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Preface

It is a challenging but rewarding task to teach general relativity to undergrad-
uates. Time and experience are in short supply. One can rely neither on the
undivided attention of students who are studying many other exciting topics
in the final years of their course, nor on easy familiarity with the classical
tools of applied mathematics and geometry. Not only are the ideas themselves
difficult, but the calculations needed to solve even quite simple problems are
themselves technically challenging for students who have only recently learned
about multivariable calculus and partial differential equations.

For those with a strong background in pure mathematics, there is the temp-
tation to present the theory as an application of differential geometry without
conveying a clear understanding of its detailed connection with physical obser-
vation. At the other extreme, one can focus too exclusively on physical predic-
tion, and ask the audience to take too much of the mathematical argument on
trust.

This book is based on a course given at the Mathematical Institute in Ox-
ford over many years to final-year mathematics students. It is in the tradition
of physical applied mathematics as it is taught in this country, and may, I hope,
be of use elsewhere. It is coloured by the mathematical leaning of our students,
but does not present general relativity as a branch of differential geometry. The
geometric ideas, which are of course central to the understanding of the nature
of gravity, are introduced in parallel with the development of the theory—the
emphasis being on laying bare how one is led to pseudo-Riemannian geometry
through a natural process of reconciliation of special relativity with the equiv-
alence principle. At centre stage are the ‘local inertial coordinates’ set up by
an observer in free-fall, in which special relativity is valid over short times and
distances.

In more practical terms, the book is a sequel, with some overlap in the
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treatment of tensors, to my Special Relativity in this same series. The first
nine chapters cover the material in the Mathematical Institute’s introductory
lectures. Some of the material in the last three chapters is contained in a second
set of lectures that has a more fluid syllabus; the rest I have added to introduce
the theoretical background to contemporary observational tests, in particular
the detection of gravitational waves and the verification of the Lens–Thirring
precession. I have also added some sections (marked *) which can be skipped.

There are a number of very good books on relativity, some classic and
some more recent. I hope that this will be a useful if modest addition to the
collection. I have drawn in particular on the excellent books by Misner, Thorne
and Wheeler [14], Wald [22], and Hughston and Tod [9]. I also acknowledge the
help of my colleagues who have shared the teaching of relativity in Oxford over
the years, particularly Andrew Hodges, Lionel Mason, Roger Penrose, and Paul
Tod. Most of the problems in the book are ones that have been used by us many
times on problem sheets, and their origin is sometimes forgotten. Inasmuch as
they may originally have been adapted from other texts, I apologise for being
unable to cite the original sources. I am grateful for the hospitality of the
Isaac Newton Institute in Cambridge in September 2005. Part of this book was
written there during the programme Global problems in mathematical relativity.

Oxford, February 2006 NMJW
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1
Newtonian Gravity

1.1 ‘Special’ and ‘General’ Relativity

Even before Newton had written down the laws of motion, Galileo had observed
that it is impossible to detect uniform motion in an enclosed space. If you do
experiments in the cabin of a ship on a calm sea—for example, by dripping
water into a bucket or by observing the flight of insects—then you will get the
same results whether the ship is moving uniformly or at rest. The common
motion of the ship and the objects of the experiment has no detectable effect.

The observation has a precise formulation within the framework of classical
dynamics, in the statement that the laws of motion are invariant under Galilean
transformations. Start with a frame of reference in which Newton’s laws are
valid, and use Cartesian coordinates x, y, z to measure the positions, velocities,
and accelerations of moving bodies. Then the assertion is that they remain valid
when we replace x, y, z by the Cartesian coordinates x′, y′, z′ of a new frame of
reference in uniform motion relative to the original one. Two such coordinate
systems are related by a Galilean transformation⎛

⎝x

y

z

⎞
⎠ = H

⎛
⎝x′

y′

z′

⎞
⎠+

⎛
⎝ a + ut

b + vt

c + wt

⎞
⎠ , (1.1)

where H is a constant rotation matrix, t is time, and a, b, c, u, v, w are constants.
The constancy of H implies that the new frame is not rotating relative to the
old; but its origin moves with constant velocity (u, v, w) relative to the old
frame.
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Put another way, there is no absolute standard of rest in classical mechan-
ics. Instead there is a special class of frames of reference, called inertial frames,
in which the laws of motion hold. The coordinate systems of any two inertial
frames are related by a Galilean transformation. No inertial frame is picked out
as having the special status of being at rest, but any two are in uniform motion
relative to each other. This is encapsulated in the principle of relativity, that
in classical mechanics all inertial frames are on an equal footing. No mechan-
ical experiment will detect absolute motion: only relative motion has physical
meaning.

Maxwell’s equations, on the other hand, are not invariant under Galilean
transformations. They appear to single out a particular set of frames as being
‘at rest’: that is, to imply that it should be possible to detect absolute mo-
tion by electromagnetic experiments. This could, of course, be ‘motion relative
to the ether’, the all-pervasive but undetected medium that was supposed to
propagate electromagnetic waves in the original nineteenth century theory. But
Einstein arrived at a more satisfactory resolution of the unwelcome violation
of relativity without appeal to this fictitious substance: that the principle of
relativity does extend to electromagnetism, but that the transformation be-
tween inertial frames is not a Galilean transformation. It is instead the Lorentz
transformation. I assume that the reader is already familiar with this story and
do not repeat it here.

In both the classical world and in Einstein’s special theory of relativity,
inertial frames are characterized by the absence of acceleration and rotation.
Acceleration and angular velocity are absolute. An observer can tell whether
a frame of reference is inertial without reference to any other frame, by seeing
whether Newton’s first law holds. If particles that are not subject to a force
move relative to the frame in straight lines at constant speed, then the frame
is inertial; if they do not, then it is not. More simply, rotation and acceleration
can be ‘felt’.

The situation is less clearcut when gravity enters the picture. Because the
gravitational and inertial masses of a body are the same, it is impossible to
tell the difference, locally, between the effects of acceleration of the frame of
reference and those of gravity. An observer who falls towards the laboratory
floor may be seeing the effects of gravity, or simply, but perhaps less plausibly,
the effects of the acceleration of the laboratory in the upward direction. No
local experiment within the laboratory will distinguish the two possibilities. In
Newtonian gravity, the distinction is a global one: in a nonaccelerating frame,
the apparent gravitational field vanishes at large distances; in an accelerating
frame it takes a nonzero constant value at infinity.

I expand on these remarks below, after a brief review of Newtonian gravita-
tion. But the broad conclusion is already clear: a theory of gravity must address
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the transformation between accelerating frames. Special relativity deals only
with ‘special’ coordinate transformations between the coordinates of inertial
frames. Gravity requires us to look at ‘general’ transformations between frames
in arbitrary relative motion.

1.2 Newton’s Theory

The essential content of Newton’s theory of gravity is contained in two equa-
tions. The first is Poisson’s equation

∇2φ = 4πGρ, (1.2)

where φ is the gravitational potential, ρ is the matter density, and G is the
gravitational constant, with dimensions L3M−1T−2 and value 6.67 × 10−11 in
SI units. With appropriate boundary conditions, it determines the gravitational
potential of a given source. The second equation relates the gravitational field
to the gravitational potential, by

g = −∇φ. (1.3)

It determines the force Mg on a particle of mass M . If the particle is falling
freely with no other forces acting, then the total energy

E = 1
2Mv2 + Mφ

is constant during the motion. It is sum of the kinetic energy 1
2Mv2, where v

is the speed, and the potential energy Mφ. Hence the term ‘potential’.
The accuracy of the theory is remarkable: in the solar system, the only de-

tectable discrepancy between the theoretical and actual motions of the planets
is in the orbit of Mercury, where it amounts to one part in 107.

The two equations contain the inverse square law. By integrating over a
region bounded by a surface S, and containing a total mass m, we obtain
Gauss’s law from the divergence theorem:∫

S

g.dS = −4πGm. (1.4)

If the field is spherically symmetric, for example, if it is that outside a spherical
star, then the magnitude g of g depends only on the distance r from the centre
of the star and the direction of g is towards the centre. By taking S to be a
sphere of radius r, we obtain

g =
Gm

r2
,



4 1. Newtonian Gravity

which is the inverse square law. The corresponding potential is not unique
because we are free to add a constant. If we fix this by taking φ = 0 at infinity,
then φ = −Gm/r and the energy of a particle of mass M falling under the
influence of the star’s gravity is

E =
Mv2

2
− GMm

r
. (1.5)

1.3 Gravity and Relativity

Newton’s theory of gravity is consistent with Galilean relativity. If the equations
(1.2) and (1.3) hold in one inertial frame of reference, then they hold in every
inertial frame. In particular, if we transform from one frame to a second in
uniform motion by replacing the Cartesian coordinates x, y, and z in the first
frame by x′, y′, and z′, where

x = x′, y = y′, z = z′ + vt , (1.6)

then the accelerations of particles are the same in the new frame and in the
old, and

∇φ = ∇′φ ,

where ∇′ is the gradient in the new coordinates. So Poisson’s equation and
the relationship between the gravitational acceleration and the gradient of the
potential are still valid in the second frame.

Thus far there is no problem. The theory can be tested against observa-
tion by using Poisson’s equation to predict the gravitational field g of a given
distribution of matter, and then by verifying that the motion of a particle is
governed by the equation

M r̈ = Mg , (1.7)

where r is its position vector from the origin. We see here, however, the first
hint of difficulty, in the equality of the two Ms on the left- and right-hand
sides. Their cancellation has a consequence which at first sight seems merely
convenient, but which on deeper thought raises a question about the physical
identity of the gravitational field. The implication is that Newton’s theory is
also invariant under another type of transformation, a uniform acceleration. If
instead of (1.6), we put

x = x′, y = y′, z = z′ + 1
2at2 , (1.8)

where a is a constant acceleration, then the accelerations r̈ and r̈′ of a particle
in the two coordinate systems are related by

r̈ = r̈′ + a ,
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where a is a vector of magnitude a in the z direction. Then (1.7) holds in the
new coordinates provided we replace g by g′ = g − a, because we then have

M r̈′ = M(r̈ − a) = M(g − a) = Mg′ .

Equivalently, if we replace φ by φ′ = φ−az when we transform to the accelerat-
ing coordinate system, then (1.3) still holds; and because the second derivatives
of φ and φ′ with respect to the Cartesian coordinates are unchanged, Poisson’s
equation also holds in the new system. Of course there is nothing special about
the z-direction: we draw a similar conclusion whatever the direction of the
acceleration a.

Thus Newton’s theory of gravity also holds in any uniformly accelerating
frame of reference, provided that we subtract the acceleration a from g when
we transform from one frame of reference to another accelerating relative to
it with acceleration a. In particular, we can make the gravitational field at a
point appear to vanish by taking a to be the value of g at the point: then
g′ = 0 in the accelerating coordinate system. That is, gravity is unobservable
at a point in a frame in free-fall, in which massive particles will appear to be
‘weightless’.

The phenomenon is more familiar now than in Newton’s day. Astronauts, for
example, are trained to cope with weightlessness by flying them in an aeroplane
accelerating towards the earth with the acceleration due to gravity; and of
course the weightlessness they experience in space travel is not, as is often
incorrectly reported, because they are ‘beyond the earth’s gravity’, but because,
with rocket motors not firing, their spacecraft is in free-fall—they are falling
with acceleration equal to the local gravitational field g.

So how can one disentangle the ‘true’ gravitational field from the ‘appar-
ent’ one derived from the acceleration of the frame in which measurements are
made? Locally, one cannot: the nonaccelerating frames of reference are distin-
guished from the accelerating ones only by the fact that in a nonaccelerating
frame, the gravitational field falls to zero a long way from the source. The
distinction is a global one.

In fact the gravitational field that we measure on the surface of the earth
is a combination of the ‘true’ field—generated principally by the attraction of
the earth itself—and the effects of acceleration due to the rotation of the earth
and to its orbital motion around the sun. The true field—the field in an inertial
frame—has to be calculated by correcting the apparent gravity for the effects
of acceleration. It is apparent gravity that is measured by weighing an object
of unit mass at rest on the earth’s surface.

In the classical theory, the distinction between real fields and apparent ones
is clear, and the inclusion of the acceleration of the frame in the apparent grav-
itational field is seen as simply a computational device to deal with problems
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in which it is convenient to work in an accelerating frame instead of an inertial
one.

It is when we try to include gravitation in special relativity that the issue
of the reality of the distinction comes to the fore. How is an observer in a grav-
itational field to identify the inertial frames of the special theory of relativity?
They are supposed to be the frames in which Newton’s first law holds:

In the absence of forces, particles move in straight lines at constant
speed.

The difficulty is that gravity affects all matter equally, so there are no com-
pletely free particles. It also affects light, as we show shortly. So it is not possi-
ble simply to adapt the classical definition, that the frame of an observer in a
gravitational field is inertial if it is not accelerating relative to a distant inertial
observer a long way from the source. The two observers would need to exchange
light signals to measure their relative acceleration, and these would be affected
by gravity.

This problem did not arise in electromagnetic theory because there are
charged particles that are affected by an electric field and other neutral particles
that are not. The motion of neutral particles can, in principle, be used to
pick out the inertial frames, and the fields can then be determined from the
behaviour of charged particles; but in gravitation theory, there are no ‘neutral’
particles which we can think of as free of all forces.

1.4 The Equivalence Principle

It is impossible for an observer to distinguish the local effects of gravity and
acceleration only because the Ms on the two sides of the equation of motion
(1.7) cancel. Before we go further, we should pause and ask if this is really
true. Is the cancellation exact for all forms of matter? The answer will have a
profound influence on our view of the physical nature of gravity.

The M on the left-hand side of (1.7) is the inertial mass, which determines
the way in which a body reacts to force in Newton’s second law; that on the
right-hand side is the gravitational mass. It is analogous to charge in electro-
magnetism: it determines the force experienced by a body in a given field. If
they were not always equal, then the acceleration due to gravity would not be
the same for all types of matter.

Their equality was first tested by Galileo, by comparing the periods of pen-
dula with weights made out of different materials. He found no difference. A
more precise confirmation came from the celebrated nineteenth century exper-
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iment by Eötvös, which verified that the two types of mass are equal at least
to one part in 109 [2]. His idea was that if the two masses were not always the
same, then the apparent gravitational field at the earth’s surface should depend
on the composition of a body. If the equality failed, then it should be possible
to find two bodies with equal gravitational mass, but unequal inertial mass.
The attraction of the earth would be the same for both, but the acceleration
corrections would be different. The latter have horizontal components. So if the
two bodies were fixed to opposite ends of a rod suspended at its centre by a thin
wire, then the rod should twist. When the masses are interchanged, it should
twist other way. The effect was likely to be very small, and the experiment very
delicate, but Eötvös found no evidence for any difference in the two types of
mass. More recent experiments, including lunar ranging measurements, have
reinforced the conclusion at the level of one part in 1013; and a planned space
experiment STEP will test it to one part in 1018 [20].

We have good reason, therefore, to accept the (weak) equivalence principle,
which is that the equality is exact and intrinsic to the nature of gravity. Einstein
went further, and based general relativity on the assumed truth of the strong
equivalence principle.

There is no observable distinction between the local effects of gravity
and acceleration.

There is no physical experiment that can be performed within an isolated room
that will reveal whether (i) the room is at rest on the earth’s surface, or (ii) it is
in a spaceship accelerating at the acceleration due to gravity in the direction of
the ceiling in otherwise empty space. In both cases, those inside the room ‘feel’ a
normal terrestrial gravitational field. The principle asserts that all experiments
that do not involve looking at the outside environment will similarly fail to
distinguish the two situations.

1.5 Linearity and Light

The equivalence principle poses a challenge to any attempt to incorporate grav-
itational fields within the framework of special relativity, in the same way as
electromagnetic theory. It undermines the identification of inertial frames: if
the effects of gravity and acceleration are locally indistinguishable, how do you
pick out the nonaccelerating frames of special relativity?

It also raises a more subtle problem. Maxwell’s equations and Poisson’s
equation are linear. If you superimpose two charge distributions or two mass
distributions then the electromagnetic or gravitational field of the combined
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distribution is simply the sum of the individual fields. However, as bodies in-
teract gravitationally, energy is transferred from their gravitational fields to the
bodies themselves, and vice versa. Thus gravitational fields themselves carry
energy, and therefore have inertial mass, a consequence of the fundamental rela-
tivistic equality of mass and energy. But if inertial mass and gravitational mass
are the same, then gravitational fields must themselves generate gravitational
fields. If two large masses are brought close together, then the potential energy
of one in the field of the other must be accounted for in the total energy of the
combined system, and must contribute to the total gravitational field. Simple
addition of the individual fields will not allow this. Thus a relativistic the-
ory of gravity must be based on nonlinear equations. It cannot be founded on
Lorentz-invariant linear equations that look anything like Maxwell’s equations.

A similar problem dogs any naive attempt to combine classical gravitational
theory with electrodynamics. One aspect of this can be seen in the energy con-
servation equation (1.5). For a particle in a gravitational field of the spherical
star to escape to infinity, its speed v must exceed the escape velocity

v =
√

2Gm/r

because E is conserved and v2 must remain nonnegative as r → ∞. The escape
velocity is maximal at the star’s surface, where r takes its lower possible value
in the region outside the star. What if at this point we have v = c, the velocity
of light? This will be the case if the radius of the star is R = 2Gm/c2, the
so-called Schwarzschild radius. Then nothing can escape from the surface. But
what if there is a mirror on the surface and we shine light down from infinity?
It will be reflected at the surface and follow the same path back out again.
Because orbits are reversible in Newtonian gravity, it will be reflected back
to infinity. Clearly Newtonian theory does not provide a consistent picture of
such a ‘black hole’, because it does not allow for a consistent picture of the
interaction of light and gravity. Photons carry energy, and so must be affected
by gravity, something that is at odds with the notion of a universally constant
‘speed of light’. This is intertwined with the previous problem: the constant
‘speed of light’ in special relativity is the speed of light relative to an inertial
frame. We cannot even say what the ‘speed of light’ means in the presence of
gravity without first identifying the inertial frames.

The argument that ‘photons carry energy and must therefore be affected
by gravity’ is made more fully by Bondi’s gedanken experiment: he showed
that if photons were not affected by gravity, then one could in principle build
a perpetual motion machine. He imagined a machine consisting of a series of
buckets attached to a conveyor belt. Each contains a single atom, with those
on the right in an excited state and those on the left in a lower energy state.
As they reach the bottom of the belt, the excited atoms emit light which is
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focused by two curved mirrors onto the atom at the top of the belt; the one at
the bottom falls into the lower state and the one at the top is excited. Because
E = mc2, those on the right, which have more energy, should be heavier. The
force of gravity should therefore keep the belt rotating in perpetuity.

Figure 1.1 Bondi’s perpetuum mobile

The resolution is that photons lose energy as they climb up through the
gravitational field. Because E = �ω, they must therefore be redshifted. This was
confirmed directly by Pound and Rebka in 1959 in a remarkable experiment in
which they measured the shift over the 75 ft height of the tower of the Jefferson
building at Harvard [16]. It is about 3 parts in 1014.

Pound and Rebka’s result is incompatible with special relativity, as can
be seen from the space–time diagram, Figure 1.2. The vertical lines are the
histories of the top and bottom of the tower and the dashed lines at 45o are the
worldlines of photons travelling up the tower. Because the top and bottom of
the tower are at rest relative to each other, their worldlines in special relativity
are parallel, which forces ∆t = ∆t′. So in a special-relativistic theory of gravity,
there cannot be any gravitational redshift.

The interaction of light and gravity has been observed directly, first and
most famously in Eddington’s observations during the 1919 eclipse of the sun,
and more recently and dramatically in the pictures taken by the Hubble space
telescope of distorted images of distant galaxies produced by ‘gravitational
lensing’. Eddington confirmed that the path followed by light reaching the
earth from a star in the direction of the sun is bent by the sun’s gravitational
field. During a total eclipse, one can see the star field in the direction of the
sun and compare the apparent positions of stars in the sky with pictures taken
at night at another time of year when the sun is in a different part of the sky.
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Figure 1.2 Pound and Rebka’s measurement is incompatible with special
relativity

Eddington observed that the apparent positions of the stars close to the edge of
the sun were displaced outwards as the light rays from them were bent inwards
as they passed the sun.1

1.6 The Starting Point

In a gravitational field, it is impossible to identify the global inertial frames of
special relativity by local observation. We can, however, pick out local inertial
frames in which gravity is ‘turned off’: a local inertial frame is one set up by an
observer in free-fall, by using a clock and light signals to assign coordinates to
nearby events. It follows from the equivalence principle that, provided that the
observer makes observations only in a small neighbourhood of a given event
on his worldline, then the usual framework of nongravitational physical theory
should hold good, and the transformation between local inertial coordinate
systems in the neighbourhood will be the same as in special relativity, at least
as an approximation over short times and small distances.

But if we can only work in frames in which gravity is turned off, then how
can we observe gravity? The answer is, by a shift in point of view. Gravity is
not seen in the ‘force’ exerted on a massive body, but rather in the relative
acceleration of nearby local inertial observers. If they make measurements only
over short distances and times, then two nearby observers in spaceships in
1 The history of Eddington’s observation is not quite as straightforward as it is

sometimes presented. See, for example, Peter Coles’ article [5].
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free-fall towards the earth’s gravitational field cannot tell that they are in a
gravitational field and not simply accelerating uniformly in empty space a long
way from any source of gravitation. If, however, they are farther apart, then
there will be a small relative acceleration between them because the earth’s
field is not uniform. From the point of view of someone standing on the earth’s
surface, the relative acceleration is the difference in values of g at their two
locations.

Although an observer in a spaceship in orbit cannot detect gravity by local
measurements, it is not necessary to consider the distant environment to detect
its presence: the observer can distinguish between real and apparent gravity by
tracking the small relative acceleration of nearby objects in free-fall.

So the big step that we make to accommodate the equivalence principle is
to ignore the gross effect of gravity, the ‘acceleration due to gravity’, which is
indistinguishable from the apparent gravity in an accelerating frame, and to
regard as primary the relative acceleration that it produces between nearby
objects in free-fall. The physically central quantity is then not g but rather
its derivatives with respect to the spatial coordinates. These are unchanged
by the transformation (1.8). A mass distribution generates a nonuniform field,
which varies from point to point. A uniform field has no observer-independent
significance: it can be reduced to zero everywhere simultaneously by switching
to an accelerating frame.

With this shift in viewpoint, we can begin to develop a theory of gravity
that incorporates special relativity by taking as our starting point that special
relativity should hold in frames in free-fall. But we can only require that it holds
locally, in time and space, because we expect the effects of gravity to manifest
themselves in small corrections to the Lorentz transformation between the in-
ertial coordinate systems set up by nearby observers: their relative acceleration
will destroy the exact linearity of the transformation.

Starting point. Special relativity holds over short distances and times in
frames in free-fall. Gravity is not a local force field, but shows up in the
small relative acceleration between local inertial frames. In the presence
of gravity, the transformation between local ‘inertial’ coordinates is not
exactly linear.

The idea of curvature comes in here, by analogy with mapmaking. If one makes
maps of the earth’s surface by projecting onto a tangent plane from the centre of
the earth, then overlapping maps will be slightly distorted relative to each other
because of the curvature of the earth. To the first order, the transformation
between the x, y coordinates on two overlapping maps will be linear, but the
curvature of the earth prevents it from being exactly linear.
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Figure 1.3 Relative acceleration in free fall

EXERCISES

1.1. By applying Gauss’s theorem, derive the internal and external grav-
itational potentials for a solid uniform sphere, mass m, radius a.

1.2. By starting with the inverse square law g = −Gmr−3r for the grav-
itational field of a fixed point mass m, obtain the equations of mo-
tion of a test particle in plane polar coordinates r, θ. Show that if
u = Gm/r is expressed as a function of θ, then

1
2 (p2 + u2) = β2u + k,

where β = Gm/J , p = du/dθ, and k and J are constants whose
significance should be explained. Plot the curves traced out in the
p, u-plane by the motion of the test particle for fixed k and varying
values of β in the cases (i) k > 0, (ii) k = 0, and (iii) k < 0, and
interpret them in terms of the motion of the test particle. (That is,
plot the phase portraits: it may help to look at the first chapter of
Jordan and Smith [10]. We repeat this exercise in general relativity.
The phase portraits enable one to see at a glance how the pattern of
relativistic orbits around a black hole differs from the classical case.)

1.3. A pendulum consists of a light rod and a heavy bob. Initially it is
at rest in vertical stable equilibrium. The upper end is then made
to accelerate down a straight line which makes an angle α with the
horizontal with constant acceleration f . Show that in the subsequent
motion, the pendulum oscillates between the vertical and horizontal
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positions if g = f(cos α + sinα). (This problem is very easy if you
apply the equivalence principle and think about the direction of the
apparent gravitational field in an appropriate frame.)

1.4. A hollow plastic ball is held at the bottom of a bucket of water and
then released. As it is released, the bucket is dropped over the edge
of a cliff. What happens to the ball as the bucket falls?

1.5. A version of the following ‘equivalence principle’ device was con-
structed as a birthday present for Albert Einstein [4]. Simplified,
the device consists of a hollow tube with a cup at the top, together
with a metal ball and an elastic string. When the tube is held verti-
cal, the ball can rest in the cup. The ball is attached to one end of
the elastic string, which passes through a hole in the bottom of the
cup, and down the hollow centre of the tube to the bottom, where
its other end is secured. You hold the tube vertical, with your hand
at the bottom, the cup at the top, and with the ball out of the cup,
suspended on its elastic string. The tension in the string is not quite
sufficient to draw the ball back into the cup. The problem is to find
an elegant way to get the ball back into the cup.

Figure 1.4 Einstein’s birthday present



2
Inertial Coordinates and Tensors

Before we take further the development of the relativistic theory of gravity, we
need to establish an appropriate mathematical framework for special relativity.
This must survive in the general theory as the formalism for describing local
observations made by observers in free-fall in a gravitational field. In this chap-
ter, familiarity with special relativity is assumed: the purpose is not to derive
special relativity, but to introduce the language in which it will be extended to
general relativity.

2.1 Lorentz Transformations

The special theory of relativity describes the relationship between physical
observations made by different nonaccelerating observers, in the absence of
gravity.

Each such observer labels events in space–time by four inertial coordinates
t, x, y, z. At the heart of the theory is the description of the operations by
which, in principle, these coordinates are measured. One does not begin, as
in classical dynamics, by taking ‘time’ and ‘distance’ as having absolute and
self-evident meanings derived from physical intuition; rather they are defined
in terms of the operations of measuring them. The key departure from classical
ideas is that the constancy of the velocity of light—its independence of direction
and of the motion of the observer—is built into the definitions, so the conflict
between the principle of relativity and the properties of electromagnetic waves
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is removed at the most fundamental level.
There are different but essentially equivalent ways of formulating the oper-

ational definitions. The one that we keep in mind is used in Bondi’s k-calculus,
and is based on Milne’s ‘radar’ definition [3]. Each inertial observer carries a
clock of standard design, which can be used to measure the time of events at
the observer’s location, and a device for measuring the direction from which
light reaches the observer from a remote source. The device must not rotate,
so the observer can determine whether two photons arriving at different times
came from the same direction. So we note that special relativity requires that it
should be possible to pick out nonaccelerating and nonrotating frames. In the
absence of gravity, this is reasonable: acceleration and rotation can be ‘felt’.

The observer assigns a distance and a time to a distant event E by timing
the emission and and arrival times of photons. If a photon leaves the observer
at time t1, is reflected at the event E, and arrives back at time t2, then the
observer defines the time of t of E and its distance D by

t = 1
2 (t1 + t2), D = 1

2 (t2 − t1)

(see the space–time diagram, Figure 2.1). The observer can determine the di-

t

t

1

2

E

Figure 2.1 Radar definition

rection to E by observing the direction from which the returning photon ar-
rives. Knowing the time, space, and direction of E, the observer can compute
its space–time coordinates t, x, y, z. The result is an inertial coordinate system
t, x, y, z, a term we use somewhat loosely as interchangeable with inertial frame.
Built into the definition is the assumption that light travels with unit velocity
in all directions.1

1 We take c = 1 throughout.
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It follows from the assumptions of special relativity that the coordinate
systems t, x, y, z and t̃, x̃, ỹ, z̃ of two inertial observers are related by an inho-
mogeneous Lorentz transformation⎛

⎜⎜⎝
t

x

y

z

⎞
⎟⎟⎠ = L

⎛
⎜⎜⎝

t̃

x̃

ỹ

z̃

⎞
⎟⎟⎠+ T , (2.1)

where T is a column vector, which shifts the origin of the coordinates, and

L =

⎛
⎜⎜⎝

L0
0 L0

1 L0
2 L0

3

L1
0 L1

1 L1
2 L1

3

L2
0 L2

1 L2
2 L2

3

L3
0 L3

1 L3
2 L3

3

⎞
⎟⎟⎠ (2.2)

is a proper orthochronous Lorentz transformation matrix.2 This means that
L0

0 > 0, det L = 1, and LtgL = g, where

g =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

Each observer reckons that the other in moving in a straight line with constant
speed u, given by L0

0 = 1/
√

1 − u2. The assumptions therefore exclude gravity.

Example 2.1 (Boost)

For a boost along the x-axis, T = 0 and

L =

⎛
⎜⎜⎝

γ γu 0 0
γu γ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (2.3)

where γ = 1/
√

1 − u2. In this case, the two observers have aligned their x-axes,
and each is travelling along the x-axis of the other with speed u. The origin of
both coordinate systems is the event at which they meet.
2 The reason for departing from the standard practice of using lower indices to la-

bel the entries in a matrix will emerge shortly. The qualification ‘inhomogeneous’
indicates that the general transformation involves translation of the space–time
coordinates. We use the term ‘Lorentz transformation’ loosely to cover all transfor-
mations of the form (2.1), with L proper (det L > 0) and orthochronous (L0

0 > 0).
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Example 2.2 (Translation)

Here L is the identity. The two observers are at rest relative to each other, with
their axes aligned, but in different locations and with different settings for their
clocks.

Example 2.3 (Rotation)

If T = 0 and

L =

⎛
⎜⎜⎝

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

⎞
⎟⎟⎠

then the two observers are at rest relative to each other at the same location,
but their spatial axes are related by a rotation about the common z-axis.

Example 2.4 (Null rotation)

A less familiar Lorentz transformation is the null rotation

L =
1
2

⎛
⎜⎜⎝

3 1 2 0
−1 1 −2 0
2 2 2 0
0 0 0 2

⎞
⎟⎟⎠ ,

a combination of boost and rotation.

2.2 Inertial Coordinates

The extension of relativity to encompass gravitation requires the admission
of more general transformations between space–time coordinate systems, in
particular to allow for the relative acceleration of observers in free-fall.

Although we are still within the framework of special relativity, and the
coordinates are still inertial, it will be helpful in making the transition to use
notation in which the space and time coordinates are more explicitly on an
equal footing. We therefore write

t = x0, x = x1, y = x2, and z = x3 .
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So the coordinates are labelled by upper indices. This is important, if unfamil-
iar: a lot of information will be stored by making a distinction between upper
and lower indices.

With this notation, we can write (2.1) in the compact form

xa =
3∑

b=0

La
bx̃

b + T a (a = 0, 1, 2, 3). (2.4)

Note that we keep track of the order of the indices on L. The upper index
a comes first; it labels the rows of the matrix. The lower index b labels the
columns, and comes second. By differentiating, we have that

La
b =

∂xa

∂x̃b

and that
(L−1)a

b =
∂x̃a

∂xb
.

Further notational economies are achieved by the adopting the following con-
ventions and special notations.

The summation and range conventions

When an index is repeated in an expression (a dummy index), a sum over
0,1,2,3 is implied. An index that is not summed is a free index. Any equation
is understood to hold for all possible values of its free indices. To apply the
conventions consistently, an index must never appear more than twice in any
term in an expression, once as an upper index and once as a lower index.

The metric coefficients and the Kronecker delta

We define the quantities gab, gab, and δa
b by

gab = gab =

⎧⎨
⎩

1 a = b = 0
−1 a = b �= 0
0 otherwise

δa
b =

{
1 a = b

0 otherwise
.

Later on, in general relativity, the ‘metric coefficients’ gab and gab will no longer
be constant, nor will the coefficients with upper indices be the same as those
with lower indices. On the other hand, the Kronecker delta δa

b will still be
defined in this way.

The notation is very efficient; without it, calculations in relativity tend to
be overwhelmed by a mass of summation signs. It does, however, have to be
used with care and strict discipline. Free indices—indices for which there is no



20 2. Inertial Coordinates and Tensors

summation—must balance on the two sides of an equation. Excessive repetition
can lead to ambiguous expressions in which it is not possible to restore the
summation signs in a unique way. The following illustrate some of the uses and
pitfalls of the notation.

Example 2.5

We can now omit the summation sign in (2.4). It becomes

xa = La
bx̃

b + T a. (2.5)

Repetition of b implies summation over 0, 1, 2, 3, and the range convention
means that the equation is understood to hold as the free index a runs over
the values 0, 1, 2, 3.

Example 2.6

If two events have coordinates xa and ya in the first system and x̃a and ỹa in
the second system, then

xa − ya = La
b(x̃

b − ỹb) = La
bx̃

b − La
bỹ

b . (2.6)

This illustrates that one must take care about what is meant by a ‘term in
an expression’. In principle, you should multiply out all the brackets before
applying the summation rule; otherwise the threefold repetition of b in the
middle expression could cause confusion. In practice, however, the meaning
is clear, and the mild notational abuse in taking the summation through the
brackets is accepted without causing difficulty.

Example 2.7

The Lorentz condition LtgL = g becomes

Lc
aLd

bgcd = gcd
∂xc

∂x̃a

∂xd

∂x̃b
= gab .

Note that it does not matter in which order one writes the Ls and gs as long as
the indices are ‘wired up’ correctly. In this equation a, b are free, whereas c, d

are dummy indices, like dummy variables in an integral. The sum over c is the
sum in the matrix product Ltg, and the sum over d is the sum in the matrix
product gL.

Similarly, L−1g−1(Lt)−1 = g−1 becomes

gcd ∂x̃a

∂xc

∂x̃b

∂xd
= gab . (2.7)
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Example 2.8

If one combines two coordinate transformations

xa = Ka
bx̃

b, x̃a = La
bx̂

b + T a (2.8)

then the result is
xa = Ka

bL
b
cx̂

c + Ka
bT

b . (2.9)

To avoid ambiguity, it is necessary to change the dummy index in the second
equation before making the substitution. It is then clear that there are two
sums, over b = 0, 1, 2, 3 and over c = 0, 1, 2, 3. If you did not do this, then
you would end up with the ambiguous expression Ka

bL
b
b, which could mean∑3

b=0 Ka
bL

b
b.

Example 2.9

Written in full, the equation AaCa = BaCa is

A0C
0 + A1C

1 + A2C
2 + A3C

3 = B0C
0 + B1C

1 + B2C
2 + B3C

3 .

In the compact form, there is a temptation to cancel Ca to deduce that Aa =
Ca. The full form shows that this temptation must be resisted.

Example 2.10

As a final illustration, we note that

gabg
bc = δc

a. (2.10)

Equivalently, g. .g
. . is the identity matrix; here g. . and g. . are the 4×4 matrices

with, respectively, entries gab and gab. In (2.10), c, a are free indices and b is
a dummy index. The same equation holds in general relativity, but there the
metric coefficients are not constant.

2.3 Four-Vectors

A four-vector in special relativity has four components V 0, V 1, V 2, V 3. Under
the change of coordinates (2.5), they transform by⎛

⎜⎜⎝
V 0

V 1

V 2

V 3

⎞
⎟⎟⎠ = L

⎛
⎜⎜⎝

Ṽ 0

Ṽ 1

Ṽ 2

Ṽ 3

⎞
⎟⎟⎠ , (2.11)
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That is, V a = La
bṼ

b. The three Cartesian components of a vector x in Eu-
clidean space behave in the same way. They change by⎛

⎝x1

x2

x3

⎞
⎠ = H

⎛
⎝ x̃1

x̃2

x̃3

⎞
⎠

when the axes are rotated by an orthogonal matrix H; and they are unchanged
when the origin is translated.

