− T ′µν(x

′α)

t

)
. (49)

We can then apply the diffeomorphism (47) and a Taylor expansion to get

Tµν(x′)− T
′µν(x′) = Tµν(x+ tξ)− ∂x

′µ

∂xρ
∂x

′ν

∂xλ
T ρλ(x)

= Tµν(x+ tξ)− [δµρ + t∂ρξ
µ][δνλ + t∂λξ

ν ]T ρλ(x)

= Tµν(x) + tξρ∂ρT
µν(x)− [δµρ + t∂ρξ

µ][δνλ + t∂λξ
ν ]T ρλ(x)

= t
(
ξρ∂ρT

µν(x)− ∂ρξµT ρν(x)− ∂ρξνTµρ(x)
)

+O(t2) .

(50)

So
LξT

µν(x) = ξρ∂ρT
µν(x)− ∂ρξµT ρν(x)− ∂ρξνTµρ(x) , (51)

and similar expressions can be derived for other types of tensors. In particular,
a similar calculation applied to the metric tensor gives us

Lξgµν = ξρ∂ρgµν + ∂µξ
ρgρν + ∂νξ

ρgµρ . (52)

As you know, without torsion we can simply replace the partial derivatives by
covariant ones, and given metric compatibility we can write the Lie derivative
of the metric then also explicitly covariant as

Lξgµν = 2∇(µξν) . (53)

Let’s take a concrete example. We consider a vector field ξ and choose a
spatial hypersurface Σ such that ξ is not tangent to Σ. We also assign coor-
dinates xi to this hypersurface. Then we can use ξ to define a diffeomorphism
φt.
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In the neighbourhood of Σ we can then use the coordinate (tp, x
i
p) for a point

p. This means that the vector ξ is given by

ξ = ∂t or ξµ = (1, 0, . . . , 0) . (54)

The action of the accompanying diffeomorphism sends a point p with coordinates
xµp = (tp, x

i
p) to a point φt(p) = q with coordinates

(x ◦ φt)µ ≡ x
′µ = xµ + tξµ = (tp + t, xip) , (55)

i.e. it generates a ’shift in time’. Then with the fact that the transformation ma-
trices (Jacobians) are given by Kronecker delta’s and ξµ = δµ0 , the Lie derivative
(51) becomes the partial derivative of the tensor with respect to t:

LξT = ∂tTµν(tp, x
i
p) . (56)

Of course, we can also derive this result by using the coordinate-free definition
(46); the matrix-representation of the differential map φ∗t describing the shift
(55) is simply the identity matrix, and hence (56) follows immediately.6 So if
the tensor components don’t depend explicitly on time, the Lie derivative along
the vector flow adapted to the time coordinate is zero.

This brings us to the subject of symmetries of spacetime. For that we com-
pare the line element at two different points in spacetime with coordinates xµ

and x
′µ, where the relation (47) holds. So we want to consider the difference

gµν(x′)dx
′µdx

′ν − gµν(x)dxµdxν . (57)

But we know (see also eqn.(25)) that the line element transforms as a scalar
under eqn.(47):

gµν(x)dxµdxν = g′µν(x′)dx
′µdx

′ν . (58)

So eqn.(57) becomes (watch those primes carefully!)

gµν(x′)dx
′µdx

′ν − gµν(x)dxµdxν = gµν(x′)dx
′µdx

′ν − g′µν(x′)dx
′µdx

′ν

=
(
gµν(x′)− g′µν(x′)

)
dx

′µdx
′ν

=
(
Lξgµν(x)

)
dx

′µdx
′ν . (59)

We conclude that whenever the Lie derivative of the metric (53) vanishes,
Lξgµν(x) = 0, we have a symmetry: the geometry then doesn’t change if we
move into the direction of the vector field ξ.