Later on, we need to transform four-vector components under general coor-
dinate transformations. So that we can carry over results from special rel-
ativity with the minimum of adaptation, we restate (2.11) by substituting
La

b = ∂xa/∂x̃b. Then the following definition is equivalent to the transfor-
mation rule in special relativity, and extends directly to the general theory.

Definition 2.11

A four-vector is an object with components V a which transform by

V a =
∂xa

∂x̃b
Ṽ b

under change of inertial coordinates.

The only new feature when we come to allow general coordinate transformations
will arise from the fact that the Jacobian matrix ∂xa/∂x̃b will not be constant,
and so the transformation will vary from event to event: we shall have a distinct
space of four-vectors at each event. Connecting them—that is, deciding when
two vectors at different events are the same—is a central problem. We come
to that later; for the moment all the coordinates are inertial and the Jacobian
matrix is constant.

Example 2.12

The four-velocity: if xa = xa(τ) is the worldline of a particle, parametrized
by proper time τ , then the four-velocity has components V a = dxa/dτ . Under
coordinate change

V a =
dxa

dτ
=

∂xa

∂x̃b

dx̃b

dτ
, (2.12)

so the four-vector transformation rule is a consequence of the chain rule.



2.4 Tensors in Minkowski Space 23

2.4 Tensors in Minkowski Space

Other objects in special relativity have similar transformation rules. Tensor
algebra draws the various rules together into a common framework. The basic
idea is that a set of physical quantities measured by one observer can be put
together as the components of a single tensor in space–time. A four-vector is an
example of a tensor. There is then a standard transformation rule that allows
one to calculate the components in another coordinate system, and hence the
same quantities as measured by a second observer. For example, the energy and
momentum of a particle (in units with c = 1) form the time and space compo-
nents of a four-vector. If they are known in one frame, then the transformation
rule gives their values in another. Two other examples should be familiar.

Example 2.13

The components of the electric field E and the magnetic field B fit together
to form the electromagnetic (EM) field

F =

⎛
⎜⎜⎝

0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

F 00 F 01 F 02 F 03

F 10 F 11 F 12 F 13

F 20 F 21 F 22 F 23

F 30 F 31 F 32 F 33

⎞
⎟⎟⎠ , (2.13)

which transforms by F = LF̃Lt. That is,

F ab = La
cL

b
dF̃

cd =
∂xa

∂x̃c

∂xb

∂x̃d
F̃ cd. (2.14)

Example 2.14

The gradient covector of a function f(xa) of the space–time coordinates has
components ∂af , where ∂a = ∂/∂xa. These transform by the chain rule

∂af =
∂x̃b

∂xa
∂̃bf. (2.15)

Note that it is ∂x̃/∂x on the right-hand side, not ∂x/∂x̃, so this is not the
four-vector transformation rule, but rather a dual form of the rule. Hence the
term ‘covector’.

Definition 2.15

A tensor of type (p, q) is an object that assigns a set of components T a...b
c...d

(p upper indices, q lower indices) to each inertial coordinate system, with the
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transformation rule under change of inertial coordinates

T a...b
c...d =

∂xa

∂x̃e
. . .

∂xb

∂x̃f

∂x̃h

∂xc
. . .

∂x̃k

∂xd
T̃ e...f

h...k.

A tensor can be defined at a single event, or along a curve, or on the whole
of space–time, in which case the components are functions of the coordinates
and we call T a tensor field. If q = 0 then there are only upper indices and the
tensor is said to be contravariant; if p = 0, then there are only lower indices
and the tensor is said to be covariant.

The definition is uncompromisingly pragmatic: a ‘tensor’ is defined in terms
of the transformation rule for its components, leaving hanging the question of
what, exactly, a tensor is. A four-vector can at least be pictured as an arrow in
space–time, by analogy with a vector in space. A tensor with a large number
of indices is not easily pictured as a geometric object, although this can be
done with some ingenuity and willingness to lose contact with the physical
context. More mathematically appealing definitions avoid this unease, but are
not strictly necessary to get to grips with the theory; there is some discussion
in the last chapter of [23]. One needs to become familiar with tensor algebra to
do relativity, and this is best done by practice. Formal definitions and precise
statements of the rules are not always helpful.

There is one serious point here that goes beyond the aesthetics of various
characterizations of a ‘tensor’. It should be checked that the transformation
rule is consistent: that is, that in passing from coordinate system xa to x̃a to
x̂a, one gets the same transformation as by the direct route from xa to x̂a. In
fact, this follows from the product rule for Jacobian matrices

∂xa

∂x̂c
=

∂xa

∂x̃b

∂x̃b

∂x̂c
.

Example 2.16

A four-vector V a is a tensor of type (1, 0), also called a vector or contravariant
vector.

Example 2.17

The gradient covector ∂af is a tensor of type (0, 1). A tensor αa of type (0, 1)
is generally called a covector or covariant vector.
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Example 2.18

The Kronecker delta is a tensor of type (1, 1) because

δc
d

∂xa

∂x̃c

∂x̃d

∂xb
=

∂xa

∂x̃c

∂x̃c

∂xb
= δa

b , (2.16)

by the chain rule.

Example 2.19

The contravariant metric has components gab and is a tensor of type (2, 0), by
(2.7). The covariant metric has components gab and is a tensor of type (0, 2).

Both the Kronecker delta and the metric in Minkowski space are special in that
they have the same components in every inertial frame. For a general tensor,
the components in different frames are not the same.

As with four-vectors, the same definition will stand for general coordinate
transformations, with the same caution that the transformation is then different
at different events. The general strategy will be to identify tensors by their
components in a ‘local inertial frame’ set up by an observer in free-fall, and
then to use the transformation rule to find their components in other coordinate
systems. The Kronecker delta will still have the same components in all systems,
but the metric tensor will not.

2.5 Operations on Tensors

Addition

For S, T of the same type: S + T has components

Sa...b
c...d + T a...b

c...d .

Multiplication by scalars

A scalar at an event is simply a number. A scalar field is a function on space–
time. The value of a scalar is unchanged by coordinate transformations. We can
multiply a tensor T by a scalar f to get a tensor of the same type with com-
ponents fT a...b

c...d. The operations of addition and multiplication by constant
scalars make the space of tensors of type (p, q) into a vector space of dimension
4p+q.
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Tensor product

It S, T are tensors of types (p, q), (r, s), respectively, then the tensor product
is the tensor of type (p + r, q + s) with components Sa...b

c...dT
e...f

g...h. It is
denoted by ST or S ⊗ T .

Differentiation

If T is a tensor field of type (p, q), then ∇T is defined to be the tensor of type
(p, q + 1) with components

∇aT b...c
d...e = ∂aT b...c

d...e, ∂a =
∂

∂xa
.

Under change of inertial coordinates,

∂aT b...
d... =

∂x̃t

∂xa
∂̃t

[
∂xb

∂x̃r
. . .

∂x̃s

∂xd
. . . T̃ r...

s...

]

=
∂x̃t

∂xa

∂xb

∂x̃r
. . .

∂x̃s

∂xd
. . . ∂̃tT̃

r...
s... ,

which is the correct transformation rule for tensor components of type (p, q + 1).

Note that we are still working in the context of special relativity: the calcula-
tion only works because ∂x/∂x̃ is constant. We have to work harder to define
differentiation in curved space–time.

Contraction

If T is of type (p + 1, q + 1), then we can form a tensor S of type (p, q) by
contracting on the first upper index and first lower index of T :

Sb...c
e...f = T ab...c

ae...f .

Note that there is a sum over a. Under change of coordinates

Sb...c
e...f = T ab...c

ae...f

=
∂xa

∂x̃k

∂xb

∂x̃l
. . .

∂xc

∂x̃m

∂x̃s

∂xa

∂x̃t

∂xe
. . .

∂x̃u

∂xf
T̃ kl...m

st...u

=
∂xb

∂x̃l
. . .

∂xc

∂x̃m

∂x̃t

∂xe
. . .

∂x̃u

∂xf
S̃l...m

t...u

because
∂xa

∂x̃k

∂x̃s

∂xa
= δs

k.

One can also contract on other pairs of indices, one upper and one lower.
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Raising and lowering

If α is a covector and Ua = gabαb, then U is a four-vector, formed by tensor
multiplication combined with contraction. We write αa for Ua and call the
operation ‘raising the index’. Raising the index changes the signs of the 1,2,3
components, but leaves the first component unchanged. The reverse operation
is ‘lowering the index’: Va = gabV

b. One similarly lowers and raises indices on
tensors by taking the tensor product with the covariant or contravariant metric
and contracting, for example, T a

b = gbcT
ac. One must be careful to keep track

of the order of the upper and lower indices because T a
b and T a

b are generally
distinct. Do not risk confusion by writing either as T a

b .

Example 2.20

If f is scalar field, then ∇af , where

(∇af) = (∂tf,−∂xf,−∂yf,−∂zf)

is a four-vector field. It is the ‘gradient four-vector’.

Example 2.21

If U and V are four-vectors, then

g(U, V ) = gabU
aV b = UaVa = UaV a.

Example 2.22

Raising one index on gab or lowering one index on gab gives the Kronecker delta
because gabgbc = δa

c .

Example 2.23

Suppose that (Sa) = (1, 0, 0, 0) and (T a) = (1, 1, 0, 0). Then S ⊗ T and T ⊗ S

have respective components

(
SaT b

)
=

⎛
⎜⎜⎝

1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

(
T aSb

)
=

⎛
⎜⎜⎝

1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Note that S ⊗ T �= T ⊗ S, but when written as matrices, as above, the compo-
nents of S ⊗ T and T ⊗ S are related by transposition.
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EXERCISES

2.1. For each of the following, either write out the equation with the
summation signs included explicitly or say in a few words why the
equation is ambiguous or does not make sense.

(i) xa = La
bM

b
cx̂

c .

(ii) xa = Lb
cM

c
dx̂

d .

(iii) δa
b = δa

c δc
dδ

d
b .

(iv) δa
b = δa

c δc
cδ

c
b .

(v) xa = La
bx̂

b + Ma
bx̂

b .

(vi) xa = La
bx̂

b + Ma
cx̂

c .

(vii) xa = La
cx̂

c + M b
cx̂

c .

2.2. Show that for any tensors S, T, U , with T and U of the same type,
S ⊗ (T + U) = S ⊗ T + S ⊗ U .

2.3. The alternating symbol is defined by

εabcd =

⎧⎨
⎩

1 if abcd is an even permutation of 0123
−1 if abcd is an odd permutation of 0123
0 otherwise.

Show that if T,X, Y, Z are four-vectors with T = (1, 0), X = (0,x),
Y = (0,y), and Z = (0,z), then

εabcdT
aXbY cZd = x.(y ∧ z) .

2.4. Let ε have components εabcd in every inertial coordinate system.

(i) Show that ε is a tensor of type (0, 4).

(ii) Write down the values of the components of the contravariant
tensor εabcd.

(iii) Show that εabcdε
abcd = −24 and that εabcdε

abce = −6δe
d.

2.5. Maxwell’s equations are

div E = ε−1
0 ρ

div B = 0

curlB − ∂tE = µ0J

curlE + ∂tB = 0 ,
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where ε0µ0 = 1 in these units in which c = 1. Show that they take
the tensor form

∂aF ab = ε−1
0 Jb and ∂aFbc + ∂bFca + ∂cFab = 0 ,

where J = (ρ,J) is the current four-vector.

2.6. Let F ab be an electromagnetic field tensor. Write down the compo-
nents of the dual tensor F ∗

ab = 1
2εabcdF

cd in terms of the components
of the electric and magnetic fields. By considering the scalars FabF

ab

and FabF
∗ab, show that E .B and E .E − B .B are invariants.

2.7. An observer moves through an electromagnetic field F ab with four-
velocity Ua. Show that UaUa = 1. Show that the observer sees no
magnetic field if F ∗abUb = 0, and show that this equation is equiva-
lent to

B .u = 0 and B − u ∧ E = 0 .

Hence show that there exists a frame in which the magnetic field
vanishes at an event if and only if in every frame E .B = 0 and
B .B < E .E at the event.



3
Energy-Momentum Tensors

Einstein’s general theory has at its heart an equation that, like Poisson’s equa-
tion, relates the gravitational field of a distribution of matter to its energy
density. The quantity that encodes energy density in special relativity is a
symmetric two-index tensor called the energy-momentum tensor. We introduce
it first in the simplest case of a noninteracting distribution of particles, and
then extend the definition to fluids and to electromagnetic fields.

3.1 Dust

Consider a cloud of particles (‘dust’), in which the velocities of the individual
particles vary smoothly from event to event and from time to time. There is
one worldline through each event and the four-velocities of the individual dust
particles make up a four-vector field U . For the moment, we suppose that there
are no external forces or interactions, so each particle moves in a straight line
at constant speed.

We now address the question: what is the energy density seen by an observer
moving through the dust with four-velocity V ? The observer’s worldline is the
dashed line in Figure 3.1. The answer depends on V because

(i) The energy of each individual particle depends on its velocity relative to
the observer; and

(ii) Moving volumes appear to contract.
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U

Figure 3.1 A ‘dust’ cloud

The answer is important in general relativity because it involves the introduc-
tion of the energy-momentum tensor, which is the ‘source term’ in Einstein’s
equations, analogous to the current four-vector in Maxwell’s equations.

Definition 3.1

The rest density ρ is a scalar. It is defined at an event A to be the rest mass
per unit volume measured in a frame in which the particles at A are at rest. If
there are n particles per unit volume in this frame and each has rest mass m,
then ρ = nm.

Consider the particles that occupy a unit volume at an event A in the rest
frame of the particles at A. Suppose that in this frame the observer is moving
along the negative x-axis with speed v. To the observer, each particle at A

appears to have velocity (v, 0, 0) and to have energy

mγ(v) =
m√

1 − v2
.

The particles appear to occupy a volume 1/γ(v) =
√

1 − v2. Therefore the
observer measures the energy density to be γ(v)2ρ.

Definition 3.2

The energy-momentum tensor of the dust cloud is the tensor field with compo-
nents T ab = ρUaU b. It is a tensor of type (2, 0) because it is the tensor product
of two four-vectors, multiplied by a scalar.
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x

y

z

v

Figure 3.2 The transformation of density

Proposition 3.3

The energy density measured by an observer moving through the cloud with
four-velocity V is ρV = TabV

aV b.

Proof

In the rest frame of the observer,

(V a) = (1, 0, 0, 0) (Ua) = γ(v)(1, v, 0, 0).

Therefore TabV
aV b = ρ(UaV a)2 = ργ(v)2.

Thus the 00-component of the energy-momentum tensor in the observer’s
rest frame is the energy density. What about the other components? Consider
the four-vector T abVb. Its temporal component in the observer’s frame is ρV . Its
spatial part is f = ρV u, where u is the particle velocity relative to the observer.
This represents the energy flow. The particles that cross a small surface element
dS with normal n in the observer’s time δt occupy a volume u.n dS δt after
they cross. The total energy of these particles as measured by the observer
is therefore f .n dS. So if Ω is a fixed volume in the observer’s frame, with
boundary surface ∂Ω and outward pointing normal, then conservation of energy
requires that

d
dt

∫
Ω

ρV dV +
∫

∂Ω

f .dS = 0 . (3.1)

The surface integral represents the total rate at which energy is flowing out of
Ω. By taking the time derivative under the first integral sign and by applying
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the divergence theorem to the surface integral, we get∫
Ω

(
∂ρV

∂t
+ div f

)
dV = 0 .

Because this holds for any fixed volume, we have the continuity equation

∂ρV

∂t
+ div f = 0 . (3.2)

Equivalently,
∇a(T abVb) = 0 .

Because V is constant and the second equation holds for any observer, it follows
that

∇aT ab = 0 . (3.3)

Thus we see that conservation of energy for all inertial observers is equivalent
to (3.3). If the dust particles are moving slowly relative to the observer, then
ρV ∼ ρ and (3.2) reduces to the classical continuity equation of fluid dynamics.

We can also deduce the equation of motion of the individual dust particles
from the conservation law (3.3). If we substitute T ab = ρUaU b, then we obtain

ρUa∇aU b = −U b∇a(ρUa) .

So Ua∇aU b is parallel to U b. On the other hand, UbU
b = 1, and so

0 = Ua∇a(U bUb) = 2UbU
a∇aU b ,

which implies that Ua∇aU b is also orthogonal to U b. Consequently

dU b

dτ
= Ua∇aU b = 0 ,

where τ is the proper time along a particle worldline. In other words, Ua is
constant along each particle worldline, and so the individual particles move in
straight lines at constant speeds. This takes us back to where we started, but
the point is that the equation of motion is determined by the requirement that
energy measured by any inertial observer should be conserved.
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3.2 Fluids

The definition extends to a general relativistic fluid. We picture a fluid as a
large number of superimposed streams of particles with different velocities.
Each stream has its own energy-momentum tensor, and their sum T ab encodes
the energy density for the whole fluid. An inertial observer with four-velocity
V measures energy density ρV = T abVaVb, and sees an energy flow given by the
spatial part of the four-vector T abVb. The different streams interact through
collisions, but energy is conserved in the rest frame of an inertial observer, so
the same energy conservation argument as before, applied to a fixed volume in
an observer’s frame, gives ∇a(T abVb) = 0. This holds for the four-velocity V a

of any observer, so as before we have

∇aT ab = 0 .

How does such a fluid acquire a well-defined bulk velocity? It is through the
existence of a frame at each event in which the energy density is minimal.

The energy density measured at some event by an observer moving with
velocity v through a stream of particles with velocity u and rest density ρ is

ρUaU bVaVb = ργ(u)γ(v)(1 − u.v)2 .

As v → 1, therefore, the observed density tends to infinity. Because each indi-
vidual stream has positive density, the same must be true of the whole fluid.
So if we put V = γ(v)(1,v), and regard

ρV = T abVaVb

as a function of v, then ρV is positive whenever |v| < 1 and ρV → ∞ as |v| → 1.
Consequently ρV must achieve its minimum for some value of w of v.

Consider the corresponding four-velocity W a. By the following argument,
we can characterize W a as the unique timelike eigenvector of T ab. Let Xa be a
four-vector orthogonal to W a; that is, W aXa = 0. Suppose that the components
of Xa are small. If we ignore quadratic terms in these small quantities, then
W a + Xa is also a four-velocity because

(W a + Xa)(Wa + Xa) = W aWa + 2W aXa = 1 .

With the same approximation, we also have

T ab(Wa + Xa)(Wb + Xb) = T abWaWb + 2T abWaXb

≥ T abWaWb .

Therefore
T abWaXb ≥ 0
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for small Xa. But this must still hold if we replace Xa by −Xa, so we deduce
that

T abWaXb = 0 .

Because this is true for any Xa orthogonal to W a, it follows that T abWa is
parallel to W b, and thus that W b is an eigenvector of the energy-momentum
tensor. That is,

T abWa = ρW b

for some scalar ρ. By contracting with Wb, we see that ρ is the minimum
possible value of ρV .

Definition 3.4

The four-velocity W a that satisfies the eigenvector equation T abWa = ρW b at
some event is the rest-velocity of the fluid at the event, and the corresponding
eigenvalue ρ is the rest density.

Exercise 3.1

Show that the rest-velocity at an event is unique.

A rest frame of the fluid at an event is a frame in which (W a) = (1, 0, 0, 0) and
in which the components of the matrix (T ab) can be written in block form

(T ab) =
(

ρ 0
0 σ

)
,

where σ is a 3 × 3 matrix. In general, the σ has three distinct eigenvectors
and these pick out three special directions in the fluid. A perfect fluid is one for
which there are no special directions and therefore one for which σ is a multiple
of the identity. Such a fluid is isotropic: it looks the same in every direction at
the event. For an isotropic fluid, we have

T ab = ρW aW b − p(gab − W aW b)

for some scalar field p. If we expand the conservation law ∇aT ab = 0 in a
general inertial coordinate system, then this time we obtain

W a∇aρ + (ρ + p)∇aW a = 0

and
(ρ + p)W a∇aW b = (gab − W aW b)∇ap .

If all the individual particle streams are moving with velocity much less than
that of light, then the fluid velocity w will be small and p will be very much
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less than ρ. We can approximate four-velocity of the fluid by (1,w), and ignore
quadratic terms w2 and pw. Our conservation equations then reduce to

∂tρ + ∇ . (ρw) = 0, ρ ∂tw + ρ(w .∇)w = −∇p ,

which are the continuity equation and Euler equation of nonrelativistic fluid
dynamics. Thus in general we should interpret p as the pressure of the perfect
fluid.

3.3 Electromagnetic Energy-Momentum Tensor

A second extension takes account of electromagnetic forces and of the energy
carried by an electromagnetic field. Let us return to the case of a single stream
of particles, but suppose now that the particles are charged, and that they
interact electromagnetically, but are not subject to other external forces. If
each particle has rest mass m and charge e, then the current four-vector at
an event is J = neU , where n is the number of particles per unit volume in
the rest frame of the particles at the event and V is their four-velocity. It has
spatial part J = neγ(u)u.

In the coordinates of an inertial observer with four-velocity V a, the motion
of each particle is governed by the Lorentz force law

m
dV a

dτ
= eF abVb .

Hence it satisfies
d
dt

(
mγ(u)

)
= eE .u .

It follows that between t and t + δt, the energy mγ(u) of the particle changes
by eE .u δt. There are nγ(u) particles per unit volume in the observer’s frame.
So the conservation equation for a volume Ω is now

d
dt

∫
Ω

ρV dV +
∫

∂Ω

f .dS =
∫

Ω

neγ(u)E .u dV .

But the right-hand side is∫
Ω

E .J dV =
∫

Ω

1
µ0

E .

(
curlB − ∂E

∂t

)
dV

by Maxwell’s equations; see Exercise 2.5. Moreover

E . curlB = div (B ∧ E) + B . curlE = div (B ∧ E) − B .
∂B

∂t
.
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Hence
d
dt

∫
Ω

(
ρV + 1

2ε0(E .E + B .B)
)
dV +

∫
∂Ω

(f + ε0E ∧ B) . dS = 0 ,

where ρV and f are as in (3.1). It makes sense, therefore, to identify the quan-
tity1

ε0
2

E .E +
1

2µ0
B .B

with the energy density of the electromagnetic field and to identify the vector

E ∧ B

µ0

with the energy flux. This vector is called the Poynting vector. The energy
density and the Poynting vector are the temporal and spatial components of
τabVb, where

τab = ε0(F acF b
c + 1

4gabFcdF
cd)

is the electromagnetic energy-momentum tensor. Our conservation equation is
now

∇a(ρUaU b + τab) = 0 .

Neither the energy-momentum tensor of the particles nor that of the electro-
magnetic field is conserved on its own; but the combination is, as common sense
and physical law demand.

EXERCISES

3.2. Show that the electromagnetic energy momentum tensor is symmet-
ric.

3.3. Let τab be the energy-momentum tensor of an electromagnetic field
F . Show that

τab = 1
2ε0
(
F a

cF
cb + F ∗a

cF
∗cb
)

.

3.4. Show that, except when FabF
ab = FabF

∗ab = 0, there are two
independent real null four-vectors L such that KabLb = λLa for
some λ. They are called the principal null vectors. Explain why
this implies that the electromagnetic field does not have a unique
‘bulk velocity’. How many principal null vectors are there when
FabF

ab = FabF
∗ab = 0? How are they related to the Poynting vec-

tor?
1 In units in which c = 1, we have µ0 = ε−1

0 , so one constant is redundant. We use
both here simply to bring the definitions closer to their conventional form.
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3.5. Show that for a perfect fluid, the conservation equation ∇aT ab = 0
is equivalent to

∇a(ρW a)+ p∇aW a = 0, (ρ+p)
dW a

dτ
+(W aW b − gab)∇bp = 0 ,

where τ is the proper time along the worldlines of the fluid elements.
Why does ∇a(ρW a) not vanish?



4
Curved Space–Time

We are now ready to make the transition from Minkowski’s space–time of spe-
cial relativity to the curved space–time of general relativity. We build on two
foundations: first, the equivalence principle, the local equivalence of the effects
of acceleration and gravity, and second, the well-established apparatus of spe-
cial relativity theory, applied over short times and small distances in free-fall.
Our starting point is the following.

(GR1) Special relativity holds over small distances and short times in
frames in free-fall, that is, in local inertial frames. In such frames we can
set up local inertial coordinates as in Minkowski space.

(GR2) Gravity appears as the relative acceleration of nearby local inertial
frames.

4.1 Local Inertial Frames

In special relativity, an inertial observer sets up an inertial coordinate sys-
tem t, x, y, z by using Milne’s radar method and by measuring the direction of
propagation of light arriving from events at other locations. Two such systems
are related by an inhomogeneous Lorentz transformation. If A and A′ are two
events with respective coordinates t, x, y, z and t′, x′, y′, z′ then the quantity

σ(A,A′) = (t′ − t)2 − (x′ − x)2 − (y′ − y)2 − (z′ − z)2 (4.1)
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is independent of the choice of coordinate system. It is called the world function;
it depends only on the two events A, A′.

If σ(A,A′) is positive, then it is the square of the time interval from A

to A′ measured in a frame in which A and A′ happen in the same place. If
it is negative, then it is minus the square of the distance between A and A′,
measured in a frame in which they happen at the same time. If it is zero, then
A and A′ lie on the worldline of a photon.

In the presence of gravity, an observer in free-fall with worldline ω can set
up local inertial coordinates in the same way, taking an event on ω as origin.
The times and distances of other events are measured by the radar method,
and the events’ coordinates are found by adding information about direction
of travel of the returning light signals. By GR1, all observers in free-fall will
measure the same value of the world function for two nearby events. So if A is
the origin and B is a nearby event with coordinates dt, dx, dy, and dz, then

ds2 = dt2 − dx2 − dy2 − dz2

is the same in all local inertial coordinate systems with origin A provided that
we ignore third-order terms in the small quantities dt, dx,dy, dz. Although it
is conventional to write it as a square, ds2 can be positive, negative, or zero. It
has the same interpretation as in special relativity.

Timelike separation. If ds2 > 0, then ds is the time from A to B on a clock
travelling between the two events in free-fall.

Null separation. If ds2 = 0, then A and B lie on the worldline of a photon.

Spacelike separation. If ds2 < 0, then ds2 = −D2, where D is the dis-
tance from A to B measured in a frame in free-fall in which A and B are
simultaneous.

The change from special relativity is that the interpretation of ds2 is now an
approximation, valid when A is the origin of the coordinate system set up by
the free-falling observer and B is nearby, and valid only to the extent that the
coordinates of B can be treated as small quantities.

A second application of GR1 gives the equations of motion of particles
in free-fall, either massive particles moving at less than the velocity of light
or photons moving at the velocity of light. Their worldlines are defined by
expressing t, x, y, z as functions of a parameter τ . In special relativity, τ is
proper time in the case of a particle with mass—that is, the time measured
by a clock moving with the particle—or an affine parameter in the case of a
photon. Either way,

d2t

dτ2
=

d2x

dτ2
=

d2y

dτ2
=

d2z

dτ2
= 0 . (4.2)



4.1 Local Inertial Frames 43

A

TL

SL

Null

Figure 4.1 The displacement from A to B in the three cases

That is, the worldline is a straight line in space–time and the parameter is
linear. In the presence of gravity, these equations must still hold at the origin
of a local inertial coordinate system, but we do not expect them to hold at
other events because the particle will acquire a small acceleration relative to
the observer as it travels away from the origin. Thus we have the following.

Motion in free-fall. In free-fall, the motion of a particle satisfies (4.2)
at any event A on the worldline in any local inertial coordinate system
with origin A. In the case of a massive particle, τ is the time measured
by a clock falling with the particle. In the case of a photon τ is an
affine parameter.

We show that this is enough to determine the motion in general coordinates.
By ‘free-fall’ is meant ‘subject to no forces other than gravity’.

The coordinates t, x, y, z can only be used in the immediate neighbourhood
of the origin. If we want to see what is happening at other events, then we must
use a different coordinate system. So we now translate our conclusions thus far
into general coordinates. As always, we want to keep in mind the analogy with
mapmaking. The local inertial coordinates are analogous to the x, y coordinates
on a large-scale map of a small area of the earth’s surface. In that context, the
distance between two nearby points is

ds2 = dx2 + dy2 ,

where dx and dy are the differences in their x coordinates and in their y coor-
dinates. Straight lines on the surface correspond to straight lines on the map,
and there is a constant scale. But we need a different map for a different re-
gion: because of the curvature of the earth, we cannot construct a map of a
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large region with these properties. On a global scale, we must use a projection
that distorts the local geometry in some way, and we can no longer compute
the distance between two widely separated points by measuring their x and y

coordinates on the map, and by applying Pythagoras’s theorem.
Local inertial coordinate systems are analogous to large-scale maps. They

can only be used to explore the immediate neighbourhood of an event. One can
study a larger region of space–time by using a general coordinate system, but
at the price of having a more complicated formula for the time and distance
separation between nearby events. The geometry no longer looks like the flat
geometry of Minkowski space.

A general coordinate system xa on space–time is simply a labelling of events
by four parameters. We should not think of the coordinates as having a direct
interpretation in terms of the measurement of physical quantities. They are
simply labels. Near the origin A of a local inertial coordinate system, t, x, y, z

are functions of the xas, so

dt =
∂t

∂xa
dxa + second-order terms in dx

and so on. If we ignore third-order terms in the dxas, then

ds2 = gabdxadxb (4.3)

at A, where

gab =
∂t

∂xa

∂t

∂xb
− ∂x

∂xa

∂x

∂xb
− ∂y

∂xa

∂y

∂xb
− ∂z

∂xa

∂z

∂xb
. (4.4)

In an extension of our previous terminology, the coefficients gab = gba are called
the metric coefficients. Because ds2 is given by the same expression in all local
inertial coordinate systems, the value of the right-hand side of (4.4) at A is
independent of the choice of the local inertial coordinates t, x, y, z at A.

We can do a similar transformation to local inertial coordinates near any
other event. So (4.3) holds throughout the region covered by the coordinates
xa. However, in general the metric coefficients gab vary from event to event.
In contrast to the special theory, they are now dependent on the choice of
space–time coordinates xa.

If we replace the xas by new coordinates x̃a, then

ds2 = gabdxadxb =
(

gcd
∂xc

∂x̃a

∂xd

∂x̃b

)
dx̃adx̃b.

So in the new coordinate system the metric coefficients are

g̃ab = gcd
∂xc

∂x̃a

∂xd

∂x̃b
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or in matrix notation

g̃ = J tgJ where J =
(

∂xa

∂x̃b

)
.

A general real symmetric matrix can always be reduced to a diagonal matrix
with diagonal entries ±1 by a transformation g 
→ J tgJ for some matrix J .
The diagonal form is determined by the signature, that is, by the signs of the
eigenvalues. In the case of the matrix g = (gab) of metric coefficients, we know
that we can reduce g to the diagonal matrix with diagonal entries 1,−1,−1,−1
at any one event by transforming to local inertial coordinates at that event.
Therefore the matrix g has one positive and three negative eigenvalues, which
is usually expressed by saying that the metric has signature + −−−.

To summarize, in an arbitrary coordinate system, if dxa is the coordinate
separation between two nearby events A and B, then, to the second order in
dxa,

ds2 = gabdxadxb ,

where the metric coefficients are evaluated at A and ds has the interpretation
above. The coefficients gab have the following properties.

(MC1) They are smooth functions of the coordinates xa.

(MC2) They are symmetric gab = gba.

(MC3) The matrix (gab) has signature + −−− at every event.

(MC4) The metric coefficients transform under general coordinate trans-
formations by

g̃ab = gcd
∂xc

∂x̃a

∂xd

∂x̃b
.

Example 4.1

Suppose that x0 = t, x1 = r, x2 = θ, x3 = ϕ, and

ds2 = dt2 − dr2 − r2dθ2 − r2 sin2 θdϕ2. (4.5)

Then we can reduce ds2 to the form dt2 − dx2 − dy2 − dz2 by the coordinate
change t = t, x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ. So this is just the
metric of special relativity in a noninertial coordinate system (spherical polars).
We cannot reduce a general metric to the Minkowski form by a coordinate
transformation. However, we can do it up to the second order in the coordinates
at any one event, as we show in the next section.
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It is conventional to specify the metric coefficients in general coordinates
by giving an (infinitesimal) expression, referred to as the metric, for ds2 in the
form

ds2 = gabdxadxb .

For example, for Minkowski space in spherical polar coordinates, we read off
from (4.5) that g00 = 1 and g33 = −r2 sin2 θ.

4.2 Existence of Local Inertial Coordinates

The central idea of general relativity is that a gravitational field can be de-
scribed by a metric

ds2 = gab dxa dxb ,

where the metric coefficients satisfy (MC1)–(MC4). In order to understand
how such a metric can carry nontrivial information about gravity and how its
coefficients can be interpreted in terms of observations made in free-fall, we
explore the recovery from gab of local inertial coordinates. We show that these
can always be found at any event in space-time, but that a general metric
cannot be reduced globally to the Minkowski form by a change of coordinates.
A general metric is not simply the metric of Minkowski space disguised by a
coordinate transformation, as in the last example.

The recovery of local inertial coordinates begins with the following propo-
sition.

Proposition 4.2

Let gab be a set of metric coefficients such that (MC1)–(MC4) hold and let A

be the event xa = 0. Then there exists a coordinate system x̃a such that x̃a = 0
and ∂̃cg̃ab = 0 at A.

Proof

Define new coordinates x̃a by xa = x̃a− 1
2Γ a

bcx̃
bx̃c, where the Γ a

bcs are constants
such that Γ a

bc = Γ a
cb. Let hab and kcab denote, respectively, the values of gab

and ∂cgab at the origin xa = 0. Then, by Taylor’s theorem,

gab = hab + xckcab + O(2),

where ‘O(2)’ denotes quadratic and higher-order terms in the xas. It follows
that

g̃ab = gcd
∂xc

∂x̃a

∂xd

∂x̃b
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= (hcd + xmkmcd)(δc
a − Γ c

aex̃
e)(δd

b − Γ d
bf x̃f ) + O(2)

= hab + x̃c(kcab − Γabc − Γbac) + O(2),

where Γabc = hadΓ
d
bc. We have used xa = x̃a + O(2), as well as changing the

labelling of the dummy indices. We want to choose Γabc = Γacb so that

kcab = Γabc + Γbac .

By permuting the indices, we would then also have

kbca = Γcab + Γacb

kabc = Γbca + Γcba .

By adding the first two of these and subtracting the third, we would then have
that

Γabc = 1
2 (kcab + kbca − kabc) ,

and hence that
Γ a

bc = 1
2had(kcdb + kbcd − kdbc) ,

where habhbc = δa
c ; that is, (hab) is the inverse of the matrix (hab). Conversely,

if we define Γ a
bc in this way, then we get

kcab − Γabc − Γbac

= kcab − 1
2 (kcab + kbca − kabc + kcba + kacb − kbac)

= 0,

because kabc = kacb.

Note that
Γ a

bc = 1
2gad(∂cgdb + ∂bgdc − ∂dgbc) ,

evaluated at xa = 0, where the gabs are the inverse or contravariant metric
coefficients, defined by gabgbc = δa

c . The quantities Γ a
bc are called the Christoffel

symbols. We meet them again in the definition of the Levi-Civita connection.

Proposition 4.3

Let A be an event. Suppose that we have two coordinate systems xa and x̃a

such that xa = x̃a = 0 and ∂agbc = ∂̃ag̃bc = 0 at A. Then there exist constants
Ma

b such that xa = Ma
bx̃

b + O(3).