8 Down the rabbit hole

I’ll now introduce you to the thing that confused me the most during my first
encounters with this whole active versus passive discussion. I call it a rabbit

6A potential confusion: aren’t we subtracting tensor components at two different points on
the manifold here? Wasn’t that ill-defined without a connection? Remember that φ∗t [T (p)]
is actually a tensor in the (co)tangent space of φ(p), but that its value there is related to its
value at p.
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hole, and it concerns Lie derivatives. Let’s start easy, with a scalar field Φ(x).
By now, you know how to compute the Lie derivative of such a scalar field Φ(x)
with respect to a vector field ξ: just apply the definition (48), using eqn.(47):

LξΦ = lim
t→0

(Φ(x′)− Φ′(x′)

t

)
= lim
t→0

(Φ(x+ tξ)− Φ(x)

t

)
= lim
t→0

(Φ(x) + tξρ∂ρΦ(x)− Φ(x)

t

)
= ξρ∂ρΦ(x) . (60)

To go to the second line, we used Φ′(x′) = Φ(x). Now let’s, for the moment,
just stare at the difference

Φ(x′)− Φ′(x′) . (61)

We know with the help of figure 5 what this expression means in the active
sense. My confusion, which threw me deep (deep!) down into the rabbit hole,
arose because my first encounters with field theory all treated coordinate trans-
formations in a passive way. So my passive interpretation of eqn.(61) was the
following: if we use a coordinate transformation to go from Φ(xµ) to Φ′(x

′µ),
the coordinates xµ and x

′µ both describe the same point p on the manifold.
However, this must mean that in the expression Φ(x

′µ) the coordinate x
′µ must

describe a different point (say, q) on the manifold then the point that is de-
scribed by x

′µ in Φ′(x
′µ! So in the passive interpretation of eqn.(61) we seem

to compare tensor components at two different points p and q on the manifold!
This seemed very strange to me, after all those warnings that to subtract ten-
sors evaluated at two different points on the manifold we need a connection. So
what’s going on? Does the expression (61) simply not make sense passively?

It turns out that we can interpret eqn.(61) in a sensible way. In the Lie deriva-
tive, see figure 5, we made use of a curve to compare tensors. In the second
term of the Lie derivative (46) we pushforward the tensor to the new point, but
then we make use of the fact that its value there is related to its value at the
original point; see (50). So where’s the curve to make sense of eqn.(61)? Well,
it’s not there explicitly. But there is another trick we used, which is implicit
in the passive interpretation of (61), and hence caused my confusion. Let’s be
very (very) slow here. We start with a scalar field Φ(x) in a coordinate chart
{xµ}. The coordinate x is the value we assign to the point p. Then we perform
a coordinate transformation,

{xµ} → {x
′µ} , Φ(x)→ Φ′(x′) . (62)

The coordinate x′ in Φ′(x′) still refers to the same point p. Now we take our
original scalar field Φ in our original chart {xµ}, and evaluate the field in some
point q on the manifold with coordinate y,

Φ(y) , (63)

where q differs from p. But we choose this new point q with coordinate y in the
chart {xµ} in such a way, that

yµ ≡ x
′µ(p) . (64)
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Now my lousy notation shows up; the value yµ is simply the value of the coor-
dinate function xµ in the point p! So eqn.(64) then tells us

xµ(q) = yµ ≡ x
′µ(p) , (65)

and hence
Φ(yµ) = Φ(x

′µ) . (66)

So in Φ′(x′), the coordinate x
′µ(p) has exactly the same numerical value as

xµ(q)! But according to eqn.(34) this is exactly how a passive coordinate trans-
formation can induce an active one! So there is a curve secretly in the difference
(61) after all.