Here ‘O(3)’ denotes third-order terms in x. The proposition says that the trans-
formation is linear at A up to the second order in x; that is, the Taylor expansion
about A of xa in powers x̃a has no second-order terms.
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Proof

We have to show that ∂2xa/∂x̃b∂x̃c = 0 at A. Now at all events,

g̃ab = gcd
∂xc

∂x̃a

∂xd

∂x̃b
.

Therefore

∂̃eg̃ab =
∂xf

∂x̃e
∂fgcd

∂xc

∂x̃a

∂xd

∂x̃b
+ gcd

∂2xc

∂x̃a∂x̃e

∂xd

∂x̃b
+ gcd

∂xc

∂x̃a

∂2xd

∂x̃b∂x̃e
. (4.6)

Note that the second two terms on the right-hand side differ by the interchange
of a and b. Put

Labe = gcd
∂xc

∂x̃a

∂2xd

∂x̃b∂x̃e
.

Then Labe = Laeb. Because the partial derivatives of gab and of g̃ab vanish at
A, eqn (4.6) gives

Lbae + Labe = 0

Leba + Lbea = 0

Laeb + Leab = 0 .

By adding the first and third, and subtracting the second, we obtain Labe = 0.
Hence

∂2xq

∂x̃b∂x̃e
=

∂x̃a

∂xp
gpqgcd

∂xc

∂x̃a

∂2xd

∂x̃b∂x̃e
=

∂x̃a

∂xp
gpqLabe = 0 ,

which completes the proof.

Proposition 4.4 (Existence of local inertial coordinates)

Let gab(x) be a set of metric coefficients satisfying (MC1)–(MC4) and let A be
an event. Then there exists a coordinate system xa such that xa = 0 at A and

(
gab(x)

)
=

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠+ O(2)

as xa → 0. The system is unique up to coordinate transformations of the form

xa = La
bx̃

b + O(3) ,

where L = (La
b) is a Lorentz transformation matrix.
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Proof

Choose an initial coordinate system such that ∂cgab = 0 and xa = 0 at A. Let
h denote the matrix of metric coefficients at xa = 0. Because h has signature
+ −−−, we can find a matrix J = (Ja

b) such that

J thJ =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

Now make a linear coordinate change by replacing xa by Ja
bx

b to get the exis-
tence statement. The uniqueness statement follows from the previous proposi-
tion.

The coordinates at A in the last proposition are interpreted as local inertial
coordinates of an observer in free-fall at A. For special metrics we can reduce
gab to the diagonal form diag (1,−1,−1,−1) everywhere. We show that this
happens when the gravitational field vanishes. For a general metric, however,
such a coordinate transformation does not exist. To summarize:

(1) A gravitational field is described by a general set of metric coefficients
satisfying (MC1)–(MC4), which encode the temporal and spatial separation
of nearby events.

(2) The local inertial coordinates set up by an observer in free-fall at an
event A are the coordinates xa such that xa = 0 at A and

(gab) =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠+ O(2)

as xa → 0. In local inertial coordinates, special relativity holds over small
times and distances.

4.3 Particle Motion

In a local inertial coordinate system at an event A, ∂cgab = 0 at A. The
worldlines of massive free particles—particles in free-fall—satisfy

ẍa = 0 (4.7)

at A, where the dot is differentiation with respect to proper time τ . This equa-
tion determines their motion, but not in a very practical way because we have to
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use a different coordinate system at each event. To find the particle worldlines
in a gravitational field, we need first to re-express (4.7) in a general coordinate
system. To do this, we use the machinery of analytical dynamics, which is well
suited to the purpose of writing down equations of motion in classical mechan-
ics in general coordinate systems. Our strategy is to find a Lagrangian and to
use a result from classical mechanics about the transformation of Lagrange’s
equations under change of coordinates.

Invariance of Lagrange’s equations

The equations of motion of a classical dynamical system with time-independent
Lagrangian L(qa, q̇a) are Lagrange’s equations,

d
dt

(
∂L

∂q̇a

)
− ∂L

∂qa
= 0 ,

where the qas are generalized coordinates. The equations in a new coordinate
system q̃a can be found by substituting

qa = qa(q̃), q̇a =
∂qa

∂q̃b

˙̃qb

into L and by writing down Lagrange’s equations in the new coordinates. This
is the sense in which Lagrange’s equations are invariant under coordinate trans-
formations.

The result has deep physical significance, but as a mathematical proposition,
it is simply a statement about how a particular system of second-order differ-
ential equations changes when new dependent variables are substituted for the
originals. If a system of ordinary differential equations for the functions qa(t)
of a variable t can be written in the form of Lagrange’s equations, then the
transformed equations are of the same form, with the new Lagrangian found
from the original by expressing qa and q̇a in terms of q̃a and ˙̃qa.

So we can take the result out of its original physical context and use it to
write the equations of motion of a freely falling particle in a general coordinate
system. In the new context, we put the space–time coordinates xa in the role
of the qas and the proper time τ in the role of time in classical mechanics. For
the Lagrangian we take L = 1

2gabẋ
aẋb, where the dot denotes differentiation

with respect to proper time τ . The corresponding Lagrange equations are

d
dτ

(
∂L

∂ẋa

)
− ∂L

∂xa
= 0 .

They are called the geodesic equations, and the solution curves in space–time
are called geodesics.
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Proposition 4.5

The geodesic equations are equivalent to

ẍa + Γ a
bcẋ

bẋc = 0 ,

where the Γ a
bcs are the Christoffel symbols. The equations are invariant: that is,

they take the same form in every coordinate system. In local inertial coordinates
at an event, they reduce to ẍa = 0 at the event.

Proof

To establish the first statement, we write out the geodesic equations explicitly.
They are

d
dτ

(
gabẋ

b
)− 1

2 (∂agbc)ẋbẋc = 0.

That is,
gdbẍ

b + 1
2 ẋbẋc(2∂cgdb − ∂dgbc) = 0 ,

by changing a to d and by using ġbc = ẋc∂cgab. By multiplying by the inverse
metric gad and by using the symmetry under interchange of the dummy indices
b and c, we can rewrite this as

ẍa + 1
2 ẋbẋcgad(∂bgdc + ∂cgbd − ∂dgbc) = 0 .

In other words,
ẍa + Γ a

bcẋ
bẋc = 0 ,

where
Γ a

bc = 1
2gad(∂bgdc + ∂cgbd − ∂dgbc). (4.8)

These are the Christoffel symbols or connection coefficients, which have already
appeared on page 47.

The invariance of the equations follows from the invariance of L. From
(MC3),

g̃ab
˙̃xa ˙̃xb = g̃ab

∂x̃a

∂xc

∂x̃b

∂xd
ẋcẋd = gcdẋ

cẋd .

Thus the geodesic equations take the same form in every coordinate system;
and in local inertial coordinates at an event they reduce to the equations of
motion of a free-falling particle. They hold in a special coordinate system at
each event; therefore they hold in every coordinate system at every event and
so determine the motion of the particle in any coordinate system.

Because the Christoffel symbols vanish at an event A in local inertial co-
ordinates at A, the equations reduce to ẍa = 0 in these coordinates at the
event.
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The motion of a particle in free-fall is therefore given by the geodesic equations
in local inertial coordinates at an event, and hence in any coordinates. We are
led to the following.

The geodesic hypothesis

The worldlines of particles in free-fall satisfy the geodesic equations, with τ the
proper time.

It follows from the geodesic equations that L is constant. This can be shown
by direct calculation, or by appealing to the fact that L is a homogeneous
quadratic in the ẋas and has no explicit dependence on proper time.1 In fact,
on a particle worldline parametrized by proper time,

L = 1
2gabẋ

aẋb = 1
2 .

Example 4.6

In Minkowski space in spherical polar coordinates,

L = 1
2 (ṫ2 − ṙ2 − r2θ̇2 − r2 sin2 θϕ̇2) .

The geodesic equations are

ẗ = 0 θ̈ + 2r−1ṙθ̇ − sin θ cos θϕ̇2 = 0

r̈ − rθ̇2 − r sin2 θϕ2 = 0, ϕ̈ + 2r−1ṙϕ̇ + 2 cot θ̇ϕ̇ = 0 .

We can read off from these that, for example, Γ 3
13 = 1/r, with coordinates

ordered so that x0 = t, x1 = r, x2 = θ, x3 = ϕ.

4.4 Null Geodesics

By the same reasoning, the worldline of a photon is also given by the geodesic
equations,

d
dτ

(
∂L

∂ẋa

)
− ∂L

∂xa
= 0 ,

1 In analytical dynamics, the Hamiltonian is conserved whenever the Lagrangian has
no explicit time dependence; and if the Lagrangian is a homogeneous quadratic,
then it is the same as the Hamiltonian. Again these statements can be taken
out of their original physical context and interpreted as propositions concerning a
Lagrangian system of ordinary differential equations.
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where τ is now an affine parameter. In this case,

L = 1
2gabẋ

aẋb = 0

because ds2 = gab dxa dxb = 0 for two nearby events on the worldline of a
photon.

Geodesics with gabẋ
aẋb > 0 are said to be timelike; those with gabẋ

aẋb = 0
are said to be null. So photon worldlines are null geodesics and massive particle
worldlines are timelike geodesics.

4.5 Transformation of the Christoffel Symbols

The Christoffel symbols are defined by (4.8). They determine the worldlines of
free particles through the geodesic equations, and so contain the same infor-
mation as the ‘acceleration due to gravity’ in Newtonian theory. They vanish
at the origin in local inertial coordinates, as one would expect: local inertial
coordinates are the coordinates set up by an observer in free-fall at an event.
In the observer’s frame, the ‘acceleration due to gravity’ is zero.

How do the Christoffel symbols transform when we change coordinates from
one general system xa to another x̃a? In the new coordinates,

Γ̃ a
bc = 1

2 g̃ad(∂̃bg̃dc + ∂̃cg̃ba − ∂̃ag̃bc).

We could determine the relationship between Γ a
bc and Γ̃ a

bc by direct substitution.
But the calculation is unnecessarily complicated. Instead, we use the fact that
the geodesic equations

ẍa + Γ a
bcẋ

bẋc = 0 (4.9)

transform to

¨̃xa + Γ̃ a
bc

˙̃xb ˙̃xc = 0

because the Lagrangian from which they are derived is invariant. Substitute

˙̃xa =
∂x̃a

∂xd
ẋd

into the second equation to get

0 =
∂x̃a

∂xd
ẍd +

∂2x̃a

∂xd∂xe
ẋdẋe + Γ̃ a

ef

∂x̃e

∂xb

∂x̃f

∂xc
ẋbẋc

⇒ 0 = ẍp +
∂xp

∂x̃d

[
Γ̃ d

ef

∂x̃e

∂xb

∂x̃f

∂xc
+

∂2x̃d

∂xb∂xc

]
ẋbẋc , (4.10)
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with the second line following from the first by multiplying by ∂xp/∂x̃a and
summing over a. Hence because Γ a

bc = Γ a
cb, and because (4.10) and (4.9) are

equivalent for all choices of free particle worldline,

Γ a
bc =

∂xa

∂x̃d
Γ̃ d

ef

∂x̃e

∂xb

∂x̃f

∂xc
+

∂xa

∂x̃d

∂2x̃d

∂xb∂xc
.

The first term on the right could have been anticipated: it is simply the ten-
sor transformation rule. The second involves the second derivative of the new
coordinates with respect to the old. Thus it measures, in some sense, the ac-
celeration of the new coordinates relative to the old. It should also have been
anticipated, because it mirrors the acceleration term in the transformation of
g when one switches to an accelerating frame in Newtonian theory.

4.6 Manifolds

We now have one half of general relativity: we know how gravity affects matter.
The gravitational field is encoded in the metric coefficients gab, and the motion
of a freely falling particle is governed by the geodesic equations. Gravity is not
a field, like the electromagnetic field, but is part of the structure of space–time.

So what sort of object is the space–time of general relativity? In local inertial
coordinates, it looks in a small region like Minkowski space; but when we extend
the coordinates over a larger region, the light cones are not fixed: they vary
from event to event. We have the analogy with the relationship between a
curved surface and a flat plane. The local geometry is the same: we can map
a small part of the earth’s surface onto a page in an atlas with a constant
scale; but a map of a large region will introduce distortion. Analogously, a
small region of space–time can be mapped onto Minkowski space by using local
inertial coordinates, but as we extend the coordinates to a larger region, the
identification breaks down. The geodesics in space–time are not mapped onto
straight lines.

A space–time in general relativity and a surface in space are examples of
manifolds, that is, spaces whose points can be labelled by coordinates. In rela-
tivity, events are labelled by four space–time coordinates xa; on a surface, we
use two parameters, such as latitude and longitude on the sphere, to label the
individual points. In neither case is there a natural choice for the coordinates,
and it may be impossible to use a single coordinate system to cover the whole
space. Longitude, for example, is not uniquely defined at the North and South
poles. So the definition of a manifold captures the idea that the coordinate
systems are local, and ties down the permitted transformations between local
coordinates. There are many possibilities, but we only allow smooth, that is
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to say infinitely differentiable, transformations. Our manifolds are therefore of
class C∞.

Definition 4.7

An n-dimensional manifold is

(a) A connected Hausdorff topological space M , together with

(b) A collection of charts or coordinate patches (U, xa), where U ⊂ M is an
open set and the xas are n functions xa : U → R, such that the map

x : U → R
n : m 
→ (

x0(m), x1(m), . . . , xn−1(m)
)

is a homeomorphism from U to an open subset V ⊂ R
n.

Two conditions must hold: (i) every point of M must lie in a coordinate patch;
and (ii) if (U, xa) and (Ũ , x̃a) are charts, then the x̃as can be expressed as
functions of the xas on the intersection. We require that

x(U ∩ Ũ) → x̃(U ∩ Ũ) : (xa) 
→ (x̃a)

should be infinitely differentiable and one-to-one, with

det
[
∂xa

∂x̃b

]
�= 0.

The topological condition on M is required to rule out pathological behaviour.
In fact further technical conditions, such as ‘paracompactness’, are needed to
get sensible models of space–time. We should also specify completeness for
the atlas (the set of charts). We do not dwell on such matters here because
they play no part in the elementary development of the theory. Topological
language is needed only to give meaning to the term ‘local coordinates’: local
coordinates label the points of open sets of M , and the transformations between
local coordinate systems are smooth and invertible.

A surface is a two-dimensional manifold; space–time is a four-dimensional
manifold. Both have an additional structure called a metric. On a surface, the
metric determines the geometry: it gives the distance between nearby points.
If the surface is defined parametrically by giving the position r of a general
point as a function r(u, v) of two parameters, then the distance ds between the
nearby points (u, v) and (u + du, v + dv) is determined by

ds2 = ru.ru du2 + 2ru.rv dudv + rv.rv dv2

= E du2 + 2F dudv + G dv2 , (4.11)
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where E = ru.ru and so on. This is the first fundamental form. Like ds2 in
space–time, it is a quadratic form in the coordinate displacement. It measures
the separation between two nearby points on the surface. The coefficients E,
F , G are functions of the ‘coordinates’ u, v, like the metric coefficients gab in
space–time. We note the following.

(1) In general, the metric cannot be reduced to the flat form du2 + dv2

by changing the parameters. This is only possible if the surface has no
intrinsic or Gaussian curvature. We establish this in §4.8.

(2) The surface may have nontrivial topology, in which case the same pa-
rameters cannot be used over the entire surface. In general relativity, sim-
ilarly, we must allow for space–time to have a nontrivial topology. This is
important in the model space–times used in cosmology.

An expression such as (4.11) is manageable when there are only two coordinates
and three metric coefficients. In higher dimensions, one needs a more compact
and efficient way of representing the metric and doing calculations involving the
metric coefficients. This is provided by tensor calculus, in which the space–time
metric, and other physical quantities, are represented by tensors. We look at the
definitions only in the four dimensions of space–time, although the extension
to the general setting of an n-dimensional manifold is obvious.

4.7 Vectors and Tensors

The various physical objects in space–time are represented by scalars—functions
on space–time—or by vectors or tensors, which are objects with components
that transform in simple ways under change of coordinates. The definitions are
the same as in special relativity, except that the coordinate changes are now
general.

Definition 4.8

A tensor T of type (p, q) is an object that assigns a set of components T a...b
c...d

(p upper indices, q lower indices) to each local coordinate system, with the
transformation rule under change of coordinates

T a...b
c...d =

∂xa

∂x̃e
. . .

∂xb

∂x̃f

∂x̃h

∂xc
. . .

∂x̃k

∂xd
T̃ e...f

h...k.

A tensor can be defined at a single event, or along a curve, or on the whole of
space–time, in which case the components are functions of the coordinates and
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we call T a tensor field. If q = 0 then T is a contravariant tensor; if p = 0, it is
a covariant tensor. A tensor of type (1, 0) is a four-vector or simply a vector.

An object that behaves as a tensor under change of local inertial coordinates at
an event determines a tensor at the event under general coordinate transforma-
tions. We frequently fail to distinguish between a tensor and its components,
and allow ourselves the usage ‘a tensor T a...b

c...d’ or ‘a vector V a’.
Note that because

∂xa

∂x̃e

∂x̃e

∂xb
= δa

b , (4.12)

one could equally well write the transformation law with all the tilded (˜) and
untilded quantities interchanged.

Example 4.9

The metric gab is a tensor field of type (0, 2). It has the transformation law

gab = g̃cd
∂x̃c

∂xa

∂x̃d

∂xb
. (4.13)

Example 4.10

The contravariant metric has components gab, where (gab) is the inverse matrix
to (gab). That is, gabgbc = δa

c . It is a tensor of type (2, 0). This is proved from
(4.13) by the following steps, which are well worth following carefully because
they illustrate some basic techniques of index manipulation. The proof makes
several uses of (4.12). First, multiply both sides of (4.13) by

∂x̃b

∂xe

and sum over b. The result is

g̃ab
∂x̃b

∂xe
= gce

∂xc

∂x̃a
.

Now multiply by g̃afgeh and sum over a, e to get

∂x̃f

∂xe
geh = g̃af ∂xh

∂x̃a
.

Finally multiply by
∂xk

∂x̃f

and sum over f to get

gkh = g̃af ∂xh

∂x̃a

∂xk

∂x̃f
.
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Example 4.11

The gradient ∂af of a scalar function is a covector field, a tensor of type (0, 1).

Example 4.12

If xa = xa(τ) is the worldline of a particle in general motion, parametrized by
a parameter τ , then

V a =
dxa

dτ

is a four-vector field along the worldline. If

gabV
aV b = gabẋ

aẋb = 1 ,

then V is called the four-velocity and τ is called the proper time. This extends
the definition of proper time from motion in free-fall. When

gabV
aV b = 1 ,

the increment in τ between the events on the worldline with coordinates xa

and xa + dxa is
dτ =

√
gab dxa dxb .

So by the interpretation of the metric, dτ is the time between the two events
measured in a local inertial frame in which they happen at the same place.
Proper time therefore has the same meaning as in special relativity. We extend
the clock hypothesis to the general setting by postulating that proper time is the
time measured by a clock of standard construction travelling with the particle.
As in special relativity, the mechanism of the clock must be insensitive to the
acceleration of the particle (a pendulum clock will not do).

We can carry out all the operations on tensors in exactly the same way
as in special relativity, with the exception of differentiation. Partial differen-
tiation with respect to the coordinates no longer gives a tensor because the
components ∂aT b...

d... do not obey the tensor transformation law under nonlin-
ear coordinate changes. Indices are raised and lowered by contracting with gab

and gab, although this now involves more than just changing the signs of a few
components. For example, if T ab

c is a tensor of type (2, 1), then the contraction
T ab

b is a tensor of type (1, 0) (one free upper index a). If αa is a covector, then
gabαc is a tensor of type (2, 1) and its contraction

αa = gabαb
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is a vector. This is the operation of raising the index. One similarly lowers
indices, for example, by putting Xa = gabX

b. Raising followed by lowering
returns to the starting point because

gabg
bc = δc

a .

The exceptional operation, differentiation, is more subtle in a general space–
time. We come back to it in the next chapter.

4.8 The Geometry of Surfaces*

Much of the general theory of relativity can be illuminated by exploring the
analogy between the structure of space–time and the more familiar and more
easily visualized geometry of a surface. This section summarizes the theory of
surfaces in a way that may help to draw out the analogy. It is not essential
to the following chapters, but we refer back to it from time to time to draw
attention to the analogies.

The metric tensor on a surface determines the distance between nearby
points. Its components

E = ru . ru, F = ru . rv, G = rv . rv

can be read off from the the first fundamental form (4.11). Just as the metric
coefficients in space–time, they transform as the components of a tensor of
type (2, 0) under change of parametrization. The same argument as in §4.2
establishes that at any point p on the surface, it is possible to choose the
parameters u, v so that u = v = 0 at p and

E = 1 + O(w2), F = O(w2), and G = 1 + O(w2) , (4.14)

as u, v → 0, where w =
√

u2 + v2. We define the Gaussian curvature at p by

κ(p) = − 1
2 (Evv + Guu − 2Fuv)

in this special parametrization (the subscripts denote partial derivatives). Of
course the special parametrization in which (4.14) holds is not unique. So to
establish that the definition is a good one, we need to show that the value of
κ(p) is independent of the choice made.

This is done by deriving another formula for κ(p). At each point of the
surface in a neighbourhood of p, choose two orthogonal unit vectors a, b tangent
to the surface, so that a, b, and the unit normal n to the surface make up a
right-handed orthonormal triad (Figure 4.2). Given a curve r = r(t) on the
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a
b

n

Figure 4.2 The triad a, b, n

surface, consider the quantity defined along the curve by

a . ḃ = −b . ȧ = a .
(
(ṙ .∇)b

)
,

where ∇ is the three-dimensional gradient and the dot denotes differentiation
with respect to t. This is linear in the tangent vector ṙ. So there is a vector ω

tangent to the surface at each point such that

a . ḃ = ṙ .ω

for any curve on the surface. It depends, of course, on the choice of a, b. If we
make a rotation at each point and replace a and b by

ã = cos θ a + sin θ b b̃ = − sin θ a + cos θ b ,

where θ is a function of u, v, then ω is replaced by ω − ∇θ.

Proposition 4.13

κ(p) = n . curlω, evaluated at p.

Proof

Note, first, that n . curlω is well defined because it involves only derivatives of
ω tangent to the surface. Equally it is independent of the choice of a,b, because
the curl of a gradient vanishes. In fact, if we use the subscripts i, j, k, . . . to label
Cartesian coordinates on R

3, then

n . curlω = εijkni∂jωk = εijkni∂j(al∂kbl) = εijkni(∂jal)(∂kbl) .
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But a, b, n form a right-handed triad. So the last expression is

(aj∂jal)(bk∂kbp) − (bj∂jal)(ak∂kbp) ,

in which the Cartesian components of a and b are differentiated only along a

and b, which are tangent to the surface.
We can choose a and b so that, with the special choice of parameters,

a = ru + O(w2), b = rv + O(w2)

as u, v → 0. We then have

n . curlω(p) = (aj∂jal)(bk∂kbp) − (bj∂jal)(ak∂kbp)

= ruu . rvv − ruv . ruv ,

evaluated at u = v = 0. At p, however,

Eu = 2ru . ruu = 0, Ev = 2ru . ruv = 0, Fu = rv . ruu + ru . ruv = 0 .

From this and similar expressions for Gu, Gv, and Fv, we deduce that ruu,
ruv, and rvv are orthogonal to ru and to rv at p. By differentiating twice the
defining equations of E, F, G with respect to u, v, we deduce that at p,

Euu + Gvv − 2Fuv = 2(ruv . ruv − ruu . rvv) ,

which completes the proof.

Because n . curlω does not depend on the choice of a, b, the value of κ(p)
does not depend on the choice of the special parameters u, v. So the Gaussian
curvature is a well-defined function on the surface. If it does not vanish, then it
is impossible to reduce the first fundamental form to the planar metric du2+dv2

throughout the u,v coordinate patch. The fact that κ can be computed from
the first fundamental form alone is Gauss’s theorema egregium.

The Gaussian curvature measures the extent to which the geometry of the
surface differs from that of the flat plane. One of the most direct ways in which
it can be interpreted is in terms of the excess of the sum of the angles of a
geodesic triangle over π. A geodesic on the surface is the closest that a curve
on the surface can come to being a ‘straight line’ without leaving the surface.
It is the path followed by a particle constrained to move on the surface by a
‘normal reaction’ (in the direction of n), in the absence of other forces. It is
also the curve that minimizes distance between two nearby points.

In close analogy to the space–time theory, the geodesics are generated by
the Lagrangian

L = 1
2 (Eu̇2 + 2Fu̇v̇ + Gv̇2)
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where u, v are general coordinates. When L = 1
2 , the parameter on the geodesic

is the arclength s. The connection with the motion of a particle comes from
identifying L with the kinetic energy 1

2 ṙ . ṙ of a unit mass particle constrained
to move on the surface, with unit speed.

With arclength as parameter, the tangent t = ṙ to a geodesic is a unit
vector. Its derivative ṫ is given in a general parametrization of the surface by

ṫ = ruü + rv v̈ + ruuu̇2 + 2ruvu̇v̇ + rvv v̇2 .

In the special coordinates at a point p, the geodesic equations reduce to ü =
v̈ = 0 at p, and the second derivatives of r are orthogonal to the surface
at p. We deduce that ṫ is orthogonal to the surface at p, and by the same
argument, at every point of the geodesic. Thus the acceleration of a geodesic
is everywhere in the direction on n, as consideration of the equation of motion
of the corresponding particle implies. The direction of t changes only as much
as is necessary to follow the surface.

If we choose orthogonal vectors a and b as before, then

t = cos θ a + sin θ b ,

for some function θ(s). Because a . ȧ = b . ḃ = 0 and b . ȧ = −a . ḃ, we have,

0 = (− sin θ a + cos θ b) . ṫ = θ̇ − a . ḃ = θ̇ − ṙ .ω . (4.15)

Now consider a triangle A,B,C on the surface, the sides of which are
geodesics (Figure 4.3). We make the arclength increase along the three geodesics

A

C

B

Figure 4.3 A geodesic triangle

from A to B, from B to C, and from C to A, and express the dependence of
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θ on the three sides by θ3(s), θ1(s), and θ2(s), respectively. We assume that
the triangle is contained in the region in which the triad is defined. Then by
integrating (4.15) around the triangle, we find

θ3(B) − θ3(A) + θ1(C) − θ1(B) + θ2(A) − θ2(C) =
∮

ω .dr .

By using Proposition 4.13 and by applying Stokes’ theorem,∮
ω .dr =

∫
curlω .dS =

∫
κ dS ,

where the second two integrals are over the interior of the triangle, and we have
assumed that the interior of the triangle is simply connected. But

θ2(A) − θ3(A)

is the angle that t turns through at A in passing from the geodesic CA to the
geodesic AB. The conclusion is the Gauss–Bonnet theorem.

Theorem 4.14 (Gauss–Bonnet)

The sum of the interior angles A,B,C of a small geodesic triangle is

A + B + C = π +
∫

κ dS ,

where the integral is over the interior of the triangle.

A rather more suggestive way to state the theorem, at least in the context of
relativity, is in terms of the velocities of particles moving along geodesics on the
surface, with no friction. Suppose that O travels from A to B, Q travels from
B to C, and P travels directly from A to C. Let θA denote the angle between
the velocities of P and O at A, θB the angle between the velocities of O and
Q at B, and θC the angle between the velocities of Q and P at C (all assumed
acute). Then

θA − θB + θC =
∫

κ dS .

In the plane, the left-hand side would be zero.
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4.9 Summary of the Mathematical Formulation

Space–time is a four-dimensional manifold M with a metric tensor gab, which
is a symmetric tensor of type (0,2) with signature +−−−. The points of M are
the events. If xa = xa(u) is the worldline of a particle, where u is a parameter,
then

τ =
∫ √

gab
dxa

du

dxb

du
du

is the proper time along the worldline, that is, the time measured by a clock
carried by the particle. This is the clock hypothesis. The four-vector V with
components V a = dxa/dτ is the particle’s four-velocity.

The metric determines the behaviour of free particles via the geodesic hy-
pothesis

d2xa

dτ2
+ Γ a

bc

dxb

dτ

dxc

dτ
= 0 ,

where τ is proper time for a particle with mass, or an affine parameter in the
case of a photon.

If A is an event, then there exists a local coordinate system such that xa = 0
at A and

(
gab(x)

)
=

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠+ O(2)

as xa → 0. In these coordinates, Γ a
bc = 0 at the origin (the event A). Such a

coordinate system is interpreted as the local inertial coordinate system set up
by an observer in free-fall at A. We identify four-vectors and tensors at A with
vectors and tensors in special relativity by taking their components in local
inertial coordinates.

The metric determines an inner product g(X, Y ) = XaY a on the space of
four-vectors at an event with signature + − −−. It is symmetric and nonde-
generate, but not positive definite. As in special relativity, we say that X is
timelike if XaXa > 0, null if XaXa = 0, and spacelike if XaXa < 0.

EXERCISES

4.1. Show that if xa and x̃a are coordinate systems, then

∂x̃a

∂xp

∂2xp

∂x̃b∂x̃c
= −∂xq

∂x̃b

∂xr

∂x̃c

∂2x̃a

∂xq∂xr
.
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4.2. Show that if X and Y are vector fields on a manifold, then so is

Za = Xb∂bY
a − Y b∂bX

a .

That is, show that the Zas transform correctly under change of co-
ordinates.

4.3. Let xa(τ) be a solution curve of the Lagrange equations of the La-
grangian L = 1

2gabẋ
aẋb. Show from the Lagrange equations without

assuming in advance that τ is proper time that

d
dτ

(gabV
aV b) = 0.

How could you have deduced this directly from the Lagrangian?

4.4. Einstein proposed the following metric as a model for a closed static
universe

ds2 = dt2 − dr2 − sin2 r(dθ2 + sin2 θdϕ2) .

Find the geodesic equations of the metric from Lagrange’s equations
and hence write down the Christoffel symbols (take x0 = t, x1 = r,
x2 = θ, x3 = ϕ). Show that there are geodesics on which r and θ are
constant and equal to π/2.

4.5. The Einstein static universe is mapped into the five-dimensional
space–time with metric

dS2 = dT 2 − dX2 − dY 2 − dZ2 − dW 2

by T = t, X = sin r sin θ sin ϕ, Y = sin r sin θ cos ϕ, Z = sin r cos θ,
and W = cos r. Show that ds2 = dS2.

Show that the image is (almost all of) {X2 + Y 2 + Z2 + W 2 = 1}.
Deduce that, as a topological space, the Einstein universe is the
product of R and the three-dimensional sphere X2+Y 2+Z2+W 2 =
1 in R

4. What portion is covered by the chart t, r, θ, ϕ? Describe the
geodesic curves on the image.
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Tensor Calculus

We have seen that the space–time of general relativity is a four-dimensional
manifold and that gravity is encoded in the metric tensor. It manifests itself in
the relative acceleration of local inertial frames, and thus in variations in the
metric from event to event.

Our next task is to understand how matter generates gravity; that is, how to
relate the variations in the metric to the distribution of matter in space–time.
To do this, we must know how to differentiate vectors and tensors. In Minkowski
space, it is easy: we just differentiate their components. But in a general space–
time there is a problem because the coefficients in the transformation rules for
vector and tensor components are generally not constant. A tensor that has
constant components in one coordinate system will have varying components
in another.

5.1 The Derivative of a Tensor

The derivatives of the components of a tensor do not themselves transform as
tensor components. This is illustrated by the following examples.
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Example 5.1

Let Xa be a vector field. Then

∂̃bX̃
a =

∂xc

∂x̃b

∂

∂xc

(
∂x̃a

∂xd
Xd

)

=
∂xc

∂x̃b

∂x̃a

∂xd
∂cX

d +
∂xc

∂x̃b

∂2x̃a

∂xc∂xd
Xd ,

where ∂b = ∂/∂xb and ∂̃b = ∂/∂x̃b. The first term is the one required for a
tensor transformation law; the second is the problem. In special relativity, where
the coordinate transformations are all affine linear, it vanishes automatically.
The difficulty in the general theory is that we now allow general, nonlinear
coordinate transformations, for which it does not vanish.

Example 5.2

Let xa = xa(τ) be the worldline of a particle parametrized by proper time.
Then

dxa

dτ
=

∂xa

∂x̃b

dx̃b

dτ
which implies that the four-velocity components transform in the right way.
But

d2xa

dτ2
=

∂xa

∂x̃b

d2x̃b

dτ2
+

∂2xa

∂x̃b∂x̃c

dx̃b

dτ

dx̃c

dτ
.

Again the second term is the obstruction to a nice transformation law. The
obvious definition of four-acceleration does not give a vector.

The way out, which does lead to a tensor transformation law in both these
cases, is to include an extra term involving the Christoffel symbols in the defi-
nition of the derivative. Under change of coordinates, the Christoffel symbols

Γ a
bc = 1

2gad(∂bgdc + ∂cgba − ∂agbc)

obey the transformation law

Γ a
bc =

∂xa

∂x̃d

∂x̃e

∂xb

∂x̃f

∂xc
Γ̃ d

ef +
∂xa

∂x̃d

∂2x̃d

∂xb∂xc

=
∂xa

∂x̃d

∂x̃e

∂xb

∂x̃f

∂xc
Γ̃ d

ef − ∂2xa

∂x̃e∂x̃f

∂x̃e

∂xb

∂̃xf

∂xc
.

The second term in the last line is exactly what we want to cancel the unwanted
term in the first example. We define the covariant derivative of a vector field
Xa by

∇bX
a = ∂bX

a + Γ a
bcX

c .

We then have the following transformation law.
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Proposition 5.3

The covariant derivative of a vector field transforms as a tensor of type (1, 1).

Proof

We express the covariant derivative in terms of new coordinates x̃a:

∂aXb + Γ b
adX

d

=
∂x̃c

∂xa

∂

∂x̃c

(
∂xb

∂x̃f
X̃f

)
+

∂xb

∂x̃e

∂x̃f

∂xa

∂x̃h

∂xd
Γ̃ e

fhXd − ∂2xb

∂x̃e∂x̃f

∂x̃e

∂xa

∂x̃f

∂xd
Xd

=
∂x̃c

∂xa

∂xb

∂x̃d

(
∂̃cX̃

d + Γ̃ d
ceX̃

e
)

.

In a coordinate system such that ∂agbc = 0 at the event xa = 0, we have
Γ a

bc = 0 at xa = 0 and hence that ∇aXb = ∂aXb, although in general this holds
only at the origin. We could have used this property to define the covariant
derivative. That is, we could equally well define the covariant derivative by
requiring that the value of ∇aXb at A should be the tensor that coincides with
∂aXb in local inertial coordinates at A. Then the tensor transformation law
would enable us to write down its components in a general coordinate system.
It is a useful technique to define a tensor by giving its components in a particular
coordinate system and then to use the transformation law backwards.

5.2 Parallel Transport

In taking the derivative a vector, we are comparing its values at nearby events,
and finding the change. The coordinate derivatives of the components do not
on their own give a good definition because the comparison is then simply of
the components of the vector. The coefficients in the vector transformation law
are not constant, so it is possible for a vector to have the same components
at two different events in one coordinate system, but not in another. In one
coordinate system, it appears to change between the events; in another it does
not. By contrast, when we take the covariant derivative of Xa, we implicitly
use parallel transport to compare the values of X at different events.

Let A and B be two nearby events with coordinates xb and xb + δxb. To
the first order in δxb,

δxb∇bX
a = δxb∂bX

a + δxbΓ a
bcX

c
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= Xa(x + δx)−
(
Xa(x) − δxbΓ a

bcX
c(x)

)
.

Thus the covariant derivative compares Xa(x + δx), the value at B, with
Xa(x)− δxbΓ a

bcX
c, which we think of as the result of displacing Xa from A to

the ‘most nearly parallel vector at B’.