Confusing? Well, I warned you; it would be a deep rabbit hole. But this also ex-
plains how in some lecture notes, like the ones of e.g. Bertschinger or Andersson
and Comer, the Lie derivative is defined: as a combination of an active and a
passive transformation! We basically did this combination already in section 6.
E.g, in the notes of Andersson and Comer you will see the following definition of
the Lie derivative (adjusted to my notation). Consider two infinitesimally sepa-
rated spacetime points p and q connected by a curve xµ(t). Let xµ(t = 0) = xµ0
describe p and xµ(t = ε) = xµε . We can then write infinitesimally

xµε = xµ0 + εξµ (67)

where

ξµ =
dxµ

dt
|t=0 . (68)

So far nothing new: we move actively from p to q following the flow of the
vector field ξµ. But after we arrive at q, we subsequently perform the passive
coordinate transformation

x
′µ = xµ − εξµ . (69)

See that minus sign? This minus sign is chosen such that when you apply this
transformation on our curve,

x
′µ
ε = xµ0 . (70)

I.e. the new coordinate of the new point q (t = ε) has the same numerical value
as the old coordinate of the old point p (t = 0)! We also call this ’Lie dragging
of the coordinate system’. The Lie derivative of a tensor field is then defined as

LξT = lim
ε→0

(T ′(q)− T (p))

t

)
. (71)

And this gives exactly the same expressions for the Lie derivatives. See e.g.
Bertschinger’s notes.

9 Digging other holes

The essence of the hole argument is that we can generate ’new solutions’ of
fields by using covariance, ’new’ in the sense that these newly obtained solutions
depend functionally different on the old coordinates. So let’s take the simplest
example, a toy model, to illustrate this phenomenon. Let’s say we have a scalar
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field Φ(x) defined on a one-dimensional manifold (’space’). We use coordinates
x ∈ R to label the points on this manifold. The ’equation of motion’ for this
scalar field reads

d2Φ

dx2
(x) = 0 . (72)

Yes, apart from algebraic equations of motion it almost doesn’t get any simpler
than that. Now we perform the coordinate transformation

x′ = 2x . (73)

Per construction, our scalar field transforms as Φ′(x′) = Φ(x). And by the
chaine rule,

d

dx
=
dx′

dx

d

dx′
= 2

d

dx
, → d2

dx′2
= 4

d2

dx2
. (74)

So, our equation of motion (72) is covariant, i.e.

d2Φ′

dx′2
(x′) = 4

d2Φ

dx2
(x) = 0 . (75)

Now we look at a specific solution to eqn.(72). Employing all your differential
equations solving skills, you come up with the solution

Φ(x) = x− 1 . (76)

Then we apply our coordinate transformation (73). Similary to how we arrived
at the solution eqn.(15), we conclude that then

Φ′(x′) =
x′

2
− 1 . (77)

You can check for yourself that indeed Φ′(x′) = Φ(x). If you plot eqn.(76)
and (77), you find two functions in two different coordinate systems x and x′,
resembling the very same solution from two different points of view. But now
we can do something clever: we take the solution (77), and just replace the new
coordinate x′ by the old coordinate x! This new solution,

Φ′(x) =
x

2
− 1 , (78)

solves the equation of motion

d2Φ′

dx2
(x) = 0 . (79)

After all, we just relabeld Φ as Φ′ in eqn.(72); who will care about the naming
of the field? So in the very same coordinate system {x} we obtain two mathe-
matically different solutions to our equations of motion! They differ because the
solutions (76) and (78), i.e. Φ(x) and Φ′(x), both depend functionally different
on x. You should compare this discussion to the field eqn.(16). This field is
similarly a solution of the Klein-Gordon equation (12), as you can check via
p′νp
′ν = 0.

The upshot is that when you assign a physical meaning to x before you consider
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the field Φ, then you have two physically different solutions to Φ. For instance,
Φ′(x) = 0 for x = 2, while Φ(x) = 0 for x = 1. Also, dΦ′

dx = 1
2 while dΦ

dx = 1.
But if you don’t assign any physical meaning to x before you have a field Φ on
hand, this generation of new solutions is not giving you any new information.
You could regard the generation of new solutions as mere gauge transforma-
tions, giving solutions which look new and which are new mathematically, but
resemble the same physics. This last point of view is exactly the one you should
take in General Relativity according to the hole argument.