Definition 5.4

The vector at B with components Xa(A)− δxbΓ a
bcX

c(A) is said to be obtained
by parallel transport of Xa from A to B.

In local inertial coordinates at A, we have Γ = 0 at A and the vector at B is
the one with the same components as at A, to the first order in δx. It makes

X

x a x a= (u)

X

Figure 5.1 Parallel transport of X along the curve xa = xa(u)

more sense to express these ideas in terms of parallel transport along a curve:
we then don’t have to worry about infinitesimals.

Definition 5.5

A vector X is parallel transported or parallel propagated along a curve xa =
xa(u) whenever

dXa

du
+ Γ a

bc

dxb

du
Xc = 0 .

This is a set of ordinary differential equations for the components Xa as func-
tions of the parameter u. It determines the Xas in terms of their values at the
initial point of the curve.
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Example 5.6

We can read the geodesic equation,

ẍa + Γ a
bcẋ

bẋc = 0,

as the statement that the four-velocity ẋa is parallel propagated along the
geodesic. This is the sense in which geodesics are curves in curved space–time
which are ‘as straight as possible’.

Parallel propagation around a closed curve need not return the vector to its
starting value. This is a manifestation of curvature.

5.3 Covariant Derivatives of Tensors

The definition of the covariant derivative ∇a extends to covectors by putting

∇aαb = ∂aαb − αcΓ
c
ab .

By a similar argument to that used in the case of vectors, this transforms as a
tensor of type (0, 2).

Exercise 5.1

Show that ∂a(αbY
b) = (∇aαb)Y b +αb∇aY b. Note that αbY

b is a scalar,
so the gradient covector on the left-hand side is well defined.

For a general tensor field, we define the covariant derivative by adding one
gamma term for each upper index and subtracting one for each lower index.
For example,

∇aT bc
d = ∂aT bc

d + Γ b
aeT

ec
d + Γ c

aeT
be

d − Γ e
adT

bc
e .

The first lower index on Γ in each term is a, the index on ∇ . The rule for an
upper index is: add a term TΓ , move the index to the upper position on Γ , and
replace it by a dummy index, repeated as the second lower index on Γ . For a
lower index, subtract a term TΓ , move the index to the second lower position
on Γ , and replace it by a dummy index, repeated in the upper position on Γ .
When there are no free indices, the covariant derivative is simply the partial
derivative. Thus for a scalar f we write ∇af for ∂af . The covariant derivative
of a tensor of type (p, q) is a tensor of type (p, q + 1). The operation has the
following properties.

(cd1) ∇a(T ...
... + S...

...) = ∇aT ...
... + ∇aS...

... .
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(cd2) ∇a(fT ...
...) = f∇aT ...

... + (∇af)T ...
... .

(cd3) ∇a(T ...
...S

...
...) = ∇a(T ...

...)S...
... + T ...

...∇a(S...
...) .

(cd4) ∇aT bc
b is the same whether the contraction is done before or after

the differentiation.

(cd5) The covariant derivative of the Kronecker delta vanishes because

∇aδb
c = ∂aδb

c + Γ b
adδ

d
c − Γ d

acδ
b
d = 0 .

(cd6) For a scalar f , but not for a general tensor,

∇a∇bf = ∂a∂bf − ∂cfΓ c
ab = ∇b∇af .

(cd7) The covariant derivative of the metric tensor vanishes, because

∇agbc = ∂agbc − gdcΓ
d
ab − gbdΓ

d
ac

= ∂agbc − 1
2{∂agcb + ∂bgac − ∂cgab}

− 1
2{∂agbc + ∂cgab − ∂bgac}

= 0 .

(cd8) ∇agbc = 0. This follows from (cd7) and

0 = ∇a(δb
d) = ∇a(gbcgcd) = ∇a(gbc)gcd + gbc∇agcd .

It follows from (cd7) and (cd8) that raising and lowering can be interchanged
with covariant differentiation. For example, if Xa is a vector field, then ∇aXb

is well defined. It does not matter whether you lower the index on the X before
or after the differentiation.

Example 5.7 (Maxwell’s equations)

In a curved space–time and in the absence of sources, these are

∇aF ab = 0, ∇aFbc + ∇bFca + ∇cFab = 0

because these equations are covariant and reduce to the special relativity form
in local inertial coordinates at a point. Gravity affects light through the Γ s.

There is an important point here. It is not just that the equations coincide with
Maxwell’s equations in Minkowski space when there is no gravity; there are
many other generalizations of the flat space–time equations with this property.
It is that the equations in curved space–time are determined by the stronger
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requirement that they should involve only first derivatives and that they should
reduce to the special relativity form in local inertial coordinates in the presence
of gravity. If all that were required were that they should take correct form in
Minkowski space, then it would be possible to add in other terms that vanished
in the absence of gravity.

5.4 The Wave Equation

Suppose that u is a function on space–time. Then the partial derivatives ∂au

are the components of a covector, the gradient covector. We can define a vector
field with components ∇au by putting

∇au = gab∂bu ;

that is, by raising the index. This is the gradient vector. The wave operator or
d’Alembertian sends u to

�u = ∇a(∇au) = ∂a

(
gab∂bu

)
+ Γ a

abg
bc∂cu .

Now if A is a square matrix depending on the coordinates xa, then

∂a log det A = tr
(
A−1∂aA

)
(see the exercises at the end of this chapter). It follows that

Γ b
ab = 1

2gbd
(
∂bgad + ∂agbd − ∂dgab

)
= 1

2gbd∂agbd = ∂a log
√
|g| ,

where g is the determinant of the matrix (gab). Hence

Γ b
ab = 1

2∂a log |g| .
Therefore

∇a∇au =
1√|g|

∂

∂xa

(√
|g| gab ∂u

∂xb

)
. (5.1)

The operator on the right is invariant; it is independent of the choice of coor-
dinates.
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5.5 Connections

All that is needed to define the covariant derivative in a coordinate-independent
way is that the Christoffel symbols should obey the transformation rule

Γ a
bc =

∂xa

∂x̃d
Γ̃ d

ef

∂x̃e

∂xb

∂x̃f

∂xc
+

∂xa

∂x̃d

∂2x̃d

∂xb∂xc
.

A field of Γ a
bcs with this transformation property is called a set of connection

coefficients. The corresponding operator ∇ is called a connection: through par-
allel transport, it connects the spaces of vectors and tensors at nearby events.

Properties (cd1)–(cd5) are common to all connections; (cd6) holds only if
the connection is torsion-free; that is, Γ c

ab = Γ c
ba; (cd7) holds in addition only

for
Γ a

bc = 1
2gad(∂bgcd + ∂cgbd − ∂dgbc) . (5.2)

This is the unique torsion-free connection for which the covariant derivative of
the metric tensor vanishes. It is called the Levi-Civita connection.

It is easy to construct other examples of connections. If Γ a
bc is one set of

connection coefficients, for example, those of the Levi-Civita connection, and
Qa

bc is a tensor, then Γ a
bc + Qa

bc is also a set of connection coefficients. All
connections can be obtained in this way once one is given. From now on ∇
always denotes the Levi-Civita connection, defined by (5.2).

5.6 Curvature

In Minkowski space, there are global coordinate systems in which gab is con-
stant. In such coordinates ∇a = ∂a and therefore ∇a∇b = ∇b∇a, when acting
on vectors or tensors. So if in a general space–time, ∇a∇b �= ∇b∇a when act-
ing on vectors, then we know that the metric cannot be reduced to the special
relativity form by a coordinate change.

Proposition 5.8

For any metric gab, there is a tensor field R d
abc of type (1, 3) such that

∇a∇bX
d −∇b∇aXd = R d

abc Xc

for any four-vector field X.

The tensor R d
abc is called the Riemann tensor or curvature tensor.
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Proof

From the definition of the Levi-Civita connection,

∇a∇bX
d = ∇a(∂bX

d + Γ d
bcX

c)

= ∂a∂bX
d + (∂aΓ d

bc)X
c + Γ d

bc∂aXc

+ Γ d
ae(∂bX

e + Γ e
bcX

c) − Γ e
ab(∂eX

d + Γ d
ecX

c) .

Hence

(∇a∇b −∇b∇a)Xd = (∂aΓ d
bc − ∂bΓ

d
ac − Γ d

beΓ
e
ac + Γ d

aeΓ
e
bc)X

c ,

because the terms involving partial derivatives of X cancel. We define the
expression in brackets to be R d

abc . We must show that it is a tensor. The direct
method is horrible. We know, however, that the left-hand side is a tensor.
Hence, if we change coordinates,

∇̃a∇̃bX̃
d − ∇̃b∇̃aX̃d =

∂xp

∂x̃a

∂xq

∂x̃b

∂x̃d

∂xs
R s

pqc Xc

=
∂xp

∂x̃a

∂xq

∂x̃b

∂xr

∂x̃c

∂x̃d

∂xs
R s

pqr X̃c. (5.3)

Had we worked from the beginning in the new coordinates, we would have
obtained

(∇̃a∇̃b − ∇̃b∇̃a)X̃d = R̃ d
abc X̃c , (5.4)

where R̃ d
abc is defined in the same way as R d

abc , but in the new coordinates.
Because (5.3) and (5.4) hold for any X, we deduce that

R̃ d
abc =

∂xp

∂x̃a

∂xq

∂x̃b

∂xr

∂x̃c

∂x̃d

∂xs
R s

pqr ,

which is the tensor transformation law.

Corollary 5.9

If there exists a vector field X such that ∇a∇bX
d �= ∇b∇aXd, then there does

not exist a coordinate system in which the metric coefficients are constant.

5.7 Symmetries of the Riemann Tensor

The Riemann tensor encodes the second derivatives of the metric, and the first
derivatives of the Christoffel symbols. Through the geodesic equation, the Γ s
give the ‘acceleration due to gravity’. Thus the components R d

abc measure the
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difference in the acceleration between nearby points, which we identified as the
‘real’, frame-independent, effect of gravity.

A general four-index tensor has 44 = 256 independent components. The
Riemann tensor, however, has symmetries that reduce the number to 20. These
are apparent from the form of the tensor in local inertial coordinates.

In terms of the connection coefficients

R d
abc = ∂aΓ d

bc − ∂bΓ
d
ac − Γ d

beΓ
e
ac + Γ d

aeΓ
e
bc .

Pick an event A and choose coordinates such that ∂agbc = 0 at A. Then we
also have Γ a

bc = 0 and ∂agbc = 0 at A. So, at the event A, but not elsewhere in
general,

Rabcd = gde∂a(Γ e
bc) − gde∂b(Γ

e
ac)

= 1
2∂a(∂cgbd + ∂bgdc − ∂dgbc) − 1

2∂b(∂cgda + ∂agdc − ∂dgac)

= 1
2 (∂a∂cgbd + ∂b∂dgac − ∂a∂dgbc − ∂b∂cgad) . (5.5)

From this we deduce that the Riemann tensor has the following symmetries.

(S1) Rabcd = −Rbacd

(S2) Rabcd = Rcdab

(S3) Rabcd = −Rabdc

(S4) Rabcd + Rbcad + Rcabd = 0.

The last of these can be expressed more simply by introducing special notation
for dealing with calculations involving permutations of tensor indices.

Bracket notation

For a general covariant tensor with p lower indices, we define

T[ab...c] =
1
p!

∑
perms

sign (σ)Tσ(a)σ(b)...σ(c)

T(ab...c) =
1
p!

∑
perms

Tσ(a)σ(b)...σ(c) ,

where the sums are over the permutations σ of p objects, and sign (σ) is 1 or
−1 as σ is even or odd. For example,

T[ab] = 1
2 (Tab − Tba)

T(ab) = 1
2 (Tab + Tba)

T[abc] = 1
6 (Tabc + Tbca + Tcab − Tbac − Tacb − Tcba)

T(abc) = 1
6 (Tabc + Tbca + Tcab + Tbac + Tacb + Tcba) .
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The same definitions apply to brackets on a subset of the indices and to brackets
on upper indices. For example

T [ab](cd) = 1
4

(
T abcd − T bacd + T abdc − T badc

)
.

There is a possibility of ambiguity over the order of the operations if two sets of
brackets partially overlap, as, for example, in the expression T[a(bc]d). So partial
overlaps are forbidden. Nested brackets, however, are unambiguous, although
they can always be simplified because

T[
...(...)...

] = 0 = T(
...[...]...

), T[
...[...]...

] = T[
.........

], T(
...(...)...

) = T(
.........

) .

Example 5.10

The symmetries of the contravariant metric gab and of the alternating tensor
εabcd can be expressed, respectively, as

g[ab] = 0, εabcd = ε[abcd] .

Maxwell’s equations without sources are

∇aF ab = 0, ∇[aFbc] = 0 .

The second is an automatic consequence of the relationship Fab = 2∇[aΦb]

between the electromagnetic field Fab and the four-potential Φa. In fact, it is
locally equivalent to the existence of the four-potential.

With this notation, the fourth symmetry (S4) of the Riemann tensor reads

R[abc]d = 0 .

The Riemann tensor also automatically satisfies a differential identity—the
Bianchi identity—as a consequence of the fact that it is derived from the a
metric and its derivatives. It is analogous to the vanishing of ∇[aFbc] as a
consequence of the existence of the four-potential.

Proposition 5.11 (The Bianchi identity)

∇[aR e
bc]d = 0 .
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Proof

Choose coordinates such that Γ a
bc = 0 at an event. We have

∇aR e
bcd = ∂a∂bΓ

e
cd − ∂a∂cΓ

e
bd + terms in Γ∂Γ and ΓΓΓ .

Because the first term on the right-hand side is symmetric in ab and the second
in ac, and because the other terms vanish at the event, we have

∇[aR e
bc]d = 0

at the event in this coordinate system. However, this is a tensor equation, so it
is valid in every coordinate system.

The Riemann tensor encodes the observable, frame-independent aspects of the
gravitational field. In the next two sections, we consider two interpretations of
the tensor that allow us to relate its components directly to physical observa-
tions.

5.8 Geodesic Deviation

The first interpretation is in terms of relative acceleration of nearby particles
in free-fall. Consider an observer O with worldline ω. Let τ denote the proper
time along ω and let

V a =
dxa

dτ

denote the four-velocity of O. We want to find the acceleration of a nearby
particle in free-fall in terms of its four-velocity and position relative to O. To
do this we need a tool, a derivative operator that measures the rate of change
of vectors and tensors along ω.

The operator D

Let Y a(τ) be a vector field. Its covariant derivative DY b along ω is defined by
the following equivalent expressions,

DY b = V a∇aY b

=
dxa

dτ
∂aY b + Γ b

acV
aY c

=
dY b

dτ
+ Γ b

acV
aY c .
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The first makes it clear that DY a is a well-defined vector at each point of ω.
The last, that the values of DY a along ω depend only on the values of Y a(τ)
along ω, so DY a makes sense for vector fields that are defined only along ω.
Note that DY a = 0 is the equation of parallel transport.

The operator extends in a natural way to tensor fields. For example,

DT a
b

=
dT a

b

dτ
+ Γ a

cdV
cT d

b − Γ d
cbV

cT a
d.

The definition makes sense for any timelike worldline. But if the observer is
in free-fall, so ω is a geodesic, then D = d/dτ at the origin of local inertial
coordinates in which the observer is instantaneously at rest.

Now imagine a cloud of particles in free-fall. Let us suppose that an observer
O is travelling with one of the particles, and that this particle has worldline ω.
Suppose that the observer looks at a nearby particle and measures its position
in local inertial coordinates. In special relativity, it will move in a straight line at
constant speed, and will have no acceleration. What happens in a gravitational
field?

The four-velocities of the particles form a vector field V a. Because the in-
dividual particle worldlines are geodesic,

V b∇bV
a = DV a =

dV a

dτ
+ Γ a

bcV
bV c = 0 .

Pick out a particle P near O, and at each event on ω, let Y a be the four-vector
joining the event to a simultaneous event at P . Because P is ‘near’ O, Y is
small. We ignore second-order terms in its components.

In the local inertial coordinates in which O is instantaneously at rest, Y has
components (0, y), where y is the position of P . If ω is given by xa = xa(τ) in
general coordinates, then P ’s worldline is

xa(τ) + Y a(τ) + O(2) , (5.6)

where O(2) denotes second-order and smaller terms in the coordinates of P , and
τ is the proper time along the worldline of O. Now the proper time separation
dτ between two nearby events xa(τ) and xa(τ +δτ) on the worldline of O is the
same to the second order in y as the proper time between the corresponding
events on the worldline of P with coordinates

xa(τ) + Y a(τ) and xa(τ + δτ) + Y a(τ + δτ) .

Within our approximation, therefore, τ is also the proper time along P ’s world-
line.

We note that Y a is a vector field along ω and that it is orthogonal to V a

in the sense that V aYa = 0, because Y = (0,y) and V = (1, 0) in the local
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inertial coordinates in which O is instantaneously at rest. Because DV a = 0,
we also have

0 = D(VaY a) = VaDY a and 0 = D(VaDY a) = VaD2Y a .

In the local rest frame of O at an event on ω, the four-velocity of O is (1,0),
and the vectors Y a, DY a, and D2Y a are, respectively, (0,y), (0,u), and (0,a),
where u is the relative velocity of P to O and a is the relative acceleration.

We are interested in the relative acceleration, and therefore in D2Y a. We
want to express this in terms of the curvature. The key to this is the following
result.

Proposition 5.12

DY a = Y b∇bV
a.

Proof

We know from (5.6) that

V a(P ) =
dxa

dτ
+

dY a

dτ
+ O(2) = V a(O) +

dY a

dτ
+ O(2) .

On the other hand, by expanding to the first order in the separation of O and
P ,

V a(P ) = V a(O) + Y c∂cV
a + O(2) .

Therefore dY a/dτ = Y c∂cV
a. It follows that

DY a =
dY a

dτ
+ Γ a

bcV
bV c = Y c∂cV

a + Γ a
bcV

bY c = Y b∇bV
a ,

which is the result we need.

Now we can derive the equation of geodesic deviation or Jacobi equation, which
is central to the physical interpretation of curvature.

D2Y d = D(Y b∇bV
d)

= (DY b)∇bV
d + Y bD(∇bV

d)

= (Y a∇aV b)∇bV
d + Y bV a∇a∇bV

d

= Y a(∇aV b)∇bV
d + Y bV a∇b∇aV d + R d

abc V aY bV c . (5.7)

But

V a∇b∇aV d = ∇b(V a∇aV d) − (∇bV
a)(∇aV d) = −(∇bV

a)(∇aV d)
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because V a∇aV d = 0 by the geodesic equation. Therefore the first two terms
in the last line of (5.7) cancel, and

D2Y d = R d
abc V aY bV c,

which is the geodesic deviation equation. It gives the relative acceleration of
nearby particles in free-fall in terms of their separation and of the curvature
tensor.

5.9 Geodesic Triangles*

The Gaussian curvature of a surface determines the excess of the sum of the
angles of a geodesic triangle over π. There is an analogous interpretation of
the Riemann tensor in space–time, which gives a direct way to understand its
physical meaning. In this case, the geodesics are free-particle worldlines, and
the angles are the rapidities of the particles.

Rapidity

Consider two particle worldlines through an event A. Suppose that the four-
velocities of the particles at A are U and V . Then the rapidity θ of one particle
relative to the other is defined by

cosh θ = UaV a .

If one particle is at rest in local inertial coordinates at A, and the other has
speed v, then

cosh θ = γ(v) =
1√

1 − v2
.

Rapidity is the space–time analogue of ‘angle’. The relativistic addition formula
for velocities translates into additivity of rapidities, in the following sense. Sup-
pose that A is on the worldlines of three particles O, P , and Q. Let θOP denote
the rapidity of O relative to P and so on. If the particles’ respective four-
velocities U , V , W at A are coplanar at A, with V a linear combination of U

and W with positive coefficients, then

θOQ = θOP + θPQ V sinh θOQ = W sinh θOP + U sinh θPQ . (5.8)

See Figure (5.2). If the relative speeds are small, then (5.8) reduces in the limit
to the classical velocity addition formula vOQ = vOP +vPQ, where the vs denote
relative speed.
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A

 θOP  θPQ

O P Q

Figure 5.2 The addition of rapidity

Exercise 5.2

Establish the second identity in (5.8).

We need a variant of (5.8) to derive our interpretation of the Riemann tensor.
Suppose that Q′ and Q′′ are two further particles with respective four-velocities
W ′ and W ′′ at A. Suppose further that X ′ = W ′ −W and X ′′ = W ′′ −W are
small, so that we can ignore second-order terms in their components. Then

X ′
aW a = 0, X ′′

a W a = 0 ,

and
(θOQ′ − θOQ) sinh θOQ = X ′

aUa

to within the approximation, by applying Taylor’s theorem to the left-hand
side of

cosh θOQ′ = W ′
aUa = cosh θOQ + X ′

aUa .

We also have a similar formula relating θPQ′′ , θPQ, and X ′′
a V a. By appealing

to the second identity in (5.8), we conclude that to within our approximation

θOQ′ − θOP − θPQ′′ =
X ′

aUa

sinh θOQ
− X ′′

a V a

sinh θPQ

=
Ua(X ′

a − X ′′
a )

sinh θOQ

=
Ua(W ′

a − W ′′
a )

sinh θOQ
. (5.9)

We now consider the following situation, mirroring a geodesic triangle on a
surface; see Figure 5.3. Suppose that O and P are free particles whose worldlines
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A

 θ  (B)OQ

O

P

Q
 θ  (A)OP

 θ  (C)PQ

C

B

Figure 5.3 A geodesic triangle

pass through A. Let B be an event at proper time λ after A on the worldline
of O and let C be an event at proper time µ after A on the worldline of P .
Suppose that Q is a third particle whose worldline passes through B and C,
with B to the past of C. Let θOP (A), θOQ(B), and θPQ(C) denote, respectively,
the rapidity of O relative to P at A, and so on.

In Minkowski space, we have

θOQ(B) − θOP (A) − θPQ(C) = 0 ,

by translating the worldline of Q, which is a straight line, to a parallel line
through A, and by appealing to (5.8). The formula also holds in Euclidean
geometry if we interpret θOP (A) as the interior angle of a triangle ABC at A,
θOQ(B) as the exterior angle at B, and θPQ(C) as the interior angle at C. It
is simply the statement that the sum of the interior angles is π. On a surface,
the left-hand side is equal to the integral of the Gaussian curvature over the
triangle. In curved space–time, we have the following.

Proposition 5.13

To the second order in λ, µ,

θOQ(B) − θOP (A) − θPQ(C) = −λµRabcdU
aV bU cV d

2 sinh θOP
,

where U and V are the four-velocities of O and P and the right-hand side is
evaluated at A.
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Proof

Let xa = xa(τ) denote the four-velocity of the particle Q, parametrized by
proper time τ . By differentiating the geodesic equation, and by applying Tay-
lor’s theorem,

ẋa(τ) = ẋa − τ ẋbẋcΓ a
bc − 1

2τ2ẋbẋcẋd∂dΓ
a
bd + τ2ẋcẋdẋeΓ a

bcΓ
b
de + O(τ3)

as τ → 0, where ẋa = ẋa(0).
Now choose the coordinates to be local inertial coordinates at A and let ν

denote the proper time along the geodesic from B to C. Let W a(B) and W a(C)
denote the components of the four-velocity of Q at B and C, respectively. We
have

Γ a
bc(A) = 0, Γ a

bc(B) = λUd∂dΓ
a
bc + O(λ2) ,

where the derivative of the Christoffel symbol is evaluated at A. Hence by using
the geodesic equation for Q, to the second order,

W a(C) = W a(B) − λνUdW bW c∂dΓ
a
bc − 1

2ν2W dW bW c∂dΓ
a
bc .

In the second and third terms on the right, it does not matter at which events
the four-velocity components are evaluated. We also have, to the first order,

µV a = λUa + νW a .

Now let W̃ ′a and W̃ ′′a denote the components at A of the vectors obtained
by parallel transport of W a(B) and W a(C) along the worldlines of O and P ,
respectively.

By differentiating the parallel transport equation

dW a

dτ
+ Γ a

bcU
bW c = 0 ,

with respect to proper time along the worldline of O, and by using the fact
that Γ a

bc = 0 at A, and
dΓ a

bc

dτ
= Ud∂dΓ

a
bc ,

we have
W a(B) = W ′a − 1

2λ2UdU bW c∂dΓ
a
bc ,

by Taylor’s theorem, again up to the second order. With the similar formula
for transport along the worldline of P , we deduce that, to the second order,

W ′′a − W ′a

= 1
2

(
µ2V dV b − λ2UdU b − 2λνUdW b − ν2W dW b

)
W c∂dΓ

a
bc

= 1
2λµ(U bV d − UdV b)W c∂dΓ

a
bc

= 1
2λµR a

dbc U bV dW c ,
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by using the formula (5.5) for the curvature in local inertial coordinates.
Because the inner product is preserved by parallel transport, the rapidity

of Q relative to O at B is the same as the rapidity of a particle Q′ with four-
velocity W ′a with respect to O at A. Similarly the rapidity of Q relative to P

at C is the same as the rapidity of a particle Q′′ with four-velocity W ′′a with
respect to P at A. We conclude that

θOQ(B) − θOP (A) − θPQ(C) = θOQ′ − θOP − θPQ′′ .

But by using (5.9),

θOQ′ − θOP − θPQ′′ = −λµRdbcaU bV dW cUa

2 sinh θOQ
= −λµRdbcaU bV dV cUa

2 sinh θOP
.

to within our approximation. The proposition follows.

This result gives us a direct physical interpretation of the curvature quantity
RabcdU

aV bU cV d for two four velocities. Imagine two observers O, P with four-
velocities Ua and V a at an event A. After proper time λ on measured on O’s
clock, O throws a ball Q to P , who catches it after proper time µ, measured
on P ’s worldline. The ball is thrown at event B and caught at event C. The
observers can measure (i) their relative speed A, (ii) the speed of the ball
relative to the first observer at B, and (iii) the speed of the ball relative to the
second observer at C. They can therefore between them compute the quantity
θOQ(B) − θOP (A) − θPQ(C), and hence measure RabcdU

aV bU cV d.

EXERCISES

5.3. Let ∇ be any torsion-free connection. Show that if X, Y are vector
fields, then Xb∂bY

a − Y b∂bX
a = Xb∇bY

a − Y b∇bX
a.

5.4. Show that if α is a covector field, then ∂aαb − ∂bαa transforms as a
tensor of type (0, 2). This tensor is called the exterior derivative of
α and is denoted by dα. Show that the components of dα are also
given by ∇aαb −∇bαa for any torsion-free connection ∇.

5.5. Let ∇ be a torsion-free connection, given by

∇aXb = ∂aXb + Γ b
acX

c.

Show that if ∇agbc = 0, then

∂agbc = Kbac + Kcab,

where Kbac = gbdΓ
d
ac. Deduce that ∇ is the Levi-Civita connection.
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5.6. Establish the transformation law

Γ a
bc = Γ̃ d

ef

∂xa

∂x̃d

∂x̃e

∂xb

∂x̃f

∂xc
+

∂xa

∂x̃d

∂2x̃d

∂xb∂xc

for the Christoffel symbols

Γ a
bc = 1

2gad(∂bgcd + ∂cgbd − ∂dgbc)

by direct calculation.

5.7. Let A and B be 4 × 4 matrices. Show that to the first order in ε,

det (I + εB) = 1 + εtrB ;

and that det (A + εB) = detA det (I + εA−1B).

Let g denote the determinant of the matrix (gab) of metric coeffi-
cients. Show that

∂a log |g| = gbc∂agbc.

Deduce that the Christoffel symbols satisfy Γ b
ab = ∂a log |g|1/2.

Show that in general coordinates xa on Minkowski space, the wave
equation is ∇a∇au = 0, where ∇ is the Levi-Civita connection of
the Minkowski space metric gab. Show that this can be written as

∂a(|g|1/2gab∂bu) = 0.

Hence write down the wave equation in spherical polar coordinates.

5.8. Let X be a vector field and let ∇ be the Levi-Civita connection. Show
that if there exists a coordinate system in which (Xa) = (1, 0, 0, 0)
(everywhere) and ∂0gbc = 0, then ∇aXb + ∇bXa = 0 in every coor-
dinate system.

What is the corresponding result if ∂0gbc = 0 is replaced by ∂0gbc =
fgbc for some scalar field f?

5.9. A tensor in space–time satisfies Tabcde = T[abcde]. Show that Tabcde

is zero.

5.10. A tensor Tab is symmetric if Tab = T(ab). In n-dimensional space,
it has n2 components, but only 1

2n(n + 1) of these can be specified
independently, for example, the components Tab for a ≤ b. How
many independent components do the following tensors have?

(a) Fab with Fab = F[ab].

(b) A tensor of type (0, k) such that Tab...c = T[ab...c]. Distinguish
the cases k ≤ 4 and k > 4.
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(c) Rabcd with Rabcd = R[ab]cd = Rab[cd].

(d) Rabcd with Rabcd = R[ab]cd = Rab[cd] = Rcdab.

5.11. Show that symmetries (S1), (S3), and (S4) of the Riemann tensor
imply (S2).

5.12. Show that for any covector field Xa,

∇a∇bXc −∇b∇aXc = −R d
abc Xd .

Here ∇ is the Levi-Civita connection in space–time. Show that if
∇(aXb) = 0, then ∇a∇bXc = R d

bca Xd. Deduce that Xa satisfies the
equation of geodesic deviation along any geodesic.

5.13. Let A be a covector field. Define Fab = ∇aΦb −∇bΦa. Show that the
second of Maxwell’s equations (∇[aFbc] = 0) is satisfied for any Φ,
but that the first (∇aF ab = 0) holds if and only if

�Φa −∇a(∇bΦ
b) = −RabΦ

b,

where � = ∇a∇a.

5.14. Show that if f is a function such that (∇af)(∇af) is constant, then
Xa = ∇af satisfies Xa∇aXb = 0; that is, that the integral curves
of X, which are the solutions of dxa/dτ = Xa, are geodesics.

5.15. Write down the geodesic equations for the metric

ds2 = dudv + log(x2 + y2)du2 − dx2 − dy2

(0 < x2 + y2 < 1). Show that K = xẏ − yẋ is a constant of the
motion.

By considering an equivalent problem in Newtonian mechanics, show
that no geodesic on which K �= 0 can reach x2 + y2 = 0.

5.16. Show that for any tensor field T ab
c,

(∇a∇b −∇b∇a)T ef
k = R e

abc T cf
k + R f

abc T ec
k − R c

abk T ef
c .



6
Einstein’s Equation

The relative acceleration of two nearby particles in free-fall is determined by
the equation of geodesic deviation

D2Y d = R d
abc V aV cY b .

From the viewpoint of an observer travelling with the first particle, the acceler-
ation of the second is a linear function of its position. From this starting point,
we are led to Einstein’s equation as the successor to Poisson’s equation in the
classical theory of gravity.

6.1 Tidal Forces

In local inertial coordinates in which the observer is instantaneously at rest,
V = (1,0) and Y = (0,y), where y is the position vector of the second particle.
The acceleration is

a = −My ,

where M is the 3 × 3 symmetric matrix with entries

Mij = R0i0j ,

the symmetry following from the symmetries of the Riemann tensor.
What is the corresponding result in Newtonian gravity? Consider a cloud

of particles in free-fall. The acceleration of each particle is given by r̈ = −∇φ.
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So by Taylor’s theorem, the relative acceleration a of two nearby particles O

and P has components

ai = (−∂iφ)P − (−∂iφ)O = −yj∂j∂iφ + O(2) , (6.1)

where y is the vector from O to P and O(2) denotes second-order terms in
the components of y. The second derivatives are evaluated at O, and there is
a sum over j = 1, 2, 3.

Tides

One context in which (6.1) has a familiar interpretation is in the theory of
tides. If O and P are in the moon’s gravitational field, with the line joining
them directed towards the moon, then (6.1) gives a relative acceleration towards
the moon. This is true whichever particle is in the lead, because interchanging
the particles reverses the sign of y and therefore of a. So if we think of O as
at the centre of the earth, and of P as a mass of water on the surface, then
the moon’s gravity gives rise to a tidal force on P acting away from O. This is
true whether P is on the surface directly under the moon or on the opposite
side of the earth. The tidal force raises two humps in the ocean, one under
the moon and one on the opposite side of the earth. As the earth rotates, the
humps move round, giving two high tides each day. We can trace the reason
that there are two high tides to the linearity of (6.1) in y. Before Newton, even
Galileo’s explanation of the tidal cycle was confused, and erroneous.

When our observer in curved space–time looks at the acceleration of nearby
particles, and interprets his observations in terms of Newtonian theory, he
imagines that he is in a gravitational field with potential φ such that

Mij = ∂i∂jφ = R0i0j .

Now in empty space, Poisson’s equation reduces to ∇2φ = 0. That is, ∂i∂iφ = 0
or, with the observer’s Newtonian interpretation, trM = 0. Thus in general
relativity, we should have R0i0i = 0 in empty space. Because R0000 = 0 by the
symmetries of the Riemann tensor, an equivalent statement is

R b
abc V aV c = 0 .

As this must hold for every four-velocity V , we are led to Einstein’s vacuum
equation

Rab = 0 , (6.2)

where Rab is the Ricci tensor, defined by

Rab = R c
acb .
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The vacuum equation is in fact ten equations, one for each of the ten inde-
pendent components of the symmetric tensor Rab, in ten unknowns, the ten
independent components of the metric gab. The equations are nonlinear, as an-
ticipated. The use of the summation convention makes them look very simple.
Written out explicitly without this notation, the expression for each component
of Rab would contain over a thousand terms. Not surprisingly, therefore, it is
not easy to find solutions.

We note two justifications for the vacuum equation. It reduces to the New-
tonian equation in the weak field limit, and it has a solution, the Schwarzschild
solution, analogous to φ = −Gm/r, which encodes the inverse square law of
gravity in Newtonian theory.

6.2 The Weak Field Limit

The reduction to Newtonian theory occurs when the metric is close to that of
Minkowski space, so the gravitational field is ‘weak’, and when the configuration
is nearly static, so the metric is not varying rapidly with time. It begins with
the assumption that

gab = mab + hab ,

where mab = diag(1,−1,−1,−1) is the Minkowski space metric in an inertial
coordinate system xa, and hab is small and slowly varying. ‘Small’ means that
we can ignore any terms that involve products of two or more components of
hab or its derivatives; ‘slowly varying’ means that we can ignore terms involving
derivatives of hab with respect to the time coordinate t = x0.

To obtain the vacuum equation in this case, we first have to find the con-
travariant metric gab, defined by gabgbc = δa

c . In our approximation, it is given
by

gab = mab − macmbdhcd ,

where mab = diag(1,−1,−1,−1) is the contravariant Minkowski space metric,
as is verified by the following calculation, in which the product of two h-terms
is ignored.

gabgbc = (mab − madmbehde)(mbc + hbc) = mabmbc − madhdc + mabhbc = δa
c .

There is an immediate possibility for confusion here because we are dealing
simultaneously with two metrics, m and g, so for the moment we avoid raising
and lowering indices with either.

The Christoffel symbols are given to within our approximation by

Γ a
bc = 1

2gad(∂bgcd + ∂cgbd − ∂dgbc) = 1
2mad(∂bhcd + ∂chbd − ∂dhbc) (6.3)
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and therefore the approximate Riemann tensor is

R d
abc = ∂aΓ d

bc − ∂bΓ
d
ac

= 1
2mde(∂a∂chbe + ∂b∂ehac − ∂a∂ehbc − ∂b∂chae) . (6.4)

Note that the ΓΓ -terms in the definition of the Riemann tensor have been
dropped because they involve products of derivatives of the components of h.

Consider the motion of a slow-moving particle with worldline xa = xa(t).
We have

dx0

dt
= 1,

dx1

dt
= u1,

dx2

dt
= u2,

dx3

dt
= u3 ,

where (u1, u2, u3) is the velocity in the inertial coordinates on Minkowski space.
The ‘slow moving’ assumption is that the velocity is also small, so we ignore
products of the uis with each other and with the habs and their derivatives. In
particular, we have γ(u) ∼ 1 and so we can identify the coordinate time t with
the proper time τ along the worldline, and so approximate the four-velocity by

(V a) = (1, u1, u2, u3) .

The geodesic equation is

d2xa

dτ2
+ Γ a

bc

dxb

dτ

dxc

dτ
= 0 .

Because we ignore products of the spatial components of the four-velocity with
the Christoffel symbols, this is approximated by

d2xa

dτ2
+ Γ a

00 = 0 .

We also ignore terms involving time (x0) derivatives of the metric components.
Therefore Γ a

00 is only significant for a �= 0. We have

Γ 1
00 = − 1

2m11∂1h00 = 1
2∂1h00

and so on. The first component of the geodesic equation gives no useful infor-
mation in our approximation, beyond that τ = t. The other three components
give the approximate equation of motion

r̈ = − 1
2∇(h00) , (6.5)

where the dot can be differentiation with respect to either t or τ . Thus if we
want to reduce general relativity to the Newtonian theory in this limit, then
we must take φ = 1

2h00, to within an added constant.
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The choice is consistent with eqn (1.2), which with ρ = 0 is the approximate
form of R00 = 0. To see this, we note that the derivatives of hab with respect
to x0 in (6.4) are all ignored, giving

R d
0b0 = 1

2mde∂b∂eh00

in our approximation. Therefore the 00-component of the vacuum equation
Rab = 0 is

R b
0b0 = − 1

2 (∂2
1h00 + ∂2

2h00 + ∂2
3h00) = −∇2φ = 0 ,

which is Laplace’s equation, the vacuum equation in Newtonian theory. In this
limit, Einstein’s theory reduces to Newton’s.

Exercise 6.1

What about the other nine components of Einstein’s vacuum equation?

6.3 The Nonvacuum Case

What happens when there is matter present? What is the analogue of Poisson’s
equation ∇2φ = 4πGρ?

We consider first the case in which the matter generating the gravitational
field is a dust cloud. Its energy density is encoded in the energy-momentum
tensor

T ab = ρUaU b ,

where Ua is the four-velocity field of the dust and ρ is the energy (mass)
density measured in the local rest frame. We know that ∂aT ab = 0 in local
inertial coordinates at an event because the continuity equation holds in special
relativity. Therefore in general coordinates we have

∇aT ab = 0 ,

because this is a tensor equation which reduces to ∂aT ab = 0 in local inertial
coordinates.

The identification of R00 with −∇2φ suggests that the field equation in gen-
eral relativity should equate Rab to a constant multiple of Tab. Unfortunately,
this will not do because in general ∇aRab �= 0. But there is a tensor closely
related to the Ricci tensor which can be put on the left-hand side without
contradiction. This is the Einstein tensor

Gab = Rab − 1
2Rgab ,

where R = R a
a is the Ricci scalar or scalar curvature.
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Proposition 6.1

For any space–time metric, ∇aGab = 0.

Proof

The Bianchi identity is

∇aRbcde + ∇bRcade + ∇cRabde = 0 .

By contracting with gadgce, we obtain

0 = 2∇aRab −∇bR = 2∇a(Rab − 1
2gabR) = 2∇aGab ,

which completes the proof.

Our candidate for the field equation is Gab = kρUaUb, with k constant. By
contracting with gab, we obtain

R − 2R = kT a
a = kρ

because gabgab = 4 and UaUa = 1. So an equivalent form of the equation is

Rab = k(Tab − 1
2ρgab).

Now in the coordinates we used in the weak field limit, R00 = −∇2φ, and
T00 = ρ. Thus in this limit, we have ∇2φ = − 1

2kρ. To obtain the correct
correspondence with the Newtonian theory, therefore, we must take k = −8πG,
which means that the field equation is

Rab − 1
2Rgab = −8πGTab .

Einstein proposed that this holds in general, with Tab the sum of the energy-
momentum tensors of all the matter present, including electromagnetic and
other fields.

From now on, we always use units in which G = 1 = c. Given the unit of
time, say the second, the condition c = 1 fixes the unit of distance, the light-
second, and the normalization G = 1 fixes the unit of mass. With these choices,
time, distance, and mass all have the same units.

EXERCISES

6.2. Calculate your age, height, and mass in seconds. Find the conversion
factors to SI units and take note that our units are not likely to be
useful for everyday purposes.
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Spherical Symmetry

In this chapter, we find the gravitational field outside a spherical body of mass
m. That is, we find the solution of the vacuum equation analogous to the
Newtonian potential

φ = −Gm/r .

Our derivation is in the form of an extended worked example, and can only be
described as a ‘head-on’ approach. There are certainly more elegant ways of
proceeding, but they require deeper knowledge of the theory. It is in any case
instructive to see how complex is the direct solution of Einstein’s equations
even in this, the simplest nontrivial example. From this point on, we work in
units in which G = 1.

7.1 The Field of a Static Spherical Body

By saying the body has mass m, we mean that the metric approaches that of
Minkowski space for large r and that

g00 ∼ 1 − 2m/r .

A long way from the body, the field is that of a static spherically symmetric
body of mass m in the weak field limit. In operational terms, m is the mass
measured by analysing orbits in the field of the body near infinity.
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We want the metric to have the symmetries appropriate to a static spherical
body. In spherical polar coordinates, the Minkowski space metric is

dt2 − dr2 − r2(dθ2 + sin2 θdϕ2) . (7.1)

The expression in brackets is the metric on the unit sphere.
Our space–time metric must reduce to (7.1) when m = 0 and in any case

in the limit r → ∞. The flat metric (7.1) has the following features.

– The metric coefficients have no t-dependence.

– There are no dt dr, dt dϕ, or dt dθ terms. It is therefore time reversible, or in
other words, invariant under t 
→ −t.

– There are no dr dθ or dr dϕ terms. At constant time, the radial vector is
perpendicular to the surfaces of constant r.

– The metric on each surface of constant t and r is a constant multiple of the
metric on the unit sphere.

– The coefficients of dt2 and dr2 are independent of θ and ϕ.

The first two characterize the flat metric as ‘static’; the last three are what we
mean by ‘spherical symmetry’. We assume that our curved space–time metric
has all these properties, and thus that it is of the form

ds2 = A(r)dt2 − B(r)dr2 − C(r)r2(dθ2 + sin2 θ dϕ2) ,

for some functions A,B,C of r.
There is no loss of generality in taking C = 1 because we are free to replace

r by r
√

C. So our task is to solve the Einstein vacuum equation with C = 1,
and with A,B subject to the boundary conditions A,B → 1 and

A = 1 − 2m/r + O(r−2)

as r → ∞.

7.2 The Curvature Tensor

We need to find Rab in terms of A and B, with C = 1. The first step is to find
the Christoffel symbols from the geodesic equations. These are the Lagrange
equations

d
dτ

(
∂L

∂ẋa

)
− ∂L

∂xa
= 0 (7.2)
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of the Lagrangian

L = 1
2 (Aṫ2 − Bṙ2 − r2θ̇2 − r2 sin2 θ ϕ̇2) ,

with x0 = t, x1 = r, x2 = θ, x3 = ϕ. The idea is to read off the Christoffel
symbols by comparing (7.2) with the geodesic equations

ẍa + Γ a
bcẋ

bẋc = 0 .

Written out in full, the Lagrange equations are

d
dτ

(
Aṫ
)

= 0

d
dτ

(
−Bṙ

)
− 1

2A′ṫ2 + 1
2B′ṙ2 + rθ̇2 + r sin2 θϕ̇2 = 0

d
dτ

(
−r2θ̇

)
+ r2 sin θ cos θ ϕ̇2 = 0

d
dτ

(
−r2 sin2 θϕ̇

)
= 0 ,

where the dot denotes the derivative with respect to τ . These can be rearranged
as:

ẗ + A′A−1ṫṙ = 0

r̈ + 1
2A′B−1ṫ2 + 1

2B′B−1ṙ2 − B−1rθ̇2 − B−1r sin2 θ ϕ̇2 = 0

θ̈ + 2r−1θ̇ṙ − sin θ cos θ ϕ̇2 = 0

ϕ̈ + 2r−1ϕ̇ṙ + 2 cot θ θ̇ϕ̇ = 0 .

We can then read off the Christoffel symbols Γ a
bc as

(a = 0) Γ 0
01 = Γ 0

10 = A′/2A

(a = 1) Γ 1
00 = A′/2B, Γ 1

11 = B′/2B, Γ 1
22 = −r/B, Γ 1

33 = −r sin2 θ/B

(a = 2) Γ 2
21 = Γ 2

12 = r−1, Γ 2
33 = − sin θ cos θ

(a = 3) Γ 3
31 = Γ 3

13 = r−1, Γ 3
23 = Γ 3

32 = cot θ .

All the others vanish. Note carefully the factors of 1
2 when b �= c. Why are they

there?
From the definition of the curvature tensor, we have

R d
abc = ∂aΓ d

bc − ∂bΓ
d
ac − Γ d

beΓ
e
ac + Γ d

aeΓ
e
bc .

The components Rac of the Ricci tensor are then given by putting b = d and
summing. Thus

R00 = R 1
010 + R 2

020 + R 3
030
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and so on. We find

R 3
232 = ∂2Γ

3
32 − ∂3Γ

3
22 − Γ 3

3eΓ
e
22 + Γ 3

2eΓ
e
32

= ∂θ(cot θ) + B−1 + cot2θ

= −1 + B−1

R 1
010 = −A′′/2B + B′A′/4B2 + A′2/4BA

R 2
020 = R 3

030 = −A′/2Br

R 2
121 = R 3

131 = −B′/2Br

R 0
101 = −BR 1

010 /A

R 0
303 = −r2 sin2 θR 3

030 /A = r sin2 θA′/2BA

R 1
313 = r2 sin2 θR 3

131 /B = −r sin2 θB′/2B2 .

Hence the the vacuum equations are

R00 = −A′′/2B + B′A′/4B2 + A′2/4BA − A′/Br = 0 (7.3)

R11 = A′′/2A − A′2/4A2 − B′A′/4BA − B′/Br = 0 (7.4)

R22 = R33/ sin2 θ = rA′/2BA − rB′/2B2 + 1/B − 1 = 0 . (7.5)

All the other components of the Ricci tensor vanish identically, as can be seen by
direct calculation or by using the fact that Rab must have the same symmetries
as the metric.

In all, we have three equations in the two unknowns A, B. Fortunately they
are consistent. If we take B times (7.3) and add A times (7.4), then we get

AB′ + BA′ = 0 ,

and hence that AB is constant. Because we want A,B → 1 as r → ∞, we must
therefore have AB = 1. By substituting into (7.5), we then get that rA′+A = 1
and hence that

A =
1
B

= 1 +
k

r

for some constant k. But for large r, we want A = 1 − 2m/r + O(r2), so
k = −2m, and the solution is

ds2 =
(

1 − 2m

r

)
dt2 − dr2

1 − 2m/r
− r2(dθ2 + sin2 θ dϕ2) . (7.6)

This is the Schwarzschild metric. The method of derivation is notable only
for the incentive it gives to find more subtle methods for tackling Einstein’s
equations.
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7.3 Stationary Observers

An observer in a fixed location relative to our coordinate system has a worldline
with constant r, θ, ϕ, and therefore has four-velocity U with only the first com-
ponent nonzero. Because UaUa = 1 and U0 > 0, the four-velocity components
are

U0 =
1√

1 − 2m/r
, Ua = 0 for a = 1, 2, 3 .

The observer’s worldline is not geodesic, as we know, for example, from the fact
that an observer at rest on the earth’s surface is accelerating relative to the local
inertial frame and is not in free-fall. The observer interprets this acceleration
as the ‘force of gravity’.

In local inertial coordinates at an event, the four-acceleration is αa =
dUa/dτ . In general coordinates, therefore,

αa = U b∇bU
a = U b∂bU

a + Γ a
bcU

bU c .

As in special relativity, the acceleration actually felt by the observer is
√−αaαa.

By using the Christoffel symbols found above, we have

αa = U0∂0U
a + Γ a

00U
0U0 .

The only nonvanishing component is

α1 =
A′(U0)2

2B
= 1

2A′ ,

where A = B−1 = 1 − 2m/r. Thus the four-acceleration of the observer has
components (0,m/r2, 0, 0), as one might expect by naive analogy with Newto-
nian theory. However, the acceleration felt by the observer is

g =
√−αaαa =

m

r2

1√
1 − 2m/r

. (7.7)

Thus the ‘force of gravity’ is given by the same inverse square law g = m/r2 as
in Newtonian theory for large r, but increases to infinity as r approaches the
Schwarzschild radius r = 2m. We show later that r = 2m is the event horizon
of a black hole. What we are observing here is a consequence of the fact that
inside a black hole one would have to travel faster than light in order to stay
‘in the same place’.
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7.4 Potential Energy

The worldlines of particles in free-fall and of photons in a general space–time
are geodesics. They are the solutions of the differential equations generated by
the Lagrangian

L = 1
2gabẋ

aẋb .

In the case of free particles, the dot denotes differentiation with respect to
proper time τ , the time measured by a clock carried by the particle. In the case
of photons, the dot is differentiation with respect to an affine parameter, which
is defined only up to a constant factor and the addition of a further constant.

In the Schwarzschild metric, the geodesic Lagrangian is

L =
1
2

[(
1 − 2m

r

)
ṫ2 − ṙ2

1 − 2m/r
− r2

(
θ̇2 + sin2 θϕ̇2

)]
. (7.8)

Therefore the t equation for the geodesic motion of a free particle is

d
dτ

(
∂L

∂ṫ

)
= 0

because the Lagrangian is independent of t. Consequently

E = (1 − 2m/r)ṫ

is constant along the particle worldline. What is the interpretation of this con-
stant? Suppose that the particle has four-velocity V and unit mass. Then rela-
tive to an observer ‘at rest’ at some point in the particle’s history, the particle
has speed v given by

γ(v) =
1√

1 − v2
= UaVa = g00U

0V 0 = ṫ
√

1 − 2m/r .

Therefore

E =

√
1 − 2m/r√
1 − v2

.

For large r and small v, this is approximately

E = 1 + 1
2v2 − m/r + smaller terms .

Thus E is the sum of the rest energy (Mc2 with M = 1 and c = 1), the kinetic
energy 1

2v2 relative to the observer, and the Newtonian potential energy −m/r.
Thus it is reasonable to interpret E as the total energy of the particle. We note
that this is consistent with (7.7), which can be written

g = ∂r

√
1 − 2m/r ,
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with the implication that we should interpret
√

1 − 2m/r as the potential en-
ergy of a unit mass particle at rest. Conservation of energy is then a conse-
quence of ∂L/∂t = 0, that is, of the fact that t is an ignorable coordinate. As
in classical mechanics, energy is conserved when there is invariance under time
translation.

7.5 Photons and Gravitational Redshift

In special relativity, a photon worldline is a null line. The frequency four-vector
K is tangent to the worldline and encodes information about the frequency of
the photon, as measured by a moving observer. If the observer has four-velocity
U , then the observed frequency is ω = UaKa. The frequency four-vector is
constant along the photon worldline.

By our usual principle that special relativity should hold over short times
and distances in local inertial coordinates, it follows that in general relativity
K is tangent to the photon worldline, which is now a null geodesic, and that

Ka∇aKb = 0 .

If we put W a = dxa/dσ, where σ is the affine parameter, then the geodesic
equation is

W a∇aW b = 0 .

Because W is proportional to K and because it is tangent to the photon world-
line, it must in fact be a constant multiple of K. By rescaling σ, we can take
W a = Ka. With this choice of σ, the frequency four-vector is given by

Ka = dxa/dσ .

Now consider two observers O1 and O2 in the Schwarzschild space–time, at
rest relative to the Schwarzschild coordinates at r = r1 and r = r2, respectively.
If O1 sends out a photon to O2, and if the frequency measured by O1 at
transmission is ω1, then what is the frequency at reception as measured by O2?

Denote the photon’s worldline by xa = xa(σ), where the affine parameter
σ is chosen so that the frequency four-vector is Ka = dxa/dσ. Let ω denote
frequency measured by a stationary observer at r. Then we have

ω = UaKa = g00U
0K0 = ṫ

√
1 − 2m/r ,

where the dot is the derivative with respect to σ. However (1− 2m/r)ṫ is con-
stant along the worldline because L is independent of t. Therefore ω

√
1 − 2m/r
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is also constant and so we have

ω2 = ω1

√
1 − 2m/r1

1 − 2m/r2
.

This is the gravitational redshift formula. For large r1, r2, we have

ω2 ∼ ω1(1 + m/r2 − m/r1) ,

so the change in frequency is proportional to the difference gravitational po-
tential between the two observers. This is precisely what is needed to avoid the
paradox in Bondi’s perpetual motion machine. We remark also that quantum
theory tells us that the energy of a photon relative to an observer is �ω. So the
conservation law here can again be interpreted as ‘conservation of energy’.

7.6 Killing Vectors

A special role is played in these calculations by time symmetry. It is this that
allows us to say what we mean by ‘stationary’ observers, and it is this that
gives us energy conservation.

More generally, if the metric coefficients gab are independent of one of the
coordinates x0, then L = 1

2gabẋ
aẋb is independent of x0, and so from Lagrange’s

equations

∂L

∂ẋ0
= ga0ẋ

a

is constant along geodesics. But this quantity is equal to T aVa, where V a = ẋa

and T is the four-vector field with components (1, 0, 0, 0). The quantity T aVa

is an invariant. It depends only on the four-vectors V and T , and not on the
choice of coordinates, although, of course, T will have components (1, 0, 0, 0)
only for particular choices of coordinates.

Definition 7.1 (Preliminary definition)

A nonvanishing vector field T is said to be a Killing vector field or Killing
vector whenever there exists a coordinate system in which T has components
(1, 0, 0, 0) and gab is independent of x0.

We have just proved the following.



7.6 Killing Vectors 103

Proposition 7.2

If T is a Killing vector, then Taẋa is constant along any geodesic.

How can we recognise a Killing vector, and therefore derive a conserved quantity
for free particle and photon orbits, without making the transformation to the
special coordinate system? To answer this, we look first at the defining property
in the special coordinates in which T has components (1, 0, 0, 0). Here we have

0 = ∂0gab = T c∂cgab .

But we also have

∇aTb = ∂a(gbcT
c) − 1

2T c(∂agbc + ∂bgac − ∂cgab)

∇bTa = ∂b(gacT
c) − 1

2T c(∂bgac + ∂agbc − ∂cgba) .

By adding, we get
∇aTb + ∇bTa = T c∂cgab = 0

because ∂aT c = 0. But the left-hand side is a tensor. Therefore it vanishes in
one coordinate system if and only if it vanishes in every coordinate system. We
have proved the following.

Proposition 7.3

Let T a be a nonvanishing vector field. If T a is a Killing vector then

∇aTb + ∇bTa = 0

in any coordinate system.

The converse is also true. The proof relies on the fact that for any nonvanishing
vector field T �= 0, there exists a local coordinate system in which T has com-
ponents (1, 0, 0, 0). One deduces the proposition by working in such coordinates
and by following through the same calculation in reverse.

We can use Proposition 7.3 to prove Proposition 7.2 directly by starting
from the geodesic condition in the form V a∇aVb = 0, where V a = ẋa. From
this we get that the derivative of V aTa is

V a∇a(V bTb) = V aV b∇aTb = 1
2V aV b(∇aTb + ∇bTa) = 0 ,

and hence that V aTa is constant. The converse statement can also be deduced
from this. If ẋaTa is conserved along every geodesic, then Ta is a Killing vector.

We use Proposition 7.3 to extend the definition by dropping the condition
that T a should be everywhere nonvanishing. It now takes the following form.
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Definition 7.4 (Standard definition)

A vector field T a is a Killing vector if ∇aTb + ∇bTa = 0.

EXERCISES

7.1. A clock is said to be at rest in the Schwarzschild space–time if its
r, θ, and ϕ coordinates are constant. Show that the coordinate time
and the proper time along the clock’s worldline, that is, the time τ

shown on the clock, are related by

dt

dτ
=
(

1 − 2m

r

)−1/2

.

Note that the worldline is not a geodesic.

Show that along a radial null geodesic, that is, one on which only t

and r are varying,
dt

dr
=

r

r − 2m
.

Two clocks C1 and C2 are at rest at (r1, θ, ϕ) and (r2, θ, ϕ). A photon
is emitted from C1 at event A and arrives at C2 at event B. A second
photon is emitted from C1 at event A′ and arrives at C2 at event
B′. Show that the coordinate time interval ∆t between A and A′ is
the same as the coordinate time interval between B and B′. Hence
show that the time interval ∆τ1 between A and A′ measured by C1

is related to the time interval ∆τ2 between B and B′ measured by
C2 by

∆τ1

(
1 − 2m

r1

)−1/2

= ∆τ2

(
1 − 2m

r2

)−1/2

.

If you wear two watches, one on your wrist and one on your ankle,
and you synchronize them at the beginning of the year, by how
much is the watch on your wrist faster or slower than the one on
your ankle at the end of a year? (Assume that you spend the whole
year standing upright without moving. In general units, you must
replace m/r by Gm/rc2.)

7.2. Show that if X is a vector field and Tab is a tensor field of type (0, 2),
then

Xa∂aTbc + Tac∂bX
a + Tba∂cX

a

transforms as a tensor of type (0,2). This tensor is called the Lie
derivative of T along X.
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Show that X is a Killing vector if and only if the Lie derivative of the
metric along X vanishes. Show that if X and Y are Killing vectors,
then so is the vector field [X, Y ], which is defined by

[X, Y ]a = Xb∂bY
a − Y b∂bX

a .

Let gab be the Schwarzschild metric, with x0 = t, x1 = r, x2 =
θ, x3 = ϕ. Show that the following are the components of Killing
vectors

(1, 0, 0, 0), (0, 0, 0, 1), (0, 0,− cos ϕ, cot θ sin ϕ)

and find a fourth Killing vector which is not a linear combination
with constant coefficients of these three.

7.3. Show that if Ba = ∇af for some function f , then ∇[aBb] = 0. The
converse is also true (locally), and you may use this without proof.

Let Fab be a solution of Maxwell’s equations ∇aF ab = 0, ∇[aFbc] = 0
in curved space–time. The equation of motion of a particle of charge
e and rest mass M is given by the Lorentz equation

Mub∇bU
a = eF abUb,

where Ua = dxa/dτ , with τ the proper time. Show that if the Lie
derivative of Fab along Xa vanishes (see the previous exercise), then
FabX

b = ∇af for some function f . Show that if Xa is also a Killing
vector then MuaXa + ef is a constant of motion for the particle.
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Orbits in the Schwarzschild Space–Time

We now look at particle motion in the Schwarzschild background. Our main
aim is to derive corrections to Kepler’s laws, so we think of the gravitational
field as that of the sun. By a ‘particle’, we mean a very small body, such as a
planet, whose own gravitational field can be ignored.

8.1 Massive Particles

The particle orbits are generated by the Lagrangian

L =
1
2

[(
1 − 2m

r

)
ṫ2 − ṙ2

1 − 2m/r
− r2

(
θ̇2 + sin2 θϕ̇2

)]
,

where the parameter is the proper time τ and the dot is the derivative with
respect to τ . We assume that r > 2m, which means that we are looking at
the external field of a spherical star rather than the field inside a black hole.
Because L has no explicit dependence on t, ϕ, or τ , we have three conservation
laws.

(∂tL = 0) E = (1 − 2m/r)ṫ = constant
(∂ϕL = 0) J = r2 sin2 θ ϕ̇ = constant
(∂τL = 0) L = constant.
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In fact gabẋ
aẋb = 1 because τ is proper time, and so the third conservation law

is simply L = 1
2 .

We need one other equation to determine the orbits. We use the θ Lagrange
equation,

d
dτ

(
r2θ̇
)
− r2 sin θ cos θ ϕ̇2 = 0 . (8.1)

We could also write down the r equation, but it would contain no new infor-
mation because, with the conservation laws, we already have four equations for
the four unknown coordinates t, r, θ, ϕ.

Equation (8.1) is symmetric under

θ 
→ π − θ .

Therefore an orbit on which θ = π/2, θ̇ = 0 at τ = 0 will have θ = π/2 for all τ .
Because the field is spherically symmetric, we can understand all the orbits by
studying only these equatorial orbits. There is no loss of generality, therefore,
in putting θ = π/2. We then have

1 =
E2

1 − 2m/r
− ṙ2

1 − 2m/r
− J2

r2

by combining the conservation laws. That is,

ṙ2 = −J2

r2

(
1 − 2m

r

)
+ E2 −

(
1 − 2m

r

)
.

This is a first-order differential equation for r as a function of proper time.
As in Newtonian theory, the equation looks a bit simpler if we replace r by
u = m/r and use ϕ instead of τ as the parameter. Now

du

dϕ
= −m

r2

dr

dτ

/dϕ

dτ
= −mṙ

J
.

Therefore the orbits are given by(
du

dϕ

)2

=
m2E2

J2
− u2(1 − 2u) − m2(1 − 2u)

J2
, (8.2)

provided that J �= 0, that is, provided that the orbit is not radial.
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8.2 Comparison with the Newtonian Theory

In the corresponding problem in Newton’s theory, the particle (assumed to
have unit mass) moves under the influence of the inverse square law force
m/r2. The equatorial orbits are determined in plane polar coordinates r, ϕ by
the conservation of the energy ε and the angular momentum J , by

ε = 1
2 (ṙ2 + r2ϕ̇2) − m/r, J = r2ϕ̇ .

As in the Schwarzschild space–time, we put u = m/r, du/dϕ = −mṙ/J . Then
we have

ε =
J2

2m2

(
du

dϕ

)2

+
J2u2

2m2
− u .

To make comparison between the two theories, we put β = m/J , and p =
du/dϕ. In the Newtonian case, we put k = εm2/J2 and define

g(u) = 2β2u + 2k − u2 .

In general relativity, we put k = (E2 − 1)m2/2J2 and define

f(u) = 2β2u + 2k − u2 + 2u3 .

Then the orbits are given by p2 = g(u) in Newtonian theory and by p2 = f(u)
in general relativity. The only difference is the extra term 2u3 in f(u), which,
of course, is small when r is large. In both cases, we are working in units in
which G = 1.

The differential equations for the orbits can also be written in the second-
order form

d2u

dϕ2
= 1

2f ′(u)

in general relativity, or in the same way with 1
2g′(u) on the right in Newtonian

theory.
We can see the effect of the extra term in one of the classic tests of general

relativity, the perihelion advance of Mercury. In general relativity, the point on
a planet’s orbit at which it is closest to the sun—the perihelion—advances on
each orbit. In Newtonian theory the orbit is closed and the perihelion is always
in the same position, provided that one ignores the effect of other planets. The
relativistic advance is most significant in the case of Mercury because its orbit
is closest to the sun, where the sun’s field is strongest. In fact the perihelion also
advances in Newtonian theory because of interactions with other planets, most
notably with Jupiter. The general relativistic effect is the additional advance
that cannot be explained in this way. When it was first observed, Le Verrier
suggested that the additional advance might be due to another planet with an
orbit closer to the sun than Mercury’s. He predicted that it would be visible
crossing the sun’s disc in March 1877, but it was not seen [1].



110 8. Orbits in the Schwarzschild Space–Time

8.3 Newtonian Orbits

In the Newtonian theory, we have

d2u

dϕ2
+ u = β2 , (8.3)

which implies that
u = β2 + A cos(ϕ − ϕ0) ,

for constant A, ϕ0. By differentiating we get

p2 = A2 sin2(ϕ − ϕ0) = A2 − (u − β2)2 .

Hence A2 = 2k + β4. The form of the orbit depends on the sign of k.

(1) If k > 0 then |A| > β2 and u = 0 for some values of ϕ. In this case, the
orbits are hyperbolic and the particle can escape to infinity.

(2) If k < 0 then |A| < β2. In this case, u is bounded away from zero, and
therefore |r| is bounded and the orbits are elliptic.

A special case arises in (2) when u is constant on the orbit, and so

du

dϕ
and

d2u

dϕ2

vanish identically. Such circular orbits are given by solving

g(u0) = g′(u0) = 0

for the constant value u0 of u. The result is u0 = β2, where

β4 + 2k = 0 .

For a general orbit with k < 0, we can rewrite (8.3) in the form

d2v

dϕ2
+ v = 0 ,

where v = u− β2. This is the equation of simple harmonic motion with period
2π. The ‘time’ of course is not t, but the polar angle ϕ. Thus we can think
of a general elliptic orbit as oscillating about a circular orbit (u = β2) with
simple harmonic motion. The fact that in these oscillations the period of u as a
function of ϕ is exactly 2π is what makes the elliptic orbits closed in Newtonian
theory. Each circuit of the origin adds 2π to ϕ and brings the particle back to
the initial value of u. In particular, perihelion always occurs at the same value
of ϕ. There is no perihelion advance in the two-body system.
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One can gain some insight into the structure of the orbits in Newtonian
theory by plotting the phase portrait, in which one represents the orbits by
curves in the u, p-plane. If we fix β and plot the phase curves for varying values
of k, the result is a set of concentric circles

p2 + (u − β2)2 = 2k + β4

centred on the circular orbit u0 = β2, labelled A in Figure 8.1. The hyperbolic
orbits are those that meet the p-axis; the elliptic orbits are those that do not.
The two families are separated by the parabolic orbit, which touches the p-axis
at the origin.

A
u

p

Figure 8.1 The Newtonian phase portrait

8.4 The Perihelion Advance

In general relativity, there are also closed orbits u = u0. The corresponding
values of the constants β and E are found by solving

f ′(u0) = 0 = f(u0) .

Now consider an orbit u = u0+v(ϕ) which is almost circular, so that v is small.
By substituting into the equation of motion, we obtain

d2v

dϕ2
= 1

2f ′(u) = 1
2f ′(u0) + 1

2vf ′′(u0) + O(v2) .



112 8. Orbits in the Schwarzschild Space–Time

But f ′(u0) = 0, and f ′′(u) = −2 + 12u. Therefore v satisfies

d2v

dϕ2
+ (1 − 6u0)v = 0 ,

on ignoring the term O(v2). This is again the equation of simple harmonic
motion, with ϕ as ‘time’. So at least for orbits that are close to circular, we
again have the picture that the planet’s orbit oscillates about a circular orbit.
Now, however, the period is not 2π, but

ϕ =
2π√

1 − 6u0
∼ 2π + 6u0π ,

for small u0, that is, for large r0. Thus if the particle starts at perihelion where
r minimal and u is maximal, then r returns to its initial value not after a whole
rotation, but after ϕ has advanced through a further angle 6u0π. This is the
perihelion advance. If we substitute u0 = m/r0 and put back in the constants—
there is only one way to do this to get the dimensions right—then the advance
is

6Gmπ

r0c2

per revolution for an orbit of approximate radius r0. We are ignoring second-
order terms in 1/r0, as well as assuming that the orbit is ‘nearly’ circular.

In the case of the orbit of Mercury, the relevant quantities have the following
values in SI units. The mass of the sun is m = 1.98×1030. The radius of the orbit
is r0 = 5.79× 1010, and the constants are G = 6.67× 10−11, and c2 = 9× 1016.
This gives the advance as around 40′′ per century. A more careful analysis
gives 43′′, exactly accounting for the anomaly without the need for Le Verrier’s
additional planet.

The effect is more marked in the case of the binary pulsar PSR 1913+16,
where the advance is around 4o per year [21]. The system consists of a neutron
star, about 15 miles across, but with a mass about 50% larger than that of
the sun, orbiting another star once every 8 hours or so. Here one reverses the
Mercury observation, using the rotation of the orbit to measure the masses. One
then calculates the theoretical rate at which the orbital period should decrease
as the two stars lose energy through gravitational radiation. The result, over
15 years, agrees with observation to within 0.5%

8.5 Circular Orbits

The equatorial orbits in the Schwarzschild space–time are given by p2 = f(u),
where

f(u) = 2β2u − u2 + 2u3 + 2k ,
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and

u =
m

r
, p =

du

dϕ
, β =

m

J
, k =

(E2 − 1)m2

2J2
.

They are solutions to the second-order equation

d2u

dϕ2
= 1

2f ′(u) .

The circular orbits are those for which r and therefore also u are constant.
They are given by f(u) = 0, f ′(u) = 0. The second of these equations implies
that

6u = 1 ±
√

1 − 12β2 ,

which for small β has solution

u = β2 and u = 1
3 − β2

on ignoring terms of order β4. The first root is the Newtonian circular orbit.
This is still present in general relativity provided that the radius m/β2 is large
compared to m. The second is a new feature. It has radius close to r = 3m,
which is only just above the Schwarzschild radius r = 2m, and it exists only
if the source of the gravitational field is contained within the sphere r = 3m,
so the metric still takes the Schwarzschild form at this radius. We show below
that r = 3m itself is a circular photon orbit. A particle on the inner circular
orbit has to be moving close to the velocity of light, relative to a stationary
observer.

1/4 u

q(u)

Figure 8.2 Plots of q(u) = 2β2u − u2 + 2u3
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8.6 The Phase Portrait

We can understand more clearly the pattern of orbits by drawing the phase
portrait in the u, p-plane for fixed β2 and by varying k, as we did in the Newto-
nian theory. We first plot the graphs of q(u) = u(2u2−u+2β2) in the q, u-plane
for different values of β2, in Figure 8.2. These curves in the q, u-plane have the
following features.

– For β2 = 0, the curve lies below the u-axis for 0 < u < 1
2 , and touches it at

the origin.

– For β2 = 1/16 the two roots of 2u2 − u + 2β2 come into coincidence.

– For β2 = 1/12, the two roots of q′(u) come into coincidence.

We consider the orbits only for 1
2 > u > 0, that is, for r > 2m. If the vacuum

region extends that far inwards, the portion of space–time in which r < 2m is
inside a black hole. For each value of β2, we get a phase portrait by plotting
the curves p2 = q(u) + 2k for different values of k. For small u, that is, large
r, the portrait coincides with the Newtonian picture. The differences arise as u

approaches 1
2 . Note that the arrows in the plots show the direction of increasing

ϕ, not of increasing time.

B A

p

u

Figure 8.3 The case 0 < β2 < 1/16
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The case 0 < β2 < 1/16

There are two circular orbits, one stable (B), and the other unstable with k > 0
(A). A particle disturbed from the inner circular orbit—the unstable one—can
either spiral inwards or escape to infinity. The horizon is shown as a dashed
line.

The case 1/16 < β2 < 1/12

The inner unstable circular orbit A has k < 0: a particle disturbed from this
orbit will not escape to infinity. As β2 is increased, the two circular orbits move
towards each other. They coincide when β2 reaches 1/12, at r = 6m.

u

p

B A

Figure 8.4 The case 1/16 < β2 < 1/12

The case β2 > 1/12

There are no closed orbits in this case: the angular momentum is too small. All
orbits either escape to infinity or spiral inwards.
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u

p

Figure 8.5 The case β2 > 1/12

In no case are there stable circular orbits with r < 6m: this is the minimum
radius for a planetary orbit. For a star of the mass of the sun, the minimum
radius is 9 km. For an ordinary star, this is well inside the star itself, so the
limit is not relevant. But the limit is important in the analysis of the infall
of matter into a black hole, usually from a companion star. It is this that is
responsible for X-ray emissions from the neighbourhood of a stellar mass black
hole.

An interesting lesson to learn from the first case is that, contrary to popular
belief, it is not easy to fall into a black hole. Suppose that initially the particle
is at r = r0, with r0 � r, and that the radial and transverse components of its
velocity relative to a stationary observer are vr and vt, respectively. As long as
these are small compared with the velocity of light, we have that

E ∼ 1 + 1
2 (v2

t + v2
r ) − m/r0 = 1 + ε, β =

m

J
=

m

r0vt
,

where ε is small. On the subsequent orbit, we must have

f(u) = β2u − u2 + 2u3 + εβ2 > 0 .