10 Rabbit black holes

To illustrate Einstein’s problems which culminated in his (in)famous hole ar-
gument, we will focus on the vacuum Einstein equations of General Relativity
without cosmological constant.7 These equations determine the time-evolution
of the metric in the vacuum:

Gµν [gρλ(x)] = 0 . (80)

The metric is a tensor under general coordinate transformations xµ → x
′µ(xν),

which is expressed by eqn.(24). We regard this transformation in the active
sense: the coordinates xµ and xν in eqn.(24) are defined in the same chart and
as such refer to different points on the manifold. Under the general coordinate
transformation (24) the Einstein equations are covariant:

G′µν [g′ρλ(x′)] = 0 . (81)

Now imagine one has found a solution gµν(x) of (80). By covariance the trans-
formed metric g′µν(x′) can be constructed via the coordinate transformation
(24), which solves eqn.(81). However, we can reset x′ in g′µν(x′) to its old value
x, giving g′µν(x). This new metric also solves (81) exactly in the same way as
we arrived at eqn.(79):

G′µν [g′ρλ(x)] = 0 . (82)

The following question now arises: as gµν(x) and g′µν(x) seem to be two different
metrics in the same coordinate system, just as the fields Φ′(x) and Φ(x) in the
former section, what then is the precise relation between them? If gµν(x) and
g′µν(x) are physically different, general covariance allows one to construct an
infinite amount of physically new solutions g′µν(x) from gµν(x), but with the
same initial data. For Einstein it was tempting to think that g′µν(x) and gµν(x)
are physically different, because they look different. He also happened to fail in
his quest for his field equations, so it was even more tempting for him to see this
hole argument as a confirmation of his failure. So for the moment let’s give in
with Einstein’s temptation and consider a spacetime manifold M with a region
H ⊂M which is non-empy: H 6= ∅. The points of M are interpreted as events.
Now consider a general coordinate transformation, such that

• outside H one has xµ = x
′µ,

• inside H one has xµ 6= x
′µ,

7This section is based on a section from my PhD-thesis Newton-Cartan theory revisited.
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Figure 7: The hole in the argument.

• on the boundary of H these two transformations are smoothly connected.

As such the region H is called a “hole”. Note that this construction can only
be made because the coordinate transformations involved are general. With
Poincaré- or Galilei transformations we wouldn’t be able to do this!

The following subtlety then arised for Einstein: his equations describe the
evolution of the metric, and a set of initial data should suffice to determine the
metric gµν(x) uniquely through spacetime. Everything is fine outside the hole.
But once the hole is entered, one can suddenly use covariance to obtain from the
metric gµν(x) the mathematically different metric g′µν(x), as is shown in figure
7. Remember, g′µν(x) has a different functional dependence on the coordinate
x; compare this to our discussion of the scalar field in eqn.(16). If these two
metrics are also different physically, then covariance implies that Einstein’s field
equations are not deterministic. Namely, the same initial data results in different
solutions inside the hole. You see the situation8 in fig.8, where the left depicts
the geometry of gµν(x) and the right depicts the geometry for g′µν(x). On the
left, a light ray goes through the point P outside the hole and inside the hole
crosses the point Q. But after our transformation to g′µν(x), the light ray doesn’t
cross the point Q inside the hole anymore! You can compare this situation with
the red and blue vectors in fig.4: the red vectors don’t look orthogonal anymore.
But that’s no surprise, because this confusion arises because we don’t measure
orthogonality anymore with the old metric at p, but with the new metric at the
point q.

The solution to save General Relativity is clear: g′µν(x) and gµν(x) must
be physically the same. One must conclude that mathematically, points on
a manifold can be distinguished without a metric, but physically they cannot.
Points (events) and their coordinates can only be physically interpreted after
one introduces a metric, and as such a spacetime always consists of a manifold
M equipped with a metric structure. But in the hole argument one tacitly
assumes that the points, labeled by {xµ} and {x′µ}, have a meaning before the
metric is considered. This is deceiving and simply wrong. In figure 3 you see
a similar deceit: we seem move the point with respect to a fixed background,
but physically all we can do is to regard the shift of the point p with respect

8Inspired by the discussion of Tim Maudlin in his ’Philosophy of Physics: Space and Time’.

21



Figure 8: A light ray inside and outside the hole, before and after the transfor-
mation. Taken from my book Ruimte, Tijd, Materie.

to p itself; there is no ’fixed background’. This is ’relativity’ at its best, I
suppose, which goes under the name of background independence. In this sense
General Relativity must be regarded as a gauge theory. If we write the general
coordinate transformation as the Lie derivative eqn.(53), we get9

δξgµν(x) ≡ g′µν(x)− gµν(x) = 2∇(µξν) . (83)

Under this gauge transformation the vacuum Einstein equation Gµν = 0 is in-
variant.

Alan Macdonald gave a very nice explicit example of the hole argument in
the American Journal of Physics. Let’s consider the Schwarzschild metric, be-
ing a solution to the vacuum Einstein equations (80). In spherical coordinates
(t, r,Ω) = (t, r, θ, φ) the spacetime interval with G = c = 1 is written as

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 . (84)

Then the following transformation is chosen:

t→ t′ = t ,

r → r′ = f−1(r) ,

Ω→ Ω′ = Ω , (85)

where the inverse is for notational convenience. The function f−1(r) has the
following properties:

• f−1(r) = r outside H,

• f−1(r) 6= r inside H,

• on the boundary of H these two transformations are smoothly connected.

9Note the switching of the primes; see the remarks after eqn.(44).
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Figure 9: The coordinate transformation (85) which defines our hole.

As such our hole H is defined only by spatial coordinate transformations. This is
just a choice to keep the argument as simple as possible; one could of course also
involve the time coordinate in the transformations. Under the transformation
(85) the spacetime interval (84) becomes

ds′2 = −
(

1− 2M

f(r′)

)
dt2 +

(
1− 2M

f(r′)

)−1

(
∂f

∂r′
)2dr′2 + f2(r′)dΩ2 , (86)

which by covariance equals ds2.
Now choose r′ = r in eqn.(86) to get

ds̃2 = −
(

1− 2M

f(r)

)
dt2 +

(
1− 2M

f(r)

)−1

(
∂f

∂r
)2dr2 + f2(r)dΩ2 . (87)

The spacetime interval (84) corresponds to gµν(x), whereas the spacetime inter-
val (87) corresponds to g′µν(x). Comparison shows that they are mathematically
different inside the hole,

ds2 6= ds̃2 r ∈ H . (88)

If we now stick to the coordinates (t, r, θ, φ) and consider an event with coordi-
nate r inside the hole H, we could naively think that for the metric with interval
(84) the event is on a sphere with area 4πr2, while for (87) the event is instead
on a sphere with area 4πf(r)2. Also, for (84) the horizon seems to be located
at r = 2M , while for (87) the horizon is at f(r) = 2M . This surely doesn’t look
like the good old Schwarzschild radius! Did we, contrary to the uniqueness the-
orems, discover a whole new set of static and spherically symmetric black holes?

Well, no. Only after writing the metric (87) we can interpret the coordinate
r′ = f−1(r) and the corresponding points on the manifold. The two metrics (84)
and (87) must be associated to two diffeomorphic spacetime manifolds, describ-
ing the same physics. This becomes even more clear when we write eqn.(86)
as

ds′2 = −
(

1− 2M

f

)
dt2 +

(
1− 2M

f

)−1

df2 + f2dΩ2 , (89)

with the dependency of f on r implicit. You should compare this interval with
the one of eqn.(39): only after writing down the metric and the corresponding
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interval we can interpret the coordinates, and hence we see that the two metrics
are really equal. So, the moral of the story is:

“Thou shalt not speculate about an event
before the metric is on hand.”