If we ignore the last term in f , then the phase-plane analysis tells us that we
must have β2 > 1/16 on an orbit with k ∼ 0 if the particle is to reach the
horizon. That is,

v2
t < 16m2/r2

0 .
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Let v0 =
√

m/r0 denote the velocity of a circular orbit at the initial radius.
Then the condition for our particle to fall into the black hole is∣∣∣∣ vt

v0

∣∣∣∣ < 4
√

m

r0
= 4
√

R

2r0
,

where R is the Schwarzschild radius. Although the black hole has a very strong
gravitational field, its radius is small, and it presents an almost impossible
target from any distance.

Exercise 8.1

What is
√

R/2r0 if r0 is the radius of the earth’s orbit and the black
hole has the mass of the sun?

8.7 Photon Orbits

The photon orbits are generated by the same Lagrangian

L =
1
2

[(
1 − 2m

r

)
ṫ2 − ṙ2

1 − 2m/r
− r2

(
θ̇2 + sin2 θϕ̇2

)]
,

but now the dot is differentiation with respect to an affine parameter σ. Again
we have three constants: the energy

E = (1 − 2m/r)ṫ ,

the angular momentum
J = r2 sin2 θ ϕ̇ ,

and the value L itself. In the case of photons, the last constant is zero because
gabẋ

aẋb vanishes when ẋa is null.
By proceeding along the same lines as before, we obtain

p2 = α2 + 2u3 − u2 , (8.4)

where u = m/r, p = du/dϕ, and α2 = m2E2/J2. There is no sensible New-
tonian model with which to make comparisons, but we note that without the
term 2u3, the orbits would be given by

u = α cos(ϕ − ϕ0), p = −α sin(ϕ − ϕ0) .

That is, by
r cos(ϕ − ϕ0) = m/α , (8.5)
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u1/3

p2

Figure 8.6 α2 + 2u3 − u2 against u for different values of α

which is the polar equation of a straight line. So we can think of the term 2u3

as the gravitational contribution. It is responsible for the ‘bending of light by
gravity’.

The phase portrait is found in the same way as before. First we plot

p2 = α2 + 2u3 − u2

against u for different values of α, as in Figure 8.6. By taking the square root,
we then get the phase portrait in Figure 8.7, with the different values of α

labelling the different curves in the p, u-plane. Note that the arrows in the plot
show the direction of increasing ϕ, not of increasing time. For large r (small
u), the orbits look like hyperbolic Newtonian orbits. A photon travelling in
from infinity will escape to infinity, but the trajectory will be deflected. As r

decreases, the deflection increases, and the orbit can wind around the source
many times. At r = 3m, it is possible for the photon to orbit in an unstable
circular orbit.

8.8 The Bending of Light

We now find the approximate orbits for large r, that is, in the domain in
which u2 � u3. They are approximately straight lines, but slightly bent by the
gravitational field through the appearance of the ‘gravitational term’ 2u3 in
(8.4).

To see the effect of the gravitational term, we put

u = α cos ϕ + v ,
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u

p

A

Figure 8.7 The phase portrait for photon orbits

where α is small and v = O(α2). In other words, we consider a perturbation of
(8.5) with ϕ0 = 0. On ignoring terms of order v2 = O(α4), we get

0 = u′2 + u2 − 2u3 − α2

= −2αv′ sin ϕ + 2αv cos ϕ − 2α3 cos3 ϕ ,

where the prime is differentiation with respect to ϕ. From this we obtain

sin ϕv′ = v cos ϕ − α2 cos3 ϕ

and hence on finding the integrating factor,

d
dϕ

(
v

sin ϕ

)
= −α2 cos ϕ

(
1

sin2 ϕ
− 1
)

.

Therefore
v

sin ϕ
=

α2

sin ϕ
+ α2 sin ϕ + K

for some constant K. We can set K = 0 by adjusting ϕ0, to get

v = α2(1 + sin2 ϕ) .

Because the gravitational field is weak, we can interpret r, ϕ as plane polar
coordinates in the equatorial plane. The unperturbed trajectory is the straight
line

αr cos ϕ = m ,
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which goes to infinity as ϕ → ±π/2. The perturbed trajectory, on the other
hand, goes to infinity as

ϕ → ±(π/2 + γ) ,

where the angle γ is given by

−α sin γ + α2(1 + cos2 γ) = 0 .

This gives γ = 2α to the first order in α. So the total deflection of the light ray
is

2γ = 4α = 4m/D ,

where D = m/α is the value of r at the point of closest approach to the source
of the unperturbed trajectory. In SI units, the deflection is

4mG

Dc2
.

For a light ray just grazing the surface of the sun, we have (in SI units) D =
7×108 (the radius of the sun), m = 2×1030 (the mass of the sun), c = 3×108,
and G = 7 × 10−11. The result is a deflection of 10−5 radians or 2′′. This is
hard to observe because of the difficulty in detecting light that grazes the sun.
Its effect can, however, be seen during a total eclipse, and was first observed by
Eddington in 1919. The deflection causes the stars near the sun in the sky to
appear to move from their normal positions away from the centre of the sun.
Eddington compared photographs of the star field near the sun during a total
eclipse with a photograph of the same star field when the sun was in a different
position in the sky at another time of year [5].

EXERCISES

8.2. Show that along free particle worldlines in the equatorial plane of
the Schwarzschild metric, the quantities

J = r2ϕ̇ and E =
(

1 − 2m

r

)
ṫ

are constant. Here the dot is the derivative with respect to proper
time. Explain why the particle cannot escape to infinity if E < 1.

Show that

ṙ2 +
(

1 +
J2

r2

)(
1 − 2m

r

)
= E2,

r̈ +
m

r2
− J2

r3
+ 3

mJ2

r4
= 0.
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For a circular orbit at radius r = R, show that

J2 =
mR2

R − 3m
,

dϕ

dt
=
( m

R3

)1/2

.

Show by setting r(τ) = R+ε(τ), with ε small, that the circular orbit
is stable if and only if R > 6m.

8.3. Show that for a suitable value of α = mE/J , there are equatorial
null geodesics in the Schwarzschild solution on which

1 − 3u(√
3 +

√
1 + 6u

)2 = Aeϕ

for arbitrary constant A. Describe their behaviour as ϕ → −∞ for
(i) A > 0 and (ii) A < 0.

8.4. Sketch the phase portrait in the p, u-plane of the equatorial particle
orbits in the Schwarzschild space–time for fixed E and various values
of β2 = m2/J2 in the case 1 > E2 > 8/9. What changes when
E2 = 8/9?
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Black Holes

We now look more closely at what happens at the Schwarzschild radius, r = 2m.
It is clear that something goes wrong there in the formula (7.6) for the metric
coefficients. We show, however, that the singularity is not in the space–time
geometry itself, but simply in the coordinates in which it is expressed. The
singular behaviour at r = 2m goes away when we make an appropriate change
of coordinates.

9.1 The Schwarzschild Radius

For a normal star, the Schwarzschild radius is well inside the star itself. As it
is not in the vacuum region of space–time, the Ricci tensor does not vanish at
r = 2m, and so the Schwarzschild solution is not valid there. Instead the met-
ric is that of an ‘interior’ Schwarzschild solution, found by solving Einstein’s
equations for a static spherically symmetric metric, with the energy-momentum
tensor of an appropriate form of matter on the right-hand side. In such metrics,
generally nothing exceptional happens at the Schwarzschild radius. But in the
extreme case, all of the body lies within its Schwarzschild radius and the vac-
uum solution (7.6) extends down to r = 2m. In this case, we have a spherical
black hole.

For the sun to be contained within its Schwarzschild radius, it would have to
be compressed to a radius of 3 km, which would imply an almost unimaginable
density. For a galaxy, however, the density at this critical compression is only
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that of air, and so it is not hard, at least in principle, to imagine a sufficiently
advanced civilization directing the orbits of the stars in a galaxy so that all
the matter ended up within the Schwarzschild radius. We must therefore take
seriously the existence of black holes as a theoretical possibility even without
having to contemplate the extreme conditions in which a star could collapse to
a black hole.

9.2 Eddington–Finkelstein Coordinates

The Schwarzschild metric is

ds2 =
(

1 − 2m

r

)
dt2 − dr2

1 − 2m/r
− r2(dθ2 + sin2 θ dϕ2) .

We cannot simply ignore the part of space–time for which r ≤ 2m because an
infalling observer will reach r = 2m in finite proper time. An observer who falls
radially, that is, with constant θ and ϕ, has worldline given by

E = (1 − 2m/r)ṫ, 1 = (1 − 2m/r)ṫ2 − ṙ2

1 − 2m/r
,

where the parameter τ is proper time. In the special case E = 1, which arises
when the observer falls from rest with respect to the timelike Killing vector at
infinity, we have ṙ2 = 2m/r. Then∫ √

r dr = −
√

2m

∫
dτ

and hence
2r3/2 = 3

√
2m(κ − τ)

for some constant κ. We conclude that the proper time τ taken to reach r = 2m
is finite. However, the coordinate time taken is infinite because

dr

dt
= −

(
1 − 2m

r

) √
2m√
r

and so

−
∫

r3/2 dr

r − 2m
=

√
2m

∫
dt .

The integral on the left-hand side diverges as r → 2m.
To understand the space–time geometry of a black hole, we first look for a

coordinate system in which the singularity at r = 2m disappears. One can see
what goes wrong with the given coordinates by looking at the null geodesics
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in the r, t-plane—the worldlines of photons travelling radially inwards or out-
wards. These are the curves given by(

1 − 2m

r

)
dt2 − dr2

1 − 2m/r
= 0 .

By integration we obtain∫
dt = ±

∫
dr

1 − 2m/r
= ±

∫ (
1 +

2m

r − 2m

)
dr .

That is,
t ± (r + 2m log(r − 2m)

)
= constant . (9.1)

The radial null geodesics in the t, r-plane are the curves shown in Figure 9.1.

t

r

Figure 9.1 Radial null geodesics in the Schwarzschild metric

They all have r = 2m as an asymptote, shown as a dashed line, and the singular
behaviour there is associated with the fact that the curves bunch up on this
common value of r. For large r, they look like the corresponding lines r = ±t

in flat space–time. Each curve in Figure 9.1 represents an ingoing or outgoing
spherical wavefront. One can get at least a partial picture of how this works
by rotating about the t-axis to make the curves into surfaces of revolution.
They are shown in Figure 9.1, which is a space–time diagram with one spatial
dimension suppressed. The dark cylindrical surface is at r = 2m. The histories
of outgoing and ingoing wavefronts are surfaces asymptotic to this.

We should compare this picture with the corresponding one for Minkowski
space, where the radial null geodesics are straight diagonal lines in the t, r-plane
at 45o and the corresponding in- and outgoing wavefronts are the null cones
of the points on the polar axis r = 0 (Figure 9.3). In Minkowski space, as we



126 9. Black Holes

Figure 9.2 Ingoing and outgoing wavefronts in the Schwarzschild metric

follow an outgoing wavefront back in time, it focuses at the vertex of a cone,
with the vertex lying on the axis. In the Schwarzschild picture, by contrast, the
outgoing wavefront becomes closer and closer to the horizon as we follow it back
into the past, without ever crossing it. The picture for the ingoing wavefronts
is similar, but with time reversed.

Figure 9.3 Ingoing and outgoing wavefronts in Minkowski space
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In the Schwarzschild space–time, we can resolve the coordinate difficulties
by ‘compressing’ the t coordinate as we approach r = 2m. Guided by (9.1), we
make the transformation to coordinates v, r, θ, ϕ by putting

v = t + r + 2m log(r − 2m) ,

which gives

dt = dv − dr

1 − 2m/r

and hence

ds2 = (1 − 2m/r) dv2 − 2dv dr − r2(dθ2 + sin2 θ dϕ2) .

The singular behaviour at r = 2m has now disappeared. In the r, v-plane, the

v

r

Figure 9.4 Radial null geodesics in Eddington–Finkelstein coordinates

radial null geodesics are the lines of constant v together with the solutions to(
1 − 2m

r

)
dv

dr
− 2 = 0 .

This can be integrated to give

v =
∫

2r dr

r − 2m
= 2r + 4m log |r − 2m| + κ , (9.2)

for some constant κ. Thus the radial null geodesics are as shown in Figure 9.4.
Because the r-axis itself is null, it is not drawn horizontally: the lines parallel to
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it are the lines of constant v. The null geodesics given by (9.2) have a common
asymptote in the dashed vertical line.

We can see from the fact that timelike curves must lie between the ingoing
and outgoing null geodesics at every event that although the space–time is
nonsingular for r < 2m, it is not possible to escape to infinity. The hypersurface
r = 2m is called the event horizon. It separates events of which observers
outside can have knowledge from those inside of which they cannot. The events
inside the event horizon are inside the ‘black hole’. The lines of constant v are
null.

The new coordinates are called Eddington–Finkelstein coordinates. The his-
tories of the ingoing and outgoing wavefronts outside the event horizon in
Eddington–Finkelstein coordinates are shown in the space–time diagram, Fig-
ure 9.5. The dark cylinder is the horizon; the ingoing wavefront crosses the
horizon, and the outgoing one is asymptotic to it in the past.

The singular behaviour of the metric coefficients in the t, r coordinates does
not arise from a singularity of the space–time geometry because it disappears
in the v, r coordinates. Instead it arises from the singular behaviour of the
transformation from v, r to t, r coordinates at r = 2m, which shows itself in
the fact that the curves of constant t are asymptotic to the line r = 2m in the
r, v-plane. The transformation from v, r to t, r coordinates pushes the points
(v, 2m) to t = ∞.

In Eddington–Finkelstein coordinates, the space–time extends to r < 2m.
The Killing vector T with components (1, 0, 0, 0) in the original coordinates
t, r, θ, ϕ has the same components in the new coordinates, but inside the event
horizon, it is spacelike. We have T aTa = 1 − 2m/r and hence the following.

(i) For r > 2m, T is timelike and defines a standard of ‘rest’. A stationary
observer is one whose four-velocity is tangent to T .

(ii) For r = 2m, T is null. We can think of the event horizon as the history
of a light wavefront ‘at rest’, hovering forever between escaping to infinity
and falling into the black hole.

(iii) For r < 2m, T is spacelike, and no observer can remain at rest.

The worldline of any observer inside the black hole must inevitably reach r = 0
in finite proper time, in fact, in a time of the same order of magnitude as light
takes to travel the Schwarzschild radius.

We cannot, however, extend beyond r = 0, whatever coordinates are used.
There is a genuine singularity at r = 0, at which the tidal forces become infinite.
One can see this from the fact the invariant RabcdR

abcd blows up like r−6, and
so there is no coordinate system in which the metric is well-behaved at r = 0.
Once inside the black hole, an observer is not only unable to escape to infinity,
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Figure 9.5 Wavefronts in Eddington–Finkelstein coordinates

but is also unable to escape being crushed in the singularity in a very short
time.

9.3 Gravitational Collapse

The Schwarzschild solution by itself does not provide a good model of a real
black hole because it is a vacuum metric. There is no matter present to generate
the gravitational field. In a real astrophysical situation one expects black holes
to form from the collapse of stars after they have burnt up all their nuclear fuel.
The collapse can form a white dwarf, which is supported against gravity by the
‘electron degeneracy pressure’; however, above 1.4 times the mass of the sun,
this pressure is insufficient, and collapse results in a neutron star, essentially
a massive nucleus with an atomic number around 1058. But again there is a
limit to mass. Above some critical mass, somewhere between 1.5 and 3 solar
masses, no known physical process can prevent collapse to a black hole; and
once the event horizon has formed, no conceivable process can prevent collapse
to a singularity. This is the Penrose singularity theorem.

One can model the field of a spherically symmetric collapsing object by
joining the Schwarzschild metric, to represent the field outside the body, to
an interior metric, representing the field inside the collapsing star, across a
spherically symmetric hypersurface represented by a timelike curve in the v, r-
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plane. If we include one of the other spatial coordinates by rotating about the
line r = 0, then we obtain the three-dimensional representation of the space–
time shown in Figure 9.6.

Singularity

Horizon

Star

Wavefront

Figure 9.6 The collapse of a star to form a black hole

9.4 Kruskal Coordinates

It is instructive to explore further the vacuum solution without joining on
any interior solution. Here we look more closely at a curious feature of the
Eddington–Finkelstein coordinates, that they introduce a time asymmetry that
is not present in the original metric. That is, they do not treat the future and
the past in an even-handed way. They adjoin the interior of a black hole to
the exterior solution. We could equally well reverse t and use the coordinate
transformation to adjoin a ‘white hole’, from which an observer can escape, but
cannot enter.

We can see what is going on here by transforming instead to Kruskal coor-
dinates, in which both extensions can be made simultaneously. We start with
the original form of the metric

ds2 =
(

1 − 2m

r

)
dt2 − dr2

1 − 2m/r
− r2(dθ2 + sin2 θ dϕ2) .
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But now we transform to new coordinates U, V, θ, ϕ by putting

V

U
= −et/2m, UV = er/2m(2m − r) .

That is, V = ev/4m, U = −e−u/4m, where

v = t + r + 2m log(r − 2m), u = t − r − 2m log(r − 2m) .

Here v is the Eddington–Finkelstein coordinate, and −u is the coordinate used
in the time-reversed extension. We then have

dV =
ev/4m

4m

(
dt +

dr

1 − 2m/r

)
, dU =

e−u/4m

4m

(
dt − dr

1 − 2m/r

)
.

Hence

dU dV =
r er/2m

16m2

(
1 − 2m

r

)(
dt2 − dr2

(1 − 2m/r)2

)
.

Therefore in these new coordinates, the metric is

ds2 = 16m2r−1e−r/2m dUdV − r2(dθ2 + sin2 θ dϕ2) ,

where r is defined as a function of U, V by UV = er/2m(2m − r).

U V

Figure 9.7 The U, V coordinates on Minkowski space

To understand the geometry, let us look first at the corresponding transfor-
mation of Minkowski space. Here we start with

ds2 = dt2 − dr2 − r2(dθ2 + sin2 θ dϕ2)

and make the coordinate change

U = −er−t, V = et+r .
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Then the metric becomes

ds2 = e−2r dU dV − r2(dθ2 + sin2 θ dϕ2)

= −dU dV

UV
− r2(dθ2 + sin2 θ dϕ2) .

If we suppress the angular coordinates, then the relationship between the two
coordinate systems is as shown in Figure 9.7. The U, V axes are null lines, and
are therefore drawn at 45o to the horizontal, with time and the two coordinates
U, V increasing up the page. The curves of constant t are straight lines through
the origin; those of constant r are the hyperbolas UV = constant, which have
the U, V -axes as asymptotes. The transformation maps the whole of Minkowski
space into the region

−UV > 1, U < 0, V > 0

in the U, V -plane. The hyperbola in Figure 9.7 is the curve UV = −1; that is,
r = 0. The excluded region is the shaded region to the left of the right-hand
branch.

In the Schwarzschild geometry, the picture is very similar, except that the
metric continues in the U, V -plane to the region UV < 2m. The boundary
UV = 2m is the image of the ‘real’ singularity at r = 0 in the r, t plane. Figure
9.8 again shows the U, V -plane, with the axes drawn at 45o to the horizontal.
The straight lines are null. In this case, however, the metric is nonsingular in

U V

Figure 9.8 The Kruskal extension of the Schwarzschild geometry

the whole region bounded by the two branches of the hyperbola UV = 1, on
which r = 0. If we exclude the shaded region above and below these, then
we have the maximal analytic extension of the Schwarzschild space–time. The



9.4 Kruskal Coordinates 133

portion covered by the Eddington–Finkelstein coordinates is the portion above
the U -axis. The entire extended space–time contains both a black hole, the
region U > 0, V > 0, which an observer can enter but not leave, and a ‘white
hole’—the time reverse of a black hole—the region U < 0 V < 0, which an
observer can leave but not enter. There is no matter present. We can think
of the ‘m’ in the metric as being entirely gravitational in origin, or perhaps
we should think of it as the mass of the singularity at r = 0. There is no
stellar boundary and the space–time looks like two external regions, joined by
a ‘wormhole’.

The external regions are the two quadrants V > 0 > U and U > 0 > V : for
large |UV |, the metric looks in both like that of Minkowski space. We can see
the way in which they are connected by looking at the geometry of the spatial
section U = V , on which r is given as a function of V by V 2 = er/2m(2m− r).
On this r decreases to a minimum value of 2m and then increases again to

Figure 9.9 The spatial geometry at t = 0

infinity. If we put θ = π/2 (so that we are looking at the ‘equatorial plane’),
then the metric is

ds2 = (1 − 2m/r)−1 dr2 + r2 dϕ2 = (1 + f ′(r)2)dr2 + r2dϕ2 ,

where f =
√

8m(r − 2m). This is the metric on a surface of revolution given
by rotating the parabola f = f(r) about the f -axis. Thus we can picture the
hypersurface U = V as two copies of Euclidean space (at large r), joined by
the tube in Figure 9.9. This is the wormhole. To an observer in either of the
external spaces, the geometry looks like that of a black hole. Of course one
cannot actually travel through the wormhole. The passage through r = 2m

takes one inside the event horizon, and inevitably into the singularity at r = 0.
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When the black hole is formed by gravitational collapse, we see only part of
the diagram to the right in Figure 9.8. The rest must be replaced by a suitable
interior metric.
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Rotating Bodies

The Schwarzschild metric gives us some of the classic tests of relativity: the
bending of light, Mercury’s perihelion precession, and other predictions from
the analysis of geodesic motion. It also allows us to make some dramatic predic-
tions about the end states of the gravitational collapse of stars to black holes.
To find deeper tests, we have to look for more subtle effects of general relativity,
which cannot be seen in the Schwarzschild space–time. One is the ‘dragging of
inertial frames’ by a rotating body. The predictions here allow the testing of
Einstein’s equations as well as of the geometric model of space–time. They can
be observed in the effect of the earth’s rotation on an orbiting gyroscope.

We find the weak-field metric outside a rotating body before considering
the frame-dragging effect. We then look briefly at the Kerr metric, which is an
exact solution for the field.

10.1 The Weak Field Approximation

We begin with Einstein’s equations in the form

Rab − 1
2Rgab = −8πTab ,

where Tab = ρUaUb is the energy-momentum tensor of a distribution of dust
with rest density ρ and four-velocity field Ua. In the weak field approximation
(§6.2), gab = mab + hab and

R d
abc = 1

2mde(∂a∂chbe + ∂b∂ehac − ∂a∂ehbc − ∂b∂chae) .
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Therefore to the same approximation

Rab = 1
2

(
�hab − ∂aYb − ∂bYa

)
.

where Yc = mab(∂ahbc − 1
2∂chab) and � is the d’Alembertian. Here mab is the

metric on a background Minkowski space and the coordinates xa are inertial.
There is one obvious coordinate freedom in this ‘linearized’ form of Ein-

stein’s theory, which is to make a Lorentz transformation. There is also a less
obvious one, which can be seen as a gauge transformation in the weak field
theory. The idea is to replace the xas by

xa + Za ,

where Za is a vector field with small components, of the same order as those
of hab. The effect is to transform mab to

mab + ∂aZb + ∂bZa ,

where the Za = mabZ
b. In the spirit of the original approximation, we have

dropped terms involving products of the derivatives of Za. We can absorb the
change in mab into hab by making the gauge transformation

hab 
→ hab + 2∂(aZb) . (10.1)

We then again have a ‘weak field’ deviation from flat space–time. So part of the
perturbation of mab can be seen as a perturbation in the background inertial
coordinates and part as a genuine gravitational field. In general, there is no
natural way to disentangle the two.

We can, however, exploit the gauge freedom to restrict the form of hab. In
particular we can impose the de Donder gauge condition Ya = 0. Under (10.1),

Yc = mab(∂ahbc − 1
2∂chab) 
→ Yc + �Zc .

So to find a transformation that makes hab vanish, it is necessary only to choose
the Zas to be solutions of the inhomogeneous wave equation �Za = −Ya.

In the de Donder gauge, the approximate form of Einstein’s equation is

�wab = −16πTab , (10.2)

where
wab = hab − 1

2mabm
cdhcd .

Exercise 10.1

Show that the approximate curvature (6.4) is invariant under gauge
transformations. Thus the observable effects of the gravitational field
are unaltered.
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Example 10.1 (Linearized Schwarzschild metric)

Identify the coordinates in the Schwarzschild metric (7.6) with spherical polar
coordinates in Minkowski space. If m is small and if we ignore terms of order
m2, then the metric reduces in inertial coordinates to

ds2 = dt2 − dx2 − dy2 − dz2 − 2mr−1(dt2 + dr2) ,

with r defined by r2 = x2+y2+z2. The metric perturbation −2mr−1(dt2+dr2)
is not in de Donder gauge. But a gauge transformation by(

Za

)
= −mr−1(0, x, y, z)

puts it in this gauge, with

(
hab

)
= −2m

r

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

(
wab

)
= −4m

r

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

10.2 The Field of a Rotating Body

Suppose that the gravitational field is time-independent and is generated by a
distribution of slow-moving matter with small density ρ and velocity field u,
with u � 1. Then T ab = ρUaU b, with (Ua) ∼ (1, u1, u2, u3). Equation (10.2)
takes the form

∇2w00 = 16πρ, ∇2w0i = −16πρui, ∇2wij = 16πρuiuj , (10.3)

where i, j = 1, 2, 3 and ∇2 is the Laplacian of the spatial coordinates. The
right-hand side of the third equation is quadratic in small quantities, and thus
is ignored. Therefore we can put

wij = 0 i, j = 1, 2, 3

in this approximation. The first equation gives

w00(r) = −4
∫

ρ(r′) dV ′

|r − r′| ,

where the integral is over the matter, r′ = (x′, y′, z′) is the position vector
of a volume element dV ′, and r = (x, y, z) is the point at which the metric
component is evaluated. If we take the origin at the centre of mass and assume
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that the size of the body is small compared with distance r from the centre,
then this gives

w00 = −4m

r
+ O(r−2) .

Because mabhab = −mabwab = −w00, we then get

h00 = h11 = h22 = h33 = 2φ + O(r−2) ,

where φ = −m/r is the Newtonian potential, together with hij = 0 when i �= j.
To find the remaining components of hab, we make the further simplifying

assumption that the body is a rigid sphere rotating with angular velocity ω

and with a spherically symmetric distribution of matter. This is not consistent
with the dust form of the energy-momentum tensor, but the gravitational effect
of the internal stresses is negligible. With this assumption, the velocity of the
point with position vector r′ is u = ω∧r′. Consider the component h01 = w01.
From (10.3), this is

w01(r) = 4
∫

ρ(r′)u1(r′) dV ′

|r − r′| = 4
∫

ρ(r′)(ω2z
′ − ω3y

′) dV ′

|r − r′| ;

but we have

1√
(r − r′) . (r − r′)

=
1
r

+
xx′ + yy′ + zz′

r3
+ O(r−3) .

Because the origin is at the centre of the sphere, the integrals of

ρ(r′)x′, ρ(r′)y′, ρ(r′)z′, ρ(r′)y′z′, ρ(r′)z′x′, ρ(r′)x′y′

over the sphere all vanish, and∫
ρ(r′)x′2 dV ′ =

∫
ρ(r′)y′2 dV ′ =

∫
ρ(r′)z′2 dV ′ = 1

2I ,

where I is the moment of inertia of the sphere about its centre. Hence

h01 = 4
∫

ρ(r′)(ω2z
′ − ω3y

′)(xx′ + yy′ + zz′) dV ′

r3
+ O(r−3)

= 2r−3I(ω ∧ r)1 + O(r−3) .

From this and the similar calculation for the other two components, we conclude
that h0i = αi, with α defined by

α = 2L ∧ r/r3 , (10.4)

where L is the angular momentum about the centre of mass. To within our
approximation, therefore, the metric outside the rotating body is

ds2 = (1 + 2φ) dt2 + 2dt α . dr − (1 − 2φ) dr . dr , (10.5)
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where dr = (dx,dy, dz), φ = −M/r is the Newtonian gravitational potential,
α is related to the angular momentum L of the gravitating source by (10.4),
and the dot is the usual dot product in Euclidean space.

Exercise 10.2

Let T be the timelike Killing vector in (10.5). Find ∇[aTb] �= 0 in terms
of α.

10.3 The Lens–Thirring Effect

The effect of the angular momentum term in (10.5) can be seen in the pre-
cession, or rotation of the axis, of a gyroscope carried in free-fall. The effect,
known as the Lens–Thirring effect, is often interpreted as being the result of the
dragging of local inertial frames by the rotating body. As always in relativity
it is necessary to be clear about the precise meaning of statements involving
motion and rotation. Neither the prediction of precession nor the interpretation
in terms of dragging make sense without spelling out what is rotating relative
to what.

A gyroscope is an axisymmetric body rotating about its axis of symme-
try. The Newtonian angular momentum conservation law implies that, in the
absence of forces, the direction of the axis is constant. What happens in a gravi-
tational field? Suppose that the gyroscope is carried by an observer in free-fall.
Our central principle that classical theory should hold good in free-fall over
short times and distances implies that the direction of the axis should remain
constant relative to local inertial coordinates.

We can put this statement in a more convenient form. Denote the observer’s
four-velocity by V and, at each event on the observer’s worldline, let E denote
the spacelike vector with components (0, e1, e2, e3) in local inertial coordinates
at the event, where e is the unit vector along the axis of the gyroscope. Then

EaEa = −1, EaV a = 0 , (10.6)

and the statement that the direction of the axis is constant in local inertial
coordinates translates to

DEa = 0 ,

where D is the covariant derivative along the worldline. Note that EaV a is
constant because DV a = 0 as a result of the geodesic equation.

It is easy to understand in physical terms what is meant by precession if
one imagines the observer being in orbit about the earth and comparing the
direction of the axis of the gyroscope with the directions to fixed stars. The
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statement is that e is seen to rotate relative to stars, the rotation being made up
of one element—‘geodetic precession’—that can be found from the Newtonian
potential, and a rather smaller one—the Lens–Thirring term—which involves
the angular momentum of the earth. In mathematical terms, we need to under-
stand ‘change in direction relative to the fixed stars’ in terms of a procedure
for comparing the values of Ea at different events on the worldline.

The key is the timelike Killing vector T a of the weak field metric (10.5). If
we have a second observer at rest relative to T , and if the first passes the second
at two events A and B with the same relative speed, then we can compare the
values of E at A and B in an unambiguous way by comparing its components
at the two events in the coordinates of (10.5). The following enables us to
calculate the change.

We assume that φ and the free-falling observer’s velocity relative to a sta-
tionary observer are small. We keep quadratic terms in these small quantities
and their derivatives but ignore cubic and smaller terms. We also assume that
the metric perturbation components h0i are very much smaller than h00, and
therefore we also ignore terms involving the product of α with φ or with the
relative speed.

We write a four-vector X in the coordinate system of (10.5) as (ξ,x), where
ξ = X0 and x = (X1, X2, X3). We then have

XaXa = (1 + 2φ)ξ2 − (1 − 2φ)x .x + 2ξ α .x ,

where the dot is the standard inner product, defined by a . b = a1b1+a2b2+a3b3.
In this notation, the four-velocity V of the free-falling observer is a scalar
multiple of

W = (1,v) =
d
dt

(
t, r
)
,

where v = dr/dt. So we can deduce from (10.6) that

E =
(
z.v,z + φz + 1

2 (z .v) v
)

for some z such that z .z = 1. In computing the inner products EaWa and
EaEa, we keep only the terms of the same order as φ or v2.

We want to find dz/dt as E is parallel transported along the worldline. We
do this by writing the equation of parallel transport in the form

dEa

dt
+ Γ a

bcW
bEc = 0 (10.7)

in the coordinates of (10.5); W appears here rather than V because the param-
eter is the coordinate time t. The ith term in (10.7) is

d
dt

(
(1 + φ)zi + 1

2zjvjvi

)
+ Γ i

00vjzj + Γ i
0jzj + Γ i

jkvjzk = 0 , (10.8)



10.3 The Lens–Thirring Effect 141

with summation over j, k = 1, 2, 3. Now

dφ

dt
= v .∇φ and

dv

dt
= −∇φ ,

as in Newtonian theory. From (6.3), we have for i, j, k = 1, 2, 3,

Γ i
00 = ∂jφ, Γ i

0j = 1
2 (∂iαj − ∂jαi), Γ i

jk = ∂iφ δjk − ∂jφ δik − ∂kφδij .

Therefore (10.8) is the ith component of

dz

dt
− 3

2 (z .∇φ)v + 3
2 (v .z)∇φ + 1

2z ∧ curlα = 0 .

It follows that
dz

dt
=
(

3
2∇φ ∧ v + 1

2curlα
)
∧ z .

Thus z rotates with angular velocity ω = 3
2∇φ ∧ v + 1

2curlα.
How should we interpret this rotation? We want think of z as the vector

in the background flat space–time that ‘points in the same direction’ as the
axis of the gyroscope. The difficulty with this is that there is no natural way
to separate the space–time geometry into a background flat space–time metric
and a small perturbation hab, because of the coordinate gauge freedom. If we
want to interpret the rotation, for example, as being relative to the ‘fixed stars’
then we have to take account of the fact that light from distant stars does not
travel in straight lines in the x, y, z coordinates because of the bending of light.

We can, however, apply the calculation of ω to find a rotation that has
an unambiguous interpretation when the free-falling observer is on a closed
orbit which returns periodically to the same position, measured by x, y, z, at
the same velocity. This is the context in which the prediction is being put to
the test. We take the free-fall worldline to be the history of a satellite in orbit
around the earth, and we model the earth’s gravitational field by the metric
(10.5). After each complete orbit, the satellite returns to the same position
and velocity. The relationship between Ea and z is the same at each return,
so any rotation in z between each return is unambiguously a real effect of the
gravitational field: it will be observed as a rotation of the axis of the gyroscope
relative to the apparent position of stationary stars. It is true, of course, that
the satellite does not return to exactly the same position and velocity in general
relativity, as we saw in the derivation of the perihelion advance; but that effect
is negligible in this context.

The rotation has two components: a larger one

3
2∇φ ∧ v ,

called the geodetic precession, which was predicted by de Sitter in 1916, shortly
after the first publication of general relativity. It has been observed by treating
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the earth–moon system as a gyroscope in free-fall in the field of the sun [15].
The second,

1
2curlα ,

is the smaller Lens–Thirring precession, which is currently being measured
directly by Gravity Probe B, by measuring the cumulative change in direction of
the axis of a gyroscope in a circular polar orbit against the fixed stars over many
orbits. This is more sensitive than the geodetic precession to the differences
between Einstein’s theory and other possible theories of gravity. The rates
of precession in this context are 6.6 seconds of arc per year for the geodetic
precession and 0.041 seconds of arc per year for the Lens–Thirring precession.
Extraordinary ingenuity and precision are needed to separate the latter from
the former. The paper by Lämmerzahl and Neugebauer [12] gives a detailed
discussion of the history and theoretical background and a derivation of these
rates of rotation. For an account of Gravity Probe B, see [6].

10.4 The Kerr Metric

The metric (10.5) models the approximate field outside a rotating body with
angular momentum L. In 1963 Kerr found an exact solution to this problem,
in the form of the Kerr metric [11]. In Boyer–Lindquist coordinates, it is

dt2 − 2mr

Σ

(
a sin2 θ dϕ − dt

)2

− Σ

(
dθ2 +

dr2

∆

)
− (r2 + a2) sin2 θ dϕ2 ,(10.9)

where a, m are constant, and

∆ = r2 − 2mr + a2, Σ = r2 + a2 cos2 θ .

For small a and m, the Kerr metric reduces to the approximate solution. On
replacing r by r − m and on dropping terms in a2 and m2, (10.9) becomes

(1− 2m/r)dt2 + 4mar−1 sin2 θ dtdϕ− (1 + 2m/r)(dr2 − r2dθ2 − r2 sin2 θdϕ2) .

This is the same as the weak field metric (10.5) for a source with mass m and
angular momentum am in the direction of the axis of the polar coordinates.

Exercise 10.3

Show that if r, θ, φ are spherical polar coordinates, then

2mar−1 sin2 θ dφ = α1 dx + α2 dy + α3 dz ,

where α = 2mar−3(−y, x, 0). Hence by comparison with (10.5), show
that in this weak field approximation, the Kerr metric has angular mo-
mentum am in the direction of the z-axis.
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By analogy with the coordinate transformation in 9.2, we can replace the t

and ϕ coordinates in (10.9) by v and ψ, where

v = t +
∫

(r2 + a2) dr

∆
, ψ = ϕ +

∫
a dr

∆
.

The metric then becomes

ds2 = dv2 − 2mr

Σ
(dv − a sin2 θ dψ)2 − 2dv dr − Σ dθ2

+ 2a sin2 θ drdψ − (r2 + a2) sin2 θ dψ2 , (10.10)

without approximation.
The bold and energetic will calculate the Ricci tensor and show that it

vanishes. It was not through this lengthy calculation that the solution was
discovered, rather it was through seeking exact—not approximate—solutions
of the Kerr–Schild form gab = mab −nanb, where mab is the Minkowski metric
and na is null. In fact, a further coordinate transformation

x̃ = r sin θ cos ψ − a sin θ sin ψ ,

ỹ = r sin θ sin ψ + a sin θ cos ψ ,

z̃ = r cos θ ,

t̃ = v − r

brings the Kerr metric into the form

gab = mab − 2mr3 nanb

r4 + a2z2

with

(n0, n1, n2, n3) =
(

1,
rx̃ − aỹ

r2 + a2
,
rỹ + ax̃

r2 + a2
,
z̃

r

)
,

and r determined in terms of x̃, ỹ, z̃ by the condition that na should be null
with respect to the Minkowski metric. See [8].

Exercise 10.4

Show that na is also null with respect to the Kerr metric.
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Gravitational Waves

In the last chapter, we saw that in the weak-field approximation, Einstein’s
equations for a perturbation of the Minkowski metric can be reduced to

�wab = −16πTab ,

in the de Donder gauge [see (10.2)]. This is an inhomogeneous wave equa-
tion, with the energy-momentum tensor as source. It is strongly reminiscent
of Maxwell’s equations for the four-potential in the Lorenz gauge and it has
the same implication. Maxwell’s equations imply that moving charges generate
electromagnetic waves. Einstein’s equations imply that moving masses generate
gravitational waves.

In this chapter we explore how this works, for the most part in the lin-
earized theory. Gravitational waves have yet to be detected directly, although
the predicted loss of energy through gravitational radiation in the binary pulsar
PSR 1913+16 has been verified [21]. It is hoped that radiation from extreme
astronomical events will be seen directly in the next few years by laser interfer-
ometry detectors [13]. The observations are very delicate because gravitational
forces are many orders of magnitude weaker than electromagnetic ones. The
electrostatic repulsion between two protons is a factor of 1.2×1036 greater than
their gravitational attraction, at any separation: both forces obey the inverse
square law. There are also formidable theoretical problems in understanding
the generation of waves. We derive a form of Einstein’s ‘quadrupole formula’
for wave production in the weak field theory. It is not at all straightforward,
however, to take over this result into the full theory and to apply it in the
astrophysical context in which it is needed. In the collision of two black holes,
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for example, the waves produced must escape from the vicinity of the black
holes. The linearized theory does not tell us how they interact with the strong
background field of the black holes themselves.

11.1 Metric Perturbations

In the linearized theory, one studies the behaviour of metric perturbations in a
background Minkowski space. The space–time metric is g = mab + hab, where
hab is a small perturbation of the background Minkowski metric mab, and

wab = hab − 1
2mcdhcdmab .

That is, wab is the trace reversal of hab. The de Donder gauge condition is that

mab∂awbc = 0 .

See §10.1. If we use the Minkowski metric mab and its inverse mab to lower and
raise indices, then we can write more simply

wab = hab − 1
2hmab, h = h a

a , ∂awab = 0 .

The gauge is fixed up to

hab 
→ hab + ∂aZb + ∂bZa, �Za = 0 .

This framework is closely analogous to the four-potential form of Maxwell’s
equations. In the Lorenz gauge, these are

�Φa = kJa, ∂aΦa = 0 , (11.1)

where Φa is the four-potential, Ja is the four-current, and k is a constant,
equal to 1/cε0 in standard units. Maxwell’s equations predict the existence of
electromagnetic waves. Einstein’s equations similarly predict the existence of
gravitational waves.

11.2 Plane Harmonic Waves

In the absence of sources, we have

�wab = 0, ∂awab = 0 , (11.2)
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so the individual components of wab satisfy the wave equation. These equations
have harmonic plane wave solutions

wab = Aab cos(ncx
c) + Bab sin(ncx

c) , (11.3)

where na is a constant null vector and Aabn
b = Babn

b = 0. We can write them
more simply as

wab = Re
(
kab exp(−incx

c)
)
,

where kab = Aab + iBab and Re denotes the real part. Under a gauge transfor-
mation with

Za = Re (za exp(−inbx
b)
)
,

where za is constant and complex, the observable properties of the linearized
field are unchanged, but kab is replaced by

kab − 2in(azb) + inczcmab .

The complex tensor kab, subject to the condition nakab = 0, has six inde-
pendent components. That number can be reduced to two by making a gauge
transformation with an appropriate choice of za. In particular, one can always
set w = w a

a = 0, so that wab = hab, and both are traceless.

Exercise 11.1

Show that in addition it is always possible to choose the gauge of a
harmonic plane wave so that tahab = 0, where ta is the unit vector along
the time axis of the inertial coordinates. This is the transverse traceless
gauge.

Linear combinations of harmonic plane waves are the ‘general solutions’ of
the linearized vacuum equation in the sense that any solution to (11.2) that
falls off sufficiently quickly at infinity can be written in the form

wab = Re
∫

kab(n) exp(−incx
c) dV ′ ,

where the integral is over all n ∈ R
3 and dV ′ is the volume element dn1 dn2 dn3.

The coefficient kab is a symmetric, complex-valued function of n and is orthog-
onal to na in the sense that nakab = 0; the real null vector na has spatial part
n and temporal part n0 =

√
n .n.

The proof uses the inverse Fourier transform and the uniqueness theorem
for the wave equation. With a dot denoting the partial derivative with respect
to the inertial coordinate t, we have

kab(n) =
1

(2π)3

∫
t=0

n0wab − iẇab

n0
exp(−in .r) dV

with integral over all r ∈ R
3 at t = 0 and dV = dr1, dr2 dr3.
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Exercise 11.2

Prove this formula.

11.3 Plane and Plane-Fronted Waves

The harmonic plane wave (11.3) is a gravitational wave of a definite frequency
travelling with the speed of light in the direction of the vector n. The metric
disturbance is of the form

hab = Re
(
cab exp(−indx

d)
)
,

where cab = kab − 1
2k d

d mab is constant, with complex components.
More generally a plane wave is a combination of harmonic waves all travel-

ling in the same direction. It is a solution of (11.2) that depends on the inertial
coordinates only through the combination u = naxa for some constant null
four-vector na. The corresponding metric disturbance is characterized by the
fact that

nawab = 0, Xa∂awbc = 0 (11.4)

for every four-vector Xa such that Xana = 0. Because these conditions are not
preserved by gauge transformations, we also call a metric disturbance a ‘plane
wave’ if it can be transformed to one satisfying these conditions by a change of
gauge; that is, by the addition of 2∂(aZb) for some covector Za.

If wab satisfies the conditions (11.4), then hab = wab− 1
2w c

c mab also depends
only on u. An illuminating gauge transformation is given by putting

Za = 1
4

(
h′

bcx
bxcna − 2habx

b
)
,

where the prime is the derivative with respect to u. Then on replacing hab by
hab + 2∂(aZb), we have hab = φnanb where

φ = 1
2h′′

abx
axb = 1

2w′′
abx

axb − 1
4w′′xaxa , (11.5)

with w = w a
a = − 1

2�φ.
We can further refine the gauge of a plane wave, as follows. Suppose that

the inertial coordinates have been chosen so that the spatial part of n is the
unit vector in the z-direction. Then u = t− z and the wave is travelling in the
z-direction. Replace the t and z coordinates by u = t − z and v = t + z. Then
the Minkowski space metric becomes

du dv − dx2 − dy2
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and we have xaxa = uv−x2−y2. The four-vector comonents na are (0, 2, 0, 0).
Note that lowering the index produces the covector na with components
(1, 0, 0, 0), with the nonzero component in the first, not the second position.

Let E, F, G denote, respectively, the xx, xy, and yy components of wab in
the new coordinate system. Then w = −E − G. The quantities E, F, G, w are
all functions of u alone. Because we also have nawab = 0, the term 1

2w′′
abx

axb

on the right-hand side of (11.5) is independent of v. We can therefore write φ

in the form
φ = ψ + χ′′v + α′′x + β′′y + γ′ , (11.6)

where
ψ = 1

4 (E′′ − G′′)(x2 − y2) + F ′′xy (11.7)

and χ, α, β, γ are functions of the variable u alone. However

(χ′′v + α′′x + β′′y + γ′)nanb = 2∂(aWb) ,

where
(Wa) = 1

2 (χ′v + α′x + β′y + γ,−χ,−α,−β) .

Therefore our metric disturbance is equivalent by a gauge transformation to
one of the form hab = ψ(u, x, y)nanb , where ψ is defined by (11.7). We call
this the null gauge. We have

�ψ = 0, na∂aψ = 0, (11.8)

together with the condition that ∂a∂bψ should be a function of u = naxa alone.
Conversely, given ψ satisfying these conditions for some constant null vector
na, the metric disturbance hab is equivalent to a plane wave.

Exercise 11.3

Show that if ψ satisfies the three conditions, then hab = ψnanb is equiv-
alent to a plane wave by a gauge transformation.

We therefore have the following alternative characterizations of a plane wave
solution to the empty space linearized equations. They are equivalent by a
gauge transformation.

– A metric disturbance hab for which, for some constant null vector na,

nahab = 0 and Xa∂ahbc = 0

for every four-vector such that Xana = 0.

– A metric disturbance of the form hab = ψnanb for some constant null four-
vector na, where

�ψ = 0 and na∂aψ = 0 ,

and ∂a∂bψ is a function of u = naxa alone.
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In the second case, with an appropriate choice of coordinates, the disturbed
Minkowski metric is

ds2 = du dv − dx2 − dy2 + ψ(u, x, y) du2 . (11.9)

This is a solution of the linearized Einstein equations whenever

�ψ =
∂2ψ

∂x2
+

∂2ψ

∂y2
= 0 (11.10)

and it is a plane wave whenever ψ is a polynomial of degree two in x, y, with
coefficients depending on u alone. It is a remarkable fact that (11.9) is also a so-
lution to the full, not linearized, vacuum equations whenever ψ(u, x, y) satisfies
(11.10). Solutions of this form are called pp-waves. The ‘pp’ stands for ‘plane-
fronted with parallel rays’, referring to the fact that the null four-vector with
components (0, 1, 0, 0) is covariantly constant not only in the Minkowski back-
ground, but also with respect to the Levi-Civita connection of the disturbed
metric.

Exercise 11.4

Show that the curvature tensor of a pp-wave satisfies

naRabcd = 0 .

In the linearized theory, this follows from the formula for the linearized
curvature tensor (6.4). In the full theory, first establish that na is covari-
antly constant.

A plane wave can be detected through its curvature. A plane wave passing
two particles in free-fall will produce a varying relative acceleration between
them by the equation of geodesic deviation. Alternatively this will show up
as a varying force between constrained particles. Early attempts at detection
sought to observe the effect of this force in a large solid bar. Current attempts
focus on the effect on the optical path lengths in what is essentially a large
Michelson–Morley interferometer [13].

11.4 The Retarded Solution

We can understand the way in which Maxwell’s equations describe the gener-
ation of electromagnetic waves by looking at the retarded solution to (11.1).
This is

Φa =
k

4π

∫
Ja dν ,
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where the integral is over the past light-cone of the event at which Φa is evalu-
ated and dν is the invariant volume element on the light-cone; see [23], p. 148.
If the event at which the potential is evaluated is (t′, r′), then (t, r) lies on the
past light-cone whenever the four-vector N with temporal and spatial parts
(t′ − t, r′ − r) is null and future pointing. We can use the components x, y, z of
r as coordinates on the light-cone. Then dν = dV/|r′−r|, where dV = dxdy dz.
The retarded solution becomes

Φa(t′, r′) =
k

4π

∫
|r − r′|−1[Ja] dV ,

where the integral is over r and the square brackets indicate evaluation at
retarded time. That is, given a function f(t, r) on space–time and the event
(t′, r′), we define

[f ](r) = f(t′ − |r′ − r|, r) . (11.11)

At a large distance from the source, the field looks like a combination of a
Coulomb field, the field of a point charge Q, and electromagnetic waves. The
value of Q is also given by an integral over the past light-cone of (t′, r′):

Q =
∫

NaJa dν .

This is independent of t′ and r′, and is invariant under change of inertial
coordinates. By the exercise below, the first statement is a consequence of the
conservation law ∂aJa = 0; the second follows from the invariance of dν.

We do not derive here the asymptotic decomposition of the field into a
Coulomb part and a radiation part because the theory is covered in many texts
on electromagnetism. Instead, we look in detail at the less familiar decompo-
sition of the linearized gravitational field of a bounded source, from which the
electromagnetic theory can also be derived by analogy.

Exercise 11.5

Show that Q is independent of t′ and r′.

By applying the same results to the weak field approximation to Einstein’s
equations for each value of b in turn, we can express the value of wab at each
event as an integral over the past light-cone of the event:

wab = −4
∫

Tab dν .

Therefore it is the density and motion of the sources at events on the past light-
cone that contribute to the metric perturbation at the event. We also have that
the covector

pa =
∫

N bTab dν (11.12)



152 11. Gravitational Waves

is constant as a consequence of the conservation law ∂aT ab = 0. For physically
reasonable matter, it is timelike and future-pointing. It represents the four-
momentum of the source.

11.5 Quadrupole Moments

Before we explore further how changes in the source produce observable effects
outside the source, we first look at how the approximation that we use works
in the classical Newtonian theory. Here, with G = 1, we have

∇2φ = 4πρ ,

where φ is the potential and ρ is the density of the source. For the gravitational
field of a body enclosed in a volume V , this has solution

φ(r′) = −
∫

V

|r − r′|−1ρ(r) dV ,

where r′ is the position vector of the point at which φ is evaluated, and r is
the position vector of a typical point of the body.

Consider the field a long way from the body. That is, assume that the origin
is inside the body and that r′ = |r′| is large compared to the dimensions of the
body, and expand in inverse powers of r′, discarding terms of order r′−4. By
using Taylor’s formula, we have

1
|r − r′| = r′−1(1 + r′−2r.r − 2r′−2r.r′)−1/2

=
1
r′

− r.r − 2r.r′

2r′3
+

3(r.r′)2

2r′5
+ O(r′−4) . (11.13)

Let us put r′ = r′e, where e is the unit vector in the direction of r′, and
introduce the quantities

m =
∫

V

ρ dV, ci =
∫

V

ρri dV, qij =
∫

V

ρ(3rirj − δijrkrk) dV ,

where the ris are the components of r and there is summation for repeated
indices over 1, 2, 3. The quantity m is the total mass of the source, c/m is the
position of the centre of mass, and the qijs are the quadrupole moments at the
origin. If they are taken to be the entries in a matrix q, then

q = (A + B + C)

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠− 3

⎛
⎝ A −H −G

−H −B −F

−G −F C

⎞
⎠ , (11.14)
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where A,B,C are the moments of inertia of the body at the origin and F,G, H

are the products of inertia. That is,

A =
∫

V

ρ(y2 + z2) dV, H =
∫

V

ρxy dV ,

and so on. The second matrix on the right-hand side of (11.14) is the inertia
tensor J of the body. Thus q is the trace-free part of −3J . It vanishes for
a body with spherical symmetry about the origin, and so can be seen as a
measure of deviation from spherical symmetry.

With these definitions,

φ(r′) = −m

r′
− ciei

r′2
− qijeiej

2r′3
+ O(r′−4) .

The first term is the potential of a point mass; the second vanishes if the origin
is at the centre of mass. With c = 0, the third term can be seen as a correction
to the spherically symmetric field obtained by concentrating all the mass at the
centre of mass. It shows the effect of irregularities in the distribution of matter
in the source.

11.6 Generation of Gravitational Waves

We now apply a similar approximation to the retarded solution of the linearized
Einstein equations to find out how the motion of matter within a source gen-
erates gravitational radiation. We choose the inertial coordinates so that the
event at which wab is evaluated is (t′, r′), and so that the origin is inside the
source.

Let V be a fixed volume containing the source, and denote by r the position
vector in the inertial coordinates of a typical event happening within V . As
in the Newtonian theory, the approximation is based on the assumption that
r′ = |r′| is large compared with the dimensions V ; that is, we are considering
the radiation field at a large distance from the source. We can write the retarded
solution in the form

wab(t′, r′) = −4
∫

V

|r′ − r|−1[Tab] dV , (11.15)

where the square brackets indicate evaluation at retarded time (11.11). For
large r′, we have

wab = −4τab

r′
+ O(r′−2),

where
τab =

∫
V

[Tab] dV
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by using the approximation (11.13). Now τab depends on t′ and r′ through the
definition of the retarded time (11.11). However, by substituting

(t',r')
V

(t,r)

Figure 11.1 Evaluation of the retarded solution

dν =
dV

|r′ − r|
in (11.12), we find that

pa =
∫

V

|r′ − r|−1N b[Tab] dV

is constant, where Na is the null four-vector (|r′ − r|, r′ − r). As r′ → ∞
|r′ − r|−1Na = na + O(r′−1) ,

where n is the null vector (1, r′/r′). Therefore

nbτab = pa + O(r′−1) .

We assume, without loss of generality, that the inertial coordinates t, x, y, z

have been chosen so that pa = mVa, where m is a constant, the mass of the
source, and V a is a four-velocity parallel to the t-axis, that is, so that the source
is at rest in the inertial frame.

We need to separate wab at large distances into a part that we can identify
as the static gravitational field associated with the total mass of the source
and a second component that we can interpret as the radiation emitted by the
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source. To the leading order in r′−1, the first will be a linearized Schwarzschild
solution and the second will look like a plane wave moving directly away from
the source.

The first step is to understand the dependence of τab on the coordinates
of the event at which the retarded solution is evaluated. Now we get the same
change in the value of τab by displacing the event (t′, r′) through a four-vector
Xa as we get by displacing the source through −Xa. Therefore

∂′
cτab =

∫
V

[∂cTab] dV ,

where ∂′
c and ∂c are, respectively, the partial derivatives with respect to the

inertial coordinates of the event (t′, r′) at which the metric disturbance is eval-
uated and the partial derivatives with respect to the coordinates of the event
(t, r). By (A.2), we have∫

V

[∇f ] dV = −
∫

V

[∂tf ]edV ,

where e = (r′ − r)/|r′ − r|. Therefore

∂cτab =
∫

V

|r′ − r|−1Nc[∂tTab] dV .

So for large r′, we have

∂cτab = nc

∫
V

[∂tTab] dV + O(r−1) .

Now put σab = τab − mVaVb. Then

naσab = 0 Xc∂cσab = 0

whenever Xana = 0. We have

wab = −4mVaVb

r′
− 4mσab

r′
+ O(r′−2) .

The first term on the right is the (linearized) Schwarzschild solution for a mass
m at rest. It is analogous to the ‘Coulomb potential’ in the electromagnetic
case. In a neighbourhood of the point at which the field is evaluated at large
r′, we have

r′

r′
= e + O(r′−1) ,

where e is a constant unit vector. Thus the second term looks like a plane wave
travelling in the direction of e, directly away from the source.
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We can relate the plane wave component to the derivatives of the quadrupole
moments of the source, by putting ρ = nanb[Tab] and by deriving the formula

σij = τij =
1
2

∂2

∂t′2

∫
V

ρrirj dV + O(r′−1) ,

for the spatial components of σab in the inertial coordinate system; here i, j =
1, 2, 3. To do this, we take ra to be the four-vector with temporal and spatial
parts (0, r). Then with (t′, r′) fixed,

∂c∂d

(
[T cd]rarb

)
= rarb∂c∂d[T cd] + 2∂c

(
[T cd]r(a∂dr

b)
)− 2[T cd]∂cr

a∂dr
b .

Because [T ab] depends only on r, the left-hand side is equal to

∂i∂j

(
[T ij ]rarb

)
,

with summation over i, j = 1, 2, 3. Therefore the integral of the left-hand side
over V vanishes by the divergence theorem. The integral of the second term
on the right-hand side similarly vanishes. We then observe that ∂cr

a = 1 if
c = a = 1, 2, 3, and that it vanishes otherwise. So by taking a = i, b = j, we
have ∫

V

[Tij ] dV = 1
2

∫
V

rjrj∂c∂d[T cd] dV .

Finally, from (A.2) and the fact that ∂aT ab = 0, we have

∂a[T ab] = Na[∂tT
ab] .

By applying this twice, we have ∂c∂d[T cd] = NcNd[∂2
t T cd], and hence the re-

quired result.
From the discussion in §11.3, the radiation part of the metric disturbance

is therefore gauge-equivalent to ψnanb, where

ψ = − 2
r′

d2

dt′2

∫
V

ρ(x2 − y2 + 2xy) dV + O
(
r′−2)

= r′−1
(
2(Ä − B̈)(x2 − y2) + 4Ḧxy

)
,

where the dot denotes the derivative with respect to t′ and A,B,H are the
moments and products of inertia:

A =
∫

V

ρ(y2 + z2) dV, B =
∫

V

ρ(x2 + z2) dV, H =
∫

V

ρxy dV .

In this way the radiation field at large distances is determined by the second
rates of charge of the moments and products of inertia along the axes orthogonal
to the direction of the source. Because ψ depends only on the difference A−B,
the radiation field is determined by the rates of change of the quadrupole
moments.
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Redshift and Horizons

When one observer sends light signals to another, the frequency of the light
measured at emission by the first observer is generally not the same as that
measured at reception by the second. Even in special relativity, the light is
redshifted if the second is moving away from the first. This is the Doppler
effect. In general relativity, there is a gravitational redshift when both are at
rest in the gravitational field of a static spherically symmetric body, and the
first is below the second.

In extreme cases the redshift becomes infinite when the first observer passes
through an horizon. We saw this in the Schwarzschild solution when an observer
falls through the event horizon. But the phenomenon can also occur in flat
space–time, when the first observer is at rest and the second is accelerating
uniformly. We consider this in Example (12.2) below.

In this chapter, we take a general look at the phenomenon of redshift, which
is of great importance in cosmology, and at horizons. In particular, we consider
briefly the ‘horizon problem’ in cosmology.

12.1 Retarded Time in Minkowski Space

Let O be an observer in Minkowksi space, with worldline ω. Then ω is a timelike
curve, which we can parametrize by proper time τ , the time measured by a
standard clock carried by O. In inertial coordinates, ω is given by

xa = xa(τ),
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and V a = dxa/dτ is a future-pointing timelike vector. We assume that ω is
complete in the sense that τ extends from −∞ to ∞ along ω.

Let I+(ω) denote the set of events in Minkowski space that can be reached
from an event on ω at less than the speed of light. That is, the set of events
with coordinates ya such that

T a = ya − xa(τ)

is future-pointing and timelike for some τ . This is called the future set of ω.
Although it is an open subset, the second example below shows that I+(ω)
need not be the whole of Minkowksi space.

For any event E in I+(ω) not on ω, there is a unique value of τ for which
T a is null and future-pointing. This value of τ is called the retarded time at
E determined by ω (see Figure 12.1). If E is actually on ω, then the retarded

x (τ)a

a

ya

T

ω E

Figure 12.1 Retarded time

time is defined to be the proper time at E. We have already met one version
of this definition in the last chapter in the context of finding the gravitational
radiation emitted by a source. Radiation generated at an event on ω at proper
time τ is seen by a second observer at an event with retarded time τ .

Exercise 12.1

Let E be the origin of the inertial coordinate system t, x, y, z and suppose
that E ∈ I+(ω). Show that there is a unique value of τ for which the
four-vector from xa(τ) to E is future-pointing and null.

We can similarly define the past set I−(ω) and the advanced time at an event
in I−(ω) by substituting ‘past-pointing’ for ‘future-pointing’.
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Example 12.1

Suppose that O is at rest at the origin in an inertial coordinate system t, x, y, z.
Then ω is given by

t = τ, x = y = z = 0.

In this case, the future and past sets are the whole of Minkowski space. At a
general event with coordinates t, x, y, z, the retarded time is τ = t − r, where
r2 = x2 + y2 + z2. The advanced time is t + r.

Example 12.2

Suppose that O has constant acceleration worldline

Figure 12.2 The future and past sets of an accelerating observer

t = sinh(τ), x = cosh(τ) ,

with unit acceleration, measured by O. In this case,

I+(ω) = {t + x > 0}, I−(ω) = {t − x < 0} .

In Figure 12.2, I+(ω) is shaded horizontally and I−(ω) is shaded vertically; the
hyperbola is the worldline, and its asymptotes are t = ±x. The retarded time
at (t, x, y, z) goes to −∞ as t + x → 0.
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12.2 Horizons

We can also define the future and past sets of a worldline ω in a general space–
time provided that it is time orientable. That is, provided that it is possible
to distinguish future-pointing from past-pointing timelike vectors continuously
throughout space–time. The definitions are not quite as simple as in Minkowski
space because there is no unambiguous notion of the displacement vector from
one event to another. Instead we say that an event E lies in the past set I−(ω)
whenever there is a future-directed timelike curve from E to some event on ω.
A future-directed timelike curve is a parametrized curve with future-pointing
timelike tangent vector. The parameter must increase from E to ω. So E ∈
I−(ω) if it is possible to travel from E to an event on ω at less than the speed
of light. We similarly define the future set of ω by replacing ‘future-directed’
by ‘past-directed’. We could equally well replace ω by any other subset of M ,
but our focus is on the future and past sets of observers’ worldlines.

It can happen that I−(ω) and I+(ω) are both the whole of space–time, so
the observer can influence any event in space–time and be influenced from it.
In general, this will not be so. We have seen one example in Minkowski space.
A second example is in the Schwarzschild metric in Eddington–Finkelstein co-
ordinates. Here the past set of an observer at rest outside the horizon is the
exterior of the black hole. The boundary of the past set is the boundary of the
black hole.

In every case, however, the future and past sets are open. We do not prove
this, but it is not hard to do so. The key idea is that if γ is a future-directed
timelike curve from E to an event on ω, then it is possible to perturb γ and
move E in a neighbourhood of E while keeping γ timelike.

The boundary of I−(ω), in the topological sense, is called the observer’s
event horizon. It is important to realise that in a general space–time, the ‘event
horizon’ is something that depends on the observer. It need not be a smooth
hypersurface, but when it is, it must be null. In fact if f is a smooth function
on some neighbourhood in space–time with nonvanishing gradient and with the
property that f(E) < 0 if E ∈ I−(ω) and f(E) ≥ 0 if E �∈ I−(ω), then ∇aE is
future-pointing and null on the boundary where f = 0.

Exercise 12.2

Show that if Σ is given by f = 0 and if na = ∇af is null and future-
pointing at every E ∈ Σ, then there is a null geodesic contained in Σ

through every event in Σ.

Thus a smooth event horizon is ruled by null geodesics, as in the case of the
two examples. Penrose shows that this is true more generally in [19].

A more interesting example is the Kerr space–time (10.9), which models
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the gravitational field outside a rotating body. It is a stationary space–time in
the sense that it admits a timelike Killing vector: the vector field ta with com-
ponents (1, 0, 0, 0) in Boyer–Lindquist coordinates t, r, θ, ϕ is a Killing vector
and is timelike, at least for large r. One can therefore pick out ‘observers at
rest’ in the region in which ta is timelike by the condition that they should
have four-velocities parallel to ta, or equivalently by the condition that r, θ, ϕ

should be constant on their worldlines.
Consider such observers in the region r > r0, for some large value of r0.

Because the metric here is close to that of flat space–time, it is reasonably clear
that causal relations between such obervers should be the same as in Minkowski
space.1 The whole of the region r > r0 should be in the past of any one of them.
In other other words, any event happening at r > r0 should be visible to every
stationary observer at r > r0.

Exercise 12.3

Show that for a stationary observer in the Kerr space–time at r > r0 for
large r0, the whole of the region r > r0 is in the past set of ω.

So what is the full extent of the past set of a stationary observer at large
r? The gradient covector ∇ar has components (0, 1, 0, 0) in Boyer–Lindquist
coordinates, and therefore from (10.9), we have

∇ar∇ar = −∆

Σ
= −r2 + a2 − 2mr

r2 + a2 cos2 θ
.

Thus ∇ar is spacelike whenever r > r+, where r+ is the larger root of

r2 + a2 − 2mr .

At any event at which ∇ar is spacelike, it is possible to find a future-pointing
timelike vector T a such that T ara is positive, so that r is increasing along T a.
It follows that we can construct a future-directed timelike curve from any event
in the region r > r+ to the region at large r. Therefore that for any stationary
observer at large r with worldline ω is

I−(ω) ⊇ {r > r+} .

In Boyer–Lindquist coordinates, the metric coefficients are singular at r+.
As in the Schwarzschild metric, however, this is simply an artefact of the co-
ordinate choice. In the coordinate system (10.10), the singularity disappears,
and ∇ar becomes a past-point null vector at r = r+. Therefore T a∇ar < 0
at r = r+ for any future-pointing timelike T a and so r is decreasing along
1 It is not true, however, that the causal relations between events are the same as in

Minkowski space.
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any future-directed timelike curve at r = r+. It follows that none of the re-
gion r < r+ in the coordinate system (10.10) can be in the past of a distant
stationary observer.

We conclude that for a distant stationary observer with complete worldline,

I−(ω) = {r > r+} .

The null hypersurface r = r+ is the common event horizon of such observers.
It is the boundary of the rotating black hole represented by the Kerr metric.

Several points should be noted here. The first is that although all distant
stationary observers at rest share the same event horizon, it is not true that all
noninertial observers have this horizon; it is not even true in Minkowksi space
that all observers have the same horizon. Second, the problem of characterizing
the boundary of a black hole in a general dynamical setting, in which the metric
is not stationary, is nontrivial. Third, as in the Schwarzschild solution, there
is an alternative extension in which the metric represents a ‘white hole’, and
a larger extension with two exterior regions joined by a wormhole. In fact the
maximally extended Kerr space–time contains an infinite number of ‘exterior
regions’. It also contains closed timelike curves, which violate causality [8].
Fourth, in contrast to the Schwarzschild case, the event horizon in the Kerr
space–time is not the same as the surface of ‘infinite redshift’.

To expand on this last remark, suppose that we have two stationary ob-
servers at r1, θ1, ϕ1 and r2, θ2, ϕ2 in the Boyer–Lindquist coordinates. If the
first sends a photon with frequency ω1, then by the same argument as in §7.5,
it will be seen by the second to have frequency

ω2 = ω1

√
g00(r1)
g00(r2)

= ω1

√
(r2

1 + a2 cos2 θ1 − 2mr1)(r2
2 + a2 cos2 θ2)

(r2
2 + a2 cos2 θ2 − 2mr2)(r2

1 + a2 cos2 θ1)
.

The frequency ω2 goes to zero, that is, the redshift becomes infinite, when

r2
1 + a2 cos2 θ1 − 2mr1 → 0 .

In fact if the left-hand side becomes negative, then ta is no longer timelike,
and there are no stationary observers. There are, however, events outside the
event horizon at which ta is spacelike. These make up the so-called ergosphere
of the black hole. As a stationary source of light is moved (slowly) towards the
ergosphere, any light it emits becomes infinitely redshifted as it approaches the
boundary of the ergosphere, well before it reaches the event horizon.

Penrose [17] observed that it is possible in principle to extract rotational
energy from a rotating black hole. The quantity E = Vata is conserved along
the worldline of a unit mass particle with four-velocity V a. It is the total
energy of the particle, including its rest energy. It is also conserved in collisions.
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In a region in which ta is spacelike, it is possible for E to be negative for
some timelike four-velocities V a. One can imagine a particle falling into the
ergosphere, and splitting into two pieces, one of which has E < 0. The piece with
negative E must fall into the black hole, and cannot escape back to infinity. The
other piece, however, will have a larger value of E than the original particle and
can escape back to infinity. This second fragment gains energy at the expense
of the rotational energy of the black hole itself.

12.3 Homogeneous and Isotropic Metrics

A homogeneous and isotropic cosmology is one that looks the same everywhere
and in every direction. Its properties extend the Copernican principle that the
earth should not be seen as occupying a central place in the universe. There is
a small class of such cosmological models that are also homogeneous in time,
and we look at these briefly below. But a general homogeneous and isotropic
space–time is not static, and so we can use the geometry to pick out a universal
time coordinate, for example, by taking t to be the scalar curvature. Its gradient
ta = ∇at is a natural vector field, which we assume to be timelike, so that it
everywhere determines a standard of rest. Homogeneity and isotropy are then
the requirements that the universe should look the same everywhere at any
given time to an observer at rest, and in every direction. We now derive the
most general metric with these properties, and find its Ricci curvature so that
we can determine its dynamical behaviour from Einstein’s equation.

An immediate consequence of the requirements is that tata must be a func-
tion of t alone. By replacing t by a function of t, we can set tata = 1. Then
t is the proper time of an observer at rest. Such an observer must be in free-
fall, as one can see either from isotropy—acceleration would give a preferred
direction—or from

ta∇atb = ta∇a∇bt = ta∇b∇at = 1
2∇b(tata) = 0 . (12.1)

A second consequence is that the Ricci tensor must be of the form

Rab = µtatb + λgab , (12.2)

for some scalars λ and µ, otherwise its eigenvectors, the solutions to

RabV
a ∝ Vb ,

would pick out preferred directions in space. The scalars must be functions of
t alone, by homogeneity. For the same reason, and because ta∇atb = 0,

∇atb = β(gab − tatb) (12.3)
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for some function β of t. It follows that ∇ata = 3β. However, from the definition
of the curvature tensor and (12.1),

3β̇ = ta∇a∇bt
b = ta∇b∇atb + tatbRab

= ∇b(ta∇atb) − (∇bt
a)∇atb + tatbRab

= µ + λ − 3β2 ,

where the dot denotes the derivative with respect to t. Now introduce coordi-
nates x1, x2, x3 to label the worldlines of the observers at rest, and put x0 = t.
Then the metric must take the form

ds2 = dt2 + gijdxidxj , (12.4)

with summation over i, j = 1, 2, 3. There can be no dt dxi terms or the corre-
sponding metric coefficients g0i would determine a preferred direction in space.
By Exercise 7.2, we have ∂tgab = 2∇(atb) in these coordinates, and thus

∂tgij = 2β gij . (12.5)

Concentrate now on one observer, whom we take to be at the origin of
the spatial coordinates xi, and consider in more detail the consequences of the
isotropy assumption, which implies that the metric should be spherically sym-
metric about the observer’s location. As in our derivation of the Schwarzschild
space–time, together with (12.5), this implies that the observer should be able
to pick the spatial coordinates to be x1 = r, x2 = θ, x3 = ϕ, so that

gijdxidxj = −α2
(
B dr2 + Cr2(dθ2 + sin2 θ dϕ2)

)
,

where B,C are functions of r, and α is a positive function of t, related to β by
β = α̇/α. As in our earlier analysis, we can set C = 1 by making a change in
the r-coordinate.