Historically, we can conclude that Einstein was troubled because he didn’t
recognize the metric to be a gauge field under general coordinate transforma-
tions. To paraphrase Anthony Zee in his Nutshell book on page 404: Einstein
was confused because he thought that the metric was analogous to the electric
field ~E and magnetic field ~B instead of the vector potential Aµ. These errors
of thought costed him, in his own words, ’two years of excessively hard work’.
In the end he solved his problem by the so-called point coincidence argument,
which you can find in papers by e.g. Norton. Philosophers of science often
write about the hole argument when it comes down to the so-called ontology
of spacetime, i.e. the question what spacetime really ’is’. Does it exist inde-
pendently from its content, energy and matter? The idea that spacetime exists
independently from its content is called spacetime substantialism, i.e. the idea
that spacetime is an independent ’substance’. The hole-argument shows that
this view is problematic; after all, spacetime is given by a manifold plus a metric
(as we saw, ’no metric, no nothing’), but this metric is a gauge field. What’s
observable is not this metric, but an equivalence class of spacetimes connected
by diffeomorphisms.

11 General covariance and diffeomorphism in-
variance

As you may know, Einstein thought highly of the principle of general covari-
ance. For years it served as his guiding principle for finding his field equa-
tions. It was the German physicist Erich Kretschmann10 who corrected Ein-
stein. Kretschmann claimed that general covariance on its own is a vacuous
requirement for a theory. For example, the Klein-Gordon equation in Special
Relativity, eqn. (12), (

ηµν∂µ∂ν +m2
)

Φ(xν) = 0 , (90)

is defined on Minkowski spacetime with the Minkowski metric η. So this met-
ric provides us with a ’fixed background’, and applying a general coordinate
transformation will change the form of the metric η. Therefore eqn.(90) is
only covariant under the Poincaré transformations (11). But we can promote
this group to the group of general coordinate transformations quite trivially by
replacing the equations of motion (90) with

Rµνρσ = 0 ,(
gµν∇µ∇µ +m2

)
Φ = 0 . (91)

The vanishing Riemann tensor provides us with a general-covariant statement
that spacetime is flat, e.g. gµν = ηµν such that ∇µ = ∂µ. But of course we

10Yes, the guy after which the scalar quantity RµνρσRµνρσ is named.
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can choose whatever coordinate representation we want for the flat spacetime;
we could also choose spherical coordinates, or go to an accelerating observer
by choosing Rindler coordinates. The second equation provides us with the
general covariant Klein-Gordon equation. If we choose inertial observers such
that gµν = ηµν , the second equation of eqn.(91) reduces to eqn.(90). As you can
imagine, the condition Rµνρσ = 0 on spacetime is not trivially provided by an
action principle; you need an extra structure, e.g. an extra field Cµνρσ (playing
the rôle of Lagrange multiplier), such that the action for the Riemann tensor
becomes

S =

∫ √
|g|d4x

(
CµνρσRµνρσ

)
. (92)

The algebraic ’equation of motion’ for this extra field Cµνρσ then gives Rµνρσ =
0. However, the general-covariant form for our equations of motion (91) is not
something to be excited about; after all, it comes at the expense of introducing
a very strange equation of motion for the Riemann tensor, which must be imple-
mented by an auxiliary field Cµνρσ in the action. The theory becomes exciting
however when we replace this ’equation of motion’ Rµνρσ = 0 with the Einstein
field equations (with e.g. the scalar field coupled to the Ricci scalar)!

A covariantization such as eqns.(91) is not limited to general coordinate trans-
formations. We can also do it for other kinds of symmetries. Take e.g. a
complex scalar field Φ obeying the Klein Gordon equation(

ηµν∂µ∂ν +m2
)

Φ = 0 . (93)

This equation of motion is invariant under a global U(1) transformation with
constant parameter Λ,

Φ′ = e−ieΛΦ . (94)

Now imagine you have a deep desire, an irresistable craving, to covariantize
eqn.(93) with respect to local U(1) transformations. This can be done by in-
troducing a connection in the form of a vector field Aµ, and replacing partial
derivatives with the covariant derivative

Dµ = ∂µ + ieAµ . (95)

With this covariant derivative we can covariantize the equations of motion for
the scalar field (93) with respect to local U(1) transformations again rather
trivially:11

Fµν = 2∂[µAν] = 0 ,(
ηµνDµDν +m2

)
Φ = 0, . (96)

These equations of motion are invariant under the local U(1) transformations
on Φ and Aµ in the following way:

A′µ = Aµ + ∂µΛ, Φ′ = e−ieΛΦ , (97)

with Λ = Λ(xρ) now a function of the spacetime coordinates. But just as our
former example this is not a very exciting theory; after all, the equations of

11We use the convention ∂[µAν] = 1
2

(
∂µAν − ∂νAµ

)
.
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motion for the vector potential Aµ read Fµν = 0, rendering the vector potential
pure gauge: Aµ = ∂µf for some function f(xρ). So we can pick different gauge
choices for Aµ, and we could say that our equations of motion for the scalar
field don’t depend on the chosen ’vector potential background’. But up to gauge
transformations the solution for the vector field is simply Aµ = 0 (just as the
solution of eqn(91) for the metric is, up to ’gauge transformations’, gµν = ηµν).
The theory would become interesting if we would promote Aµ from a mere
background structure to a truly dynamical field by introducing dynamics for
the vector potential, i.e. the Maxwell equations of motion ∂µF

µν = jν . These
Maxwell equations are the analogue of the Einstein equations for the system
(91).

Trivial general-covariantization is not limited to Special Relativistic field theo-
ries. To illustrate this, let’s take the (rescaled) diffusion equation for a scalar
field Φ(t, xj):

∂tΦ− δij∂i∂jΦ = 0 . (98)

This equation surely is not covariant with respect to general coordinate trans-
formations; it’s not even covariant with respect to the non-relativistic Galilei
boosts (2)! The time derivative ruins the fun: you can check this by boosting
∂′t = ∂t − vi∂i and δ

′ij∂′i∂
′
j = δij∂i∂j .

12 It is covariant with respect to constant
rotations, constant temporal and spatial translations, and the rescaling

t′ = λ2t, x′i = λxi (99)

for arbitrary constants λ. The sophisticated call this group of rotations, trans-
lations and rescalings the Lifshitz-group. But we can make eqn.(98) general
covariant by adding some extra background structure in the form of a vector
field n:13

∇[µnν] = 0 ,

Rµνρσ = 0 ,

nµ∇µΦ−
(
nµnν + gµν

)
∇µ∇νΦ = 0 . (100)

The second equation enables us to choose Cartesian coordinates such that gµν =
ηµν in which the connection coefficients vanish and ∇µ = ∂µ. The first equation
then becomes ∂[µnν] = 0 which basically states that the components nµ are
those of an exact one-form, i.e.

nµ = ∂µN (101)

for some function N(t, xi). Choosing so-called adapted coordinates N = t (sim-
ilarly to eqn.(54) and figure 6), we get

nµ = δ0
µ = (1, 0, 0, 0), nµ = ηµνnν = (−1, 0, 0, 0) . (102)

12The Schrödinger equation circumvents this problem because the wave function is not a
scalar under Galilei boosts. It transforms instead with an extra phase factor. This follows from
the fact that the covariance group of the Schrödinger equation is given by the Schrödinger
group, which has the so-called Bargmann group as subgroup. This Bargmann group on its turn
is just the Galilei group with a central extension, which describes mass. See e.g. Ballentine’s
textbook on Quantum Mechanics Quantum Mechanics: A modern Development section 3.2−
3.4 for more details.

13The first equation can be derived from an action of the form S =
∫ √
|g|d4x

(
Cµν∇µnν

)
,

where Cµν = C[µν] being antisymmetric.
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The term
(
nµnν + gµν

)
in the third equation of (100) then acts as a spatial

projection operator, becoming effectively the Cartesian metric δij . Because the
diffusion equation contains a first order time derivative but a second order spa-
tial derivative, i.e. time and spare are ’thorn apart’, we need the vector field n
on top of the metric g. With these two extra structures eqn.(100) constitutes
an honest, general covariant version of the non-relativistic diffusion equation.
Kretschmann would probably have been delighted with this example.

But perhaps the best example of the fact that General Relativity is not unique
in being general covariant came with Elie Cartan around 1923 in the form of
so-called Newton-Cartan theory, a general-covariant form of . . . good old New-
tonian gravity, the very theory which Einstein replaced with General Relativity!
Cartan achieved this not by merely adding some ad-hoc extra structure as in
the last two examples. In Newton-Cartan theory Newtonian gravity is truely
described as the curvature of a spacetime, albeit with a non-degenerate metric
structure.14 The theory consists of an ’Einstein field equation’ for the geometry
and a geodesic equation for point particles. For the details you can consult
Misner, Thorne and Wheeler or my PhD-thesis Newton-Cartan theory revisited.
With all these examples the question now rises: what exactly is the meaning of
general covariance in the theory of General Relativity?

Well, on its own it’s not so special, as we saw. But the theory of General
Relativity is not just general covariant, but also background independent. It
doesn’t have extra non-dynamical structure, like the ’fields’ or Lagrange multi-
pliers Cµνρσ and Cµν in the examples above. It only uses the metric to describe
the background geometry, and this metric is a dynamical field in its own right,
obeying the Einstein field equations! Even in Newton-Cartan theory, the whole
metrical structure can, after a lot of gauge-fixing (choosing coordinates), al-
ways be brought back to one single field Φ: the Newtonian potential. After
this gauge-fixing one ends up with the group of Galilei-transformations sup-
plementent with accelerations. As such this whole business of making theories
general-covariant reminds us a bit of the Stückelberg trick of introducing extra
gauge degrees of freedom which later on can be fixed (see e.g. Hinterbichler’s
notes on Massive Gravity, chapter four). General Relativity is unique in the
sense that the general-covariantization only entails the introduction of the dy-
namical metric field. If one approaches General Relativity as a self-interacting
theory of spin-2 fields, in which one adds higher order derivative terms to the
so-called Fierz-Pauli theory, then the gauge transformations (83) pop up as a
consistency condition like the gauge transformations pop up in the quantization
of spin-1 fields. This perfectly shows us that general covariance is not a ’defin-
ing property’ of General Relativity! Also, this is a perfect example of how a
background independent theory can be obtained from a background dependent
theory like Fierz-Pauli theory. I guess this is how a string theorist would hope
to make String Theory explicitly background independent some day.

14Actually, this metric structure was added only later, and not by Cartan. Some people who
developed Cartan’s theory further are Kurt Friedrichs, Georg Dautcourt, Andrzej Trautman
and Jürgen Ehlers.
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So what then is the exact meaning of diffeomorphism invariance?15 The true
marvel of diffeomorphism invariance is revealed in the case where there is no
fixed background structure (like Minkowski spacetime in Quantum Field The-
ory), or ’no prior geometry’. The geometry which is present in General Relativ-
ity is determined by the metric, and this is a truly dynamical field on its own.
The Einstein field equations have different solutions for the metric which are
not related by mere diffeomorphisms. In Newton-Cartan on the other hand, we
also have spacetime geometry which is determined by the matter distribution,
but there we can always choose coordinates such that all of that geometry boils
down to one single field Φ in a Euclidean space. So all the ’different’ solutions
tot the Newton-Cartan field equations are related by mere diffeomorphisms, or
gauge transformations as field theorists would call it. In this ’no priori geome-
try with physically different background solutions’-sense General Relativity (or
its extensions with higher order derivative terms, supersymmetry etc.) is truly
special. Pictorially, if we apply a diffeomorphism to all the dynamical fields in
General Relativity, these fields are shifted with respect to spacetime, but space-
time itself is represented by the (dynamical!) metric and as such ’shifts along
with the ride’. There is no fixed background to hold on to or with respect to
shift your fields; the stage is shifted along. You should compare that to applying
a diffeomorphism on e.g. the scalar field Φ in a Minkowski background. There
the Minkowski metric plays the rôle of a fixed stage, with respect to which all
tensor fields can be shifted. To rephrase Shakespeare in his play As You Like
it :

“All of spacetime is a dynamical stage
and all the tensor fields merely players.”
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