Proposition 12.3

A static, homogeneous, and isotropic cosmology must have Robertson–Walker
metric

ds2 = dt2 − α2
(
(1 − kr2)−1 dr2 − r2(dθ2 + sin2 θ dϕ2)

)
(12.6)

and Ricci tensor

Rab = 3α−1α̈tatb + (α−1α̈ + 2α−2α̇2 + 2kα−2)(gab − tatb) ,

where where k is constant and α is a function of t.
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Proof

A further coordinate change

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ ,

brings the space–time metric (12.4) into the form

ds2 = dt2 − α2
(
dx2 + dy2 + dz2 + (B − 1)dr2

)
, (12.7)

with r now defined by r2 = x2+y2+z2. There are three Killing vectors X, Y, Z,
with respective components

(Xa) = (0, 0,−z, y)), (Y a) = (0, z, 0,−x), (Za) = (0,−y, x, 0),

the last having components (0, 0, 0, 1) in the t, r, θ, ϕ system. In the (x, y, z) co-
ordinates, they correspond to the symmetries under rotations about the x, y, z

axes, respectively.
By Exercise 5.12, we have

∇a∇bXc = RbcadX
d

and hence

Xc∇a∇aXc = 1
2�(XcX

c) − (∇aXc)(∇aXc)

= RcdX
cXd

= λXcX
c ,

where λ is as in (12.2) and � = ∇a∇a is the wave operator. With the metric
given by (12.7), the components of the covector Xa are

α2(0, 0, z,−y) .

The contravariant metric tensor is

gab = tatb + α−2(tatb − δab + kEaEb) ,

where (Ea) = (0, x, y, z) and k is defined in terms of B by

B =
1

1 − kr2
.

It follows that
XaXa = −α2(y2 + z2) .

Moreover ∇aXb = ∂[aXb] because ∇aXb is skew-symmetric and because the
Levi-Civita connection is torsion-free. Therefore

(∇aXc)(∇aXc) = gacgbd∂[aXb]∂[cXd]

= −2(k + α̇2)(y2 + z2) + 2 .
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We have similar equations for the other two Killing vectors. By combining
them, we get

−�(α2r2) = −2λα2r2 − 4(k + α̇2)r2 + 6 .

But the wave operator is given by (5.1), with

|g| = α6Br4 sin2 θ

in the coordinates t, r, θ, ϕ. Therefore

�α2 = 2αα̈ + 8α̇2, α2�r2 = −6 + 8kr2 + k′r3 ,

where the dot is the derivative with respect to t and the prime is the derivative
with respect to r. Also,

�(α2r2) = r2�α2 + α2�r2

because the gradients of r and α are orthogonal. Finally, therefore,

λ = α−1α̈ + 2α−2α̇2 + 1
2α−2(4k + r−1k′) .

Because α is a function of t alone and k is a function of r alone, we must have
that 4k+r−1k′ is constant. This implies that either k is constant or that it is a
constant multiple of r−4. The latter is not possible because it would make the
metric singular at r = 0. So k is constant and the proposition follows.

The metric is unchanged if we replace r, α, and k by κr, α/κ, and k/κ, respec-
tively, for some some positive constant κ. There is therefore no loss of generality
in requiring that k should be one of 0, 1,−1. In the first case, the spatial metric

α2(dr2 + r2dθ2 + r2 sin2 θ dϕ2)

at a given time is simply a multiple of the metric on Euclidean space. In the
case k = 1, the spatial metric is

α2
(
dχ2 + sin2 χ dθ2 + sin2 χ sin2 θ dϕ2

)
where r = sinχ. The expression in brackets is the metric on the hypersphere

w2 + x2 + y2 + z2 = 1

in R
4, written in hyperspherical coordinates

x = cos ϕ sin θ sin χ, y = sinϕ sin θ sin χ, z = cos θ sin χ, w = cos χ .

Any point on the hypersphere can be taken as the origin χ = 0, so all points
in space are on the same footing. The spatial metric really is homogeneous.

In the case k = −1, the spatial metric is

α2
(
dχ2 + sinh2 χ(dθ2 + sin2 θ dϕ2)

)
,

where now r = sinhχ.
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Exercise 12.4

Show that in the case k = −1 the spatial metric is a multiple of the
metric on the unit hyperboloid t2 − x2 − y2 − z2 = 1 in Minkowski
space. Hence complete the argument that a homogeneous cosmology with
k > 0 is closed in the sense that the hypersurfaces of constant t have the
topology of the three-sphere, whereas those with k ≤ 0 are open, with
spatial topology R

3.

The scalar curvature of the metric is

R = gabRab = 6(α−1α̈ + α−2α̇2 + kα−2)

and therefore the Einstein tensor is

Gab = Rab − 1
2Rgab

= − 3α−2(α̇2 + k)tatb − α−2(2αα̈ + α̇2 + k)(gab − tatb) .

Thus the energy-momentum tensor must be of the same form as that of a fluid.
If our cosmology is to be interpreted as a solution of Einstein’s equations, then
it must be filled with fluid with density and pressure

ρ =
3(k + α̇2)

8πα2
, p = −2αα̈ + α̇2 + k

8πα2
(12.8)

and four-velocity ta. All that is needed to construct a model universe is to
specify the relationship between ρ and p. That is, to choose an equation of
state or equivalently to make some assumption about the physical nature of
the matter filling the universe. We can then obtain from these two equations
a single differential equation for α, and hence determine the evolution of the
space–time geometry.

The function α(t) is called the scale factor. As α increases, the distance
between points with fixed spatial coordinates increases in proportion, and the
universe ‘expands’, although, as always, such a statement needs careful inter-
pretation in terms of observations. In this context, it means no more than that
the distance between two nearby observers at rest, as measured by either, is
proportional to α.

If we combine the two equations to eliminate α̇, then we get

α̈

α
= −4π(3p + ρ)

3
.

On any conventional assumption about the nature of the matter filling the
universe, ρ will be positive. Provided that 3p + ρ is positive, that is, provided
that the pressure is not large and negative, we shall have α̈ < 0 throughout
the history of the universe. From this, we can deduce the following ‘singularity
theorem’.
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Proposition 12.4

Suppose that α̇(t) > 0 at some time t and that the energy condition ρ+3p ≥ 0
holds at all times. Then α(t0) = 0 for some t0 < t.

Proof

Because α̈ < 0, Taylor’s theorem with remainder implies that

α(t′) ≤ α(t) + α̇(t)(t′ − t)

for all t′. The right-hand side vanishes when

t′ − t = −α(t)/α̇(t) < 0 ,

therefore the left-hand side must also vanish for some t0 < t.

In other words, if the universe is expanding at time t and is filled with matter
with reasonable physical properties, then there must be a time in the past
when the scale factor vanishes and at which the metric is therefore singular.
The singularity is the ‘big bang’ of modern cosmology. The inequality ρ+3p ≥ 0
is part of the strong energy condition, which requires that

ρ + p > 0 and ρ + 3p > 0 .

By extending the methods of differential topology introduced into relativity
by Penrose, Hawking and Penrose proved versions of this singularity theorem
from the strong energy condition and other similar conditions under very gen-
eral circumstances, without assuming homogeneity and isotropy; see [8]. Thus
the existence of the initial singularity is a general consequence of Einstein’s
equation, and is not simply an artificial consequence of assuming a high degree
of symmetry.

12.4 Cosmological Models

A simple choice for equation of state is p = νρ, where ν is constant. If the
dominant form of matter is galaxies, then it is reasonable to take the pressure
to be zero, so that ν = 0. If matter is dominated by radiation, then we would
take ν = 1

3 because T a
a = 0 for an electromagnetic energy-momentum tensor.

On eliminating ρ and p between the two equations, (12.8) gives

2αα̈ + n(α̇2 + k) = 0 , (12.9)
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where n = 1 + 3ν. The energy condition ρ + 3p > 0 in the singularity theorem
is n > 0. By writing 2α̈ = dα̇2/dα and integrating with respect to α, we have

α̇2 + k = Cα−n ,

where C is constant.
We can see, in qualitative terms, the overall history of the universe by

sketching the curves in the α, α̇-plane determined by this equation for different
values of the constant. The result is shown in Figure 12.3. If k ≤ 0, then
the universe expands from the initial singularity at which α = 0 and α̇ is
infinite; as t → ∞, we have α → ∞ and α̇ → √−k, thus the initial expansion
continues without limit. If on the other hand k > 0, then the expansion reaches
a maximum before the universe recollapses to a final singularity.

By looking for solutions with the asymptotic behaviour α = O
(
(t − t0)σ

)
as t → t0, one can also see from (12.9) that

α = O
(
(t − t0)2/(n+2)

)
(12.10)

as t → t0. This gives the behaviour of α near the initial singularity in all the
cases, and also near the final singularity in the closed case.

α α

α α

k>0 k<0

Figure 12.3 Phase portrait of the universe
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Exercise 12.5

If the equation of state is p = f(ρ), where f > −1/3, show that the
phase curves are given by

g(α̇2 + k) = Cα−1, g(x) = exp
(
−1

3

∫
dx

x + f(x)

)
.

Exercise 12.6

Show that in the case ν = 0 (matter domination), ρα3 is constant. Hence
find α explicitly and verify the deductions from the phase portrait in the
three cases k < 0, k = 0, and k > 0. Show also that ρ becomes unbounded
at the initial singularity.

12.5 Homogeneity in Time

We derived the Robertson–Walker metric on the assumption that the scalar
curvature was not constant, as well as the assumptions of isotropy and spatial
homogeneity. There are two interesting cases in which the Robertson–Walker
metric does have constant scalar curvature, and in which the space–time is also
homogeneous in time.

The scalar curvature is constant for the Robertson–Walker metric whenever

α−1α̈ + α−2(α̇2 + k)

is constant. The two obvious possibilities are the following.

Einstein static universe. In this case, k > 0, α̇ = 0, and ρ + 3p = 0. The
universe is closed, but not expanding.

de Sitter metric. In this case, k = 0 and α = eHt for some constant H.

In neither case does our energy condition hold, so the metric is not a solution
of Einstein’s equation with a conventional form of matter as the gravitational
source. In the first case, Einstein evaded this problem by suggesting a mod-
ification of the equations, which he later greatly regretted, by introducing a
cosmological constant Λ. The modified equation is

Rab − 1
2Rgab − Λgab = −8πTab .

Because ∇agab = 0, this is consistent with the conservation equation ∇aT ab =
0. If we take

T ab = ρtatb, Λ = k/α2,
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then the Einstein static universe is a solution with constant ρ and α. It is
thus a static, dust-filled cosmology, but governed by a revised form of the field
equation. Equivalently, one can take the term Λgab to the right-hand side and
see the modification as the addition of a uniform distribution of ‘matter’ with
constant unphysical density and pressure. The first interpretation fell from
grace with Hubble’s observation of the redshifts of galaxies, which implied that
the universe is expanding and not static. Einstein had missed the opportunity
to predict the expansion by rejecting the nonstatic solutions in favour of an
inelegant tinkering with the original field equation.

In the second case, the metric is the de Sitter metric

dt2 − e2Ht(dr2 + r2 dθ2 + r2 sin2 θ dϕ2) . (12.11)

This is homogeneous in space, and isotropic, but appears not to be static. But
in fact it has a much larger symmetry group than the other Robertson–Walker
metrics.

With H = 1, this can be seen by mapping the de Sitter space–time onto
part of the spacelike hyperboloid

v2 − w2 − x2 − y2 − z2 + 1 = 0

in the five-dimensional Minkowski space with metric

dv2 − dw2 − dx2 − dy2 − dz2 .

The map is given by

v + w = et

v − w = r2et − e−t

x = ret cos ϕ sin θ

y = ret sin ϕ sin θ

z = ret cos θ .

The Minkowksi metric and the hyperboloid are invariant under the ‘Lorentz
group’ of the five-dimensional space. This group has ten independent gener-
ators, so de Sitter space–time has the same number of independent Killing
vectors as Minkowski space.

Exercise 12.7

Show that the de Sitter space–time is mapped onto the part of the hy-
perboloid v +w > 0. Show that the Minkowski metric coincides with the
de Sitter metric on the hyperboloid.
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The de Sitter space–time was the model for the steady-state cosmology, which
was derived from the principle that, in an appropriate frame, the universe
should look the same at all events. This is true of the hyperboloid because,
given any two points on it, there is an element of the Lorentz group of the
five-dimensional space which maps one to the other. It is thus a model universe
which is homogeneous in time and space. In the steady-state theory, the galaxies
were at rest in our original coordinates, but their density remained constant
through the continuous creation of matter as the universe expanded.

Like the Einstein static model, the steady-state theory fails because it has
no ‘big bang’, but the metric itself still plays a role in the context of ‘inflation’,
which is discussed below. It is a solution of Einstein’s equations with p = −ρ.

12.6 Cosmological Redshift

In the case of the Schwarzschild metric, we derived a ‘redshift formula’ relating
the frequencies of light emitted and received by observers at rest by exploiting
the existence of a timelike Killing vector. A general Robertson–Walker is not
stationary, and the timelike vector field ta that determines the standard of
rest at each event is not a Killing vector. It is, however, a scalar multiple of a
conformal Killing vector, that is, a vector field T a that satisfies

∇(aTb) ∝ gab . (12.12)

In fact from (12.3), we have

∇atb = 2α−1α̇(gab − tatb)

and hence ∇a(αtb) = αgab because ∇aα = α̇ta. Therefore T a = αta is a
conformal Killing vector.

Now suppose that Ka is the tangent to the null geodesic worldline of a
photon, and that the geodesic has affine parameter σ. Then

Ka∇aKb = 0, gabK
aKb = 0

and therefore

d
dσ

(
TbK

b
)

= Ka∇a(TbK
b) = KaKb∇aTb = KaKb∇(aTb) = 0 .

So TaKa is constant along the geodesic.
An observer at rest has four-velocity ta. So the frequency ω measured by

such an observer at an event on the geodesic is

ω = taKa = α−1TaKa.
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It follows that if the photon is emitted at an event E1 with frequency ω1, as
measured at E1 by an observer at rest, and is received by a second observer
at rest at an event E2, then the second observer will measure a frequency ω2,
where

α(E1)ω1 = α(E2)ω2 .

In an expanding universe, α is an increasing function of t, and therefore
the frequency measured by an observer at rest decreases with time. This is the
cosmological redshift. It provides an explanation of what is sometimes referred
to as one of the few unambiguous observations in cosmology, that the sky at
night is dark. In an infinite, homogeneous, nonexpanding universe, it would be
very bright. For although the intensity of light reaching us from an individual
star falls off with the square of its distance, the total number of stars at a given
distance increases in the same proportion. So the total intensity of the light
reaching us from the stars is unbounded. This is Olber’s paradox. It is resolved
if the photons from the more distant stars are redshifted, and therefore their
energy reduced, by the expansion of the universe.

The frequency measured by an observer at rest decreases along the worldline
of a photon according to

ω̇

ω
= − α̇

α
.

The quantity α̇/α is called the Hubble constant, and is denoted by H. The
terminology is potentially confusing because although the value of H is constant
over space, it varies with t.

Suppose that light reaches us from a nearby galaxy, that it was emitted
with known frequency ω and wavelength λ = ω−1, and that its wavelength on
arrival is λ + δλ. The redshift is defined to be

z = δλ/λ .

Because the distance to a nearby galaxy, measured by an observer at rest, is
proportional to the time that light takes to travel from the galaxy, we have
that z increases in proportion to distance, at least for small distances. One can
measure z by examining the shift in known spectral lines. So if one has some
means of estimating the distance to the galaxy, one can measure H, and hence
the current rate of expansion of the universe.

The best current measurement is that H−1 is 14 billion years. Knowledge
of H allows us to relate the current value of ρ to k by

k

α2
=

8πρ

3
− H2 .

Whether the universe is open (k ≤ 0) or closed (k > 0) depends on the relative
magnitudes of ρ and the critical density 3H2/8π. By the argument in the proof
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of the singularity theorem, Proposition 12.4, H−1 is an upper bound on the
age of the universe, provided that the energy condition holds.

Exercise 12.8

Show that if T a is a nonvanishing vector field and if coordinates are
chosen so that its components are (1, 0, 0, 0), then the condition (12.12)
is ∂0gab ∝ gab. A conformal Killing vector is therefore associated with a
symmetry of the metric up to an overall scale. Show also that T a is a
conformal Killing vector if and only if ∇(aTb) = 1

4∇cT
c gab.

12.7 Cosmological Horizons

In cosmology, we do not have the luxury of waiting indefinitely to see whether
predictions about the future of the universe turn out to be correct. In consid-
ering the causal properties of a cosmological space–time, we are less interested
than in the black hole case in which parts can be seen by an observer with a
complete worldline, because it is not sensible to think in terms of observations
made by an observer who will survive over cosmological timescales. It is more
productive to ask questions about what can be deduced about the past history
of the universe, and in particular about the behaviour of matter in the extreme
conditions near the initial singularity, from observations made at the present.
So we are more interested in determining the region of space–time that can
be influenced by events on the worldline of a piece of matter at rest than on
determining which events might be visible, eventually, to a stationary observer.

In the Robertson–Walker metric, the null geodesics passing through an event
at r = 0 have constant θ and ϕ, by isotropy. Because they are null, they are
therefore given by

α
dr

dt
= ±

√
1 − kr2 .

The plus sign gives the worldlines of photons emitted at r = 0. Thus a photon
emitted at r = 0 at time t0 can be seen at event (t, r, θ, ϕ) if∫ t

t0

dt′

α(t′)
=
∫ r

0

dr′√
1 − kr′2

. (12.13)

If we take the big bang singularity to be at t0, then this equation determines r as
a function of t. It determines what is called the particle horizon of the worldline
at r = 0 at time t. This is the surface at time t that separates particles that
can have been influenced by events on the worldline at r = 0 since the big bang
from those that cannot have been.
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It appears at first that we have defined the particle horizon only for the
worldline at r = 0. But because the metric is spatially homogeneous, the world-
line can be that of any particle at rest. We can rewrite the formula in a way
that makes this clear. The spatial distance dt(P1, P2) between two particles
P1, P2 at rest at time t is defined by using the spatial metric

ds2
t = α(t)2

(
(1 − kr2)−1 dr2 + r2(dθ2 + sin2 θ dϕ2)

)
.

That is,

dt(P1, P2) = inf
∫ P2

P1

dst ,

where the integrals are along paths from P1 to P2 at time t, and the infimum is
taken over all such paths. We do not link this definition to any particular oper-
ational procedure for measuring distance. It is simply a geometric construction.
By symmetry, if P1 is at the origin, then the shortest path must be radial. So
the distance in this case is2

dt(P1, P2) = α(t)
∫ r

0

dr′√
1 − kr′2

,

where r is evaluated at P2. Wherever P1 and P2 are located, we can conclude
that one is inside the particle horizon of the other at time t if and only if

dt(P1, P2) ≤ α(t)
∫ t

t0

dt′

α(t′)
.

Because of the symmetry between the two particles, we can also interpret the
particle horizon the other way around: it separates particles that could have
influenced events on the worldline at P1 from those that could not. The particles
beyond the particle horizon are beyond the knowledge of an observer at P1 at
time t.

For small values of r, the integral on the right in the definition (12.13) is
approximately equal to r, whatever the value of k. In our cosmological models,
α is given by (12.10) for small t − t0, and therefore the radius of the particle
horizon at time t, measured by the spatial metric at time t, is approximately

(t − t0)2/(n+2)

∫ t

t0

dt′

(t′ − t0)2/(n+2)
=

(n + 2)(t − t0)
n

,

which goes to zero as t → t0.
Herein lies one of the puzzles of modern cosmology, the horizon problem.

The cosmological models that emerge from the study of Robertson–Walker
2 Note that in the case k = 1, the coordinate r = sin χ has a maximum value r = 1,

and therefore there is a maximum value for dt(P1, P2) of α(t). This is the distance
between two antipodal particles on the three-sphere.
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metrics have an initial singularity, the big bang, at which α → 0 and ρ → ∞,
provided at least that the energy condition in the singularity theorem holds.
In these models, the universe was initially unimaginably hot, but it cooled as
it expanded. At time tr, a few hundred thousand years after the big bang,
it was cool enough for electrons and nuclei to combine into atoms, a process
called recombination. The black body radiation emitted at that time by the
still extremely hot matter was free to travel through the universe thereafter,
essentially without hindrance, and can be observed today, some 14 billion years
after the big bang. As the universe expanded, the radiation was redshifted, and
today it appears as the ‘microwave background’. In every direction, we see
black body radiation as if from a body at a temperature of 2.725oK. It is this
observation, along with the isotropy of the radiation, that provides the most
dramatic support for the big bang models. When we observe the radiation, we
are literally looking at the hot matter filling the universe 14 billion years ago.
It no longer looks so hot because of the cosmological redshift.

Let t denote the present time. Suppose radiation seen today at our galaxy P0

was emitted by particle P1 at time tr. Then the current distance from P0 to P1

is (very nearly) the current size of the particle horizon. Therefore if radiation
from the opposite direction was emitted by particle P2 also at time tr, then
the current distance from P1 to P2 is approximately twice the current radius
of the particle horizon. Therefore the distance from P1 to P2 at time tr was
approximately3

2α(tr)
∫ t

t0

dt′

α(t′)
.

The problem is that under our assumptions about the equation of state this is
very much greater than

α(tr)
∫ tr

t0

dt′

α(t′)
,

which was the radius of the particle horizon at recombination. So no event at
P1 could have influenced P2 by time tr How then can the temperature of the
radiation from the two directions be the same?

The problem arises from the behaviour of α as one approaches the big
bang, and ultimately from the assumptions made about the equation of state.
Near the big bang, however, temperatures and densities are unimaginably large,
and conventional assumptions about the nature of matter are almost certainly
inappropriate. The inflationary hypothesis hangs on the possibility that k = 0
and that in the early universe, the equation of state is rather different, and
3 A possibility that we have brushed aside here, but which should be explored and

eliminated, is that in a closed universe, P1 can be close to P2 even though both
are at a great distance from P0.
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there is a time interval (t1, t2) before recombination in which the metric is the
de Sitter metric (12.11). In this case

α(tr)
∫ tr

t0

dt′

α(t′)
> α(t2)

∫ t2

t1

dt′

α(t′)
= eH(t2−t1) − 1 .

Provided that the ‘inflationary period’ t2 − t1 during which the metric has this
form is long enough, the radius of the particle horizon can be arbitrarily large
at recombination. The horizon problem is then resolved.

Inflationary cosmology also addresses two other puzzles, the smoothness
problem and the flatness problem, the observations that matter appears to be
uniformly distributed and that the spatial geometry of the universe is very
close to being flat. Both are unexpected other than in a universe evolving from
finely tuned initial conditions. Guth [7] gives an account of the ideas; there is
also an interesting critique in Penrose [18]. Perhaps the strongest lesson is that
conditions in the early universe have observable consequences at the present
time, and therefore observations on a cosmological scale—for example, of the
fine details of the microwave background—can reveal information about the
behaviour of matter under very extreme conditions, and therefore provide tests
for ideas in particle physics.



Appendix A: Notes on Exercises

1.1 By spherical symmetry, the gravitational field F (the gravitational force
per unit mass) must be of the form

F = F (r)r̂ ,

where F is a function only of the distance r from the centre, and r̂ is the
unit vector along the radius. Let Sr be the sphere of radius r with its
centre at the centre of the body. By Gauss’s theorem,∫

Sr

F . dS = 4πr2F (r)

=

⎧⎨
⎩

−4πGm r ≥ a

−4πGmr3

a3
r < a

.

Hence

F (r) =

⎧⎪⎨
⎪⎩

−Gm

r2
r ≥ a

−mr

a3
r < a

.

By solving F = −dφ/dr, and by using the boundary conditions that
φ should be continuous at r = a, and should go to zero at infinity, we
deduce that

φ =

⎧⎪⎨
⎪⎩

−Gm

r
r ≥ a

−Gmr(3a2 − r2)
2a3

r < a

.
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1.2 We take the test particle to have unit mass. Then the equation of motion
is

r̈ = −Gmr

r3
.

By taking first the scalar product with ṙ and then the vector product
with ṙ, we obtain

d
dt

(
1
2 ṙ.ṙ

)
= −Gmṙ

r2
,

d
dt

(
r ∧ ṙ

)
= 0 .

These integrate to give the energy and angular momentum equations.
The second also implies that the motion is planar (either in a line, or in
the plane orthogonal to the angular momentum vector h = r ∧ ṙ). In
plane polars, the two equations are

1
2 (ṙ2 + r2θ̇2) − Gm

r
= E, r2θ̇ = J ,

where E and J are constant.

With u = Gm/r, we have p = −Gmṙ/r2θ̇ = −Gmṙ/J . Hence the energy
equation can be rewritten

1
2 (p2 + u2) − β2u = k ,

where k = G2m2E/J2.

The constant J is the angular momentum, and the constant k is (a mul-
tiple of) the energy divided by the square of the angular momentum. It
is really the sign of k that is significant: it is negative for elliptic and
circular orbits, and positive for hyperbolic orbits; for parabolic orbits, it
vanishes. In all cases, the curves in the p, u-plane are circles.

In the first case, k > 0. All the circles pass through the same two points on
the p-axis. These are hyperbolic orbits. They reach infinity with nonzero
kinetic energy (nonzero p). In the second case, k = 0 and the orbits
just reach infinity (u = 0), but with no kinetic energy (because p = 0).
The circles all touch the p-axis at the origin. These are the parabolic
orbits. In the third case, k < 0 and the orbits are closed (none reaches
u = 0; that is, r = ∞). The point (u, p) = (

√−2k, 0) corresponds to
the circular orbit. The other circles correspond to elliptical orbits, with
the intersection points with the u axis (i.e., the roots of u2 − 2β2u− 2k)
giving the perihelion and aphelion.

1.3 The actual gravitational field is (0,−g). The acceleration of the upper end
is (f cos α,−f sin α). The apparent gravitational field in a frame moving
with the upper end is the difference of these two vectors. That is,

(−f cos α,−g + f sin α).
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The required condition is that the initial (vertical) and final (horizontal)
positions of the pendulum should make the same angle with this vector;
that is, the two components of this vector should have the same mag-
nitude. (Think of a pendulum moving in the earth’s gravitational field,
with no acceleration, from an initial position making an angle β with the
direction of gravity. It comes to rest in the opposite position making the
same angle β with the direction of gravity.)

1.4 The behaviour is the same as in the absence of gravity: the ball stays
where it is, relative to the bucket.

1.5 Hold the apparatus vertical, with the cup at the top, by the bottom of
the tube. Then let the tube fall through your hand, grasping it again at
the top. While it is falling, the apparent gravity vanishes, and the elastic
string is able to draw the ball into the cup.

2.1 In (ii) and (vii), the free indices do not balance. In (iv), there are too
many repetitions of c for the summation convention to be unambiguous.
The others make sense.

2.3 First show that for any four 4-vectors T a, Xa, Y a, Za, we have

εabcdT
aXbY cZd =

∣∣∣∣∣∣∣∣
T 0 X0 Y 0 Z0

T 1 X1 Y 1 Z1

T 2 X2 Y 2 Z2

T 3 X3 Y 3 Z3

∣∣∣∣∣∣∣∣
.

In principle, you do this by comparing the 24 nonzero terms of the sum on
the left-hand side with the 24 terms of the expansion of the determinant
on the right-hand side. But you can avoid this task by arguing that it is
enough to consider special cases because both sides are multilinear in the
four 4-vectors.

2.4 (i) Note that if La
b is a (proper) Lorentz transformation, and if

T̂ a = La
bT

b, X̂a = La
bX

b, Ŷ a = La
bY

b, Ẑa = La
bZ

b ,

then ∣∣∣∣∣∣∣∣
T̂ 0 X̂0 Ŷ 0 Ẑ0

T̂ 1 X̂1 Ŷ 1 Ẑ1

T̂ 2 X̂2 Ŷ 2 Ẑ2

T̂ 3 X̂3 Ŷ 3 Ẑ3

∣∣∣∣∣∣∣∣
= det(L)

∣∣∣∣∣∣∣∣
T 0 X0 Y 0 Z0

T 1 X1 Y 1 Z1

T 2 X2 Y 2 Z2

T 3 X3 Y 3 Z3

∣∣∣∣∣∣∣∣
.

Hence, because det(L) = 1, we have

εabcdT
aXbY cZd = εabcdT̂

aX̂bŶ cẐd

= εpqrsL
p
aT aLq

bX
bLr

cY
cLs

dZ
d .
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Because this holds for any four 4-vectors, we have

εabcd = εpqrsL
p
aLq

bL
r
cL

s
d ,

which is the required tensor transformation law.

(ii) We have

εabcd =

⎧⎨
⎩

−1 if a, b, c, d is an even permutation of 0,1,2,3
1 if a, b, c, d is an odd permutation of 0,1,2,3
0 otherwise

.

(iii) There are 44 terms in the sum εabcdε
abcd, of which only 24 are nonzero

(those with a, b, c, d a permutation of 0,1,2,3). All the nonzero terms
are equal to −1, whether the permutation is even or odd. Hence the
first identity.

2.6 We have

(
Fab

)
=

⎛
⎜⎜⎝

0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

⎞
⎟⎟⎠

(
F ab

)
=

⎛
⎜⎜⎝

0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

⎞
⎟⎟⎠

(
F ∗ab

)
=

⎛
⎜⎜⎝

0 B1 B2 B3

−B1 0 −E3 E2

−B2 E3 0 −E1

−B3 −E2 E1 0

⎞
⎟⎟⎠ .

The scalar FabF
ab is the sum of the products of the entries in the first

matrix with the corresponding entries in the second; that is, 2(B.B −
E.E).

Similarly, FabF
∗ab is the sum of the products of the entries in the first

matrix with those in the third; that is 4E.B.

Because both scalars are invariants, it follows that B.B−E.E and E.B

are invariants.

2.7 In the observer’s rest frame,

(
Ua
)

=

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ (

F ∗
ab

)
=

⎛
⎜⎜⎝

0 −B1 −B2 −B3

B1 0 −E3 E2

B2 E3 0 −E1

B3 −E2 E1 0

⎞
⎟⎟⎠ ,
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where E and B are the electric and magnetic fields seen by the observer.
Now

(
F ∗

abU
b
)

=

⎛
⎜⎜⎝

0 −B1 −B2 −B3

B1 0 −E3 E2

B2 E3 0 −E1

B3 −E2 E1 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
B1

B2

B3

⎞
⎟⎟⎠ .

Therefore F ∗
abU

b = 0 if and only if the observed magnetic field vanishes.

In a general frame

(
Ua
)

= γ(u)

⎛
⎜⎜⎝

1
u1

u2

u3

⎞
⎟⎟⎠ (

F ∗
ab

)
=

⎛
⎜⎜⎝

0 −B1 −B2 −B3

B1 0 −E3 E2

B2 E3 0 −E1

B3 −E2 E1 0

⎞
⎟⎟⎠ ,

where u is the observer’s velocity relative to the frame and E and B are
now the electric and magnetic fields in the frame. In this frame, we have

(
F ∗

abU
b
)

= γ(u)

⎛
⎜⎜⎝

−B.u

B1 − u2E3 + u3E2

B2 − u3E1 + u1E3

B3 − u1E2 + u2E1

⎞
⎟⎟⎠ .

Thus the observer sees zero magnetic field if and only if

B.u = 0, B − u ∧ E = 0 .

To determine whether there exists a frame in which the observed magnetic
field vanishes, we have to determine whether these equations can be solved
for u with E and B given.

Clearly there is no solution unless E.B = 0. When this condition holds,
the second equation implies

u =
E ∧ B

E.E
+ λE

for some λ ∈ R. The two equations are satisfied for any choice of λ;
however, |u| is minimal when λ = 0. In this case

|u| =
∣∣∣∣E ∧ B

E.E

∣∣∣∣ = |B|
|E| .

Hence there is a solution with |u| < 1 if and only if E.B = 0 and
B.B < E.E.
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3.1 Show first that if there are two rest-velocities, then the corresponding
rest densities must be equal, because otherwise the rest-velocities would
be orthogonal, which is not possible for timelike vectors. By taking a
linear combination, deduce that there is a null four-vector Na such that
T abNaNb = 0. Now obtain a contradiction with ρV → ∞ as v → 1.

3.3 Why is it enough to consider only τ00?

4.1 By the chain rule,
∂x̃a

∂xp

∂xp

∂x̃b
= δa

b .

Therefore, by differentiating with respect to x̃c,

∂x̃a

∂xp

∂2xp

∂x̃b∂x̃c
+

∂xq

∂x̃c

∂

∂xq

(
∂x̃a

∂xp

)
∂xp

∂x̃b
= 0 .

The result follows.

4.2 We have to show that the components transform correctly.

Xb∂bY
a − Y b∂bX

a

= X̃c ∂xb

∂x̃c

∂

∂xb

(
∂xa

∂x̃d
Ỹ d

)
− Ỹ c ∂xb

∂x̃c

∂

∂xb

(
∂xa

∂x̃d
X̃d

)

= X̃c ∂

∂x̃c

(
∂xa

∂x̃d
Ỹ d

)
− Ỹ c ∂

∂x̃c

(
∂xa

∂x̃d
X̃d

)

=
(
X̃c∂̃cỸ

d − Ỹ c∂̃cX̃
d
)∂xa

∂x̃d
−
(
X̃cỸ d − X̃dỸ c

) ∂2xa

∂x̃c∂x̃d

=
(
X̃c∂̃cỸ

d − Ỹ c∂̃cX̃
d
)∂xa

∂x̃d
,

because the last partial derivative in the penultimate line is symmetric
in c, d.

The vector field Z is called the Lie bracket of X and Y , and is usually
denoted by [X, Y ].

4.3 The Lagrange equations are

dV a

dτ
+ Γ a

bcV
bV c = 0 ,

where V a = dxa/dτ . Hence

d
dτ

(
gabV

aV b
)

= −2Γ a
bcV

bV cVa + V aV b
(
∂cgab

)
V c = 0 ,

because

Γ a
bcV

bV cVa = 1
2VaV bV cgad

(
∂bgdc + ∂cgdb − ∂dgbc

)
= 1

2V aV bV c
(
∂cgab

)
.
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Alternatively, the result follows from the fact that L has no explicit de-
pendence on proper time (i.e. ∂L/∂τ = 0). Hence the corresponding
Hamiltonian is conserved. But because the Lagrangian is a homogeneous
quadratic in the ẋas, the Hamiltonian and the Lagrangian coincide.

4.4 In this metric, the Lagrangian for the geodesics is

L = 1
2

(
ṫ2 − ṙ2 − sin2 r θ̇2 − sin2 r sin2 θ φ̇2

)
.

So the geodesic equations are

ẗ = 0

r̈ − sin r cos rθ̇2 − sin r cos r sin2 θ φ̇2 = 0

θ̈ − sin θ cos θ φ̇2 + 2 cot r θ̇ṙ = 0

φ̈ + 2 cot r φ̇ṙ + 2 cot θ θ̇φ̇ = 0 .

We read off from these that the nonzero Christoffel symbols are:

Γ 1
22 = − sin r cos r, Γ 1

33 = − sin r cos r sin2 θ

Γ 2
12 = Γ 2

21 = cot r, Γ 2
33 = − sin θ cos θ

Γ 3
23 = Γ 3

32 = cot θ, Γ 3
13 = Γ 3

31 = cot r .

The geodesic equations are consistent with r = θ = π/2 because
cos(π/2) = 0. With this condition, they reduce to φ̈ = 0 = ẗ.

The model is incorrect because the universe is expanding; it required an
awkward modification of the gravitational field equations, which he later
described as the biggest mistake of his life.

4.5 The transformation to T,W,X, Y, Z from the hyperspherical coordinates
t, r, θ, φ gives

dT = dt

dW = − sin r dr

dX = cos r sin θ sin φ dr + sin r cos θ sin φ dθ + sin r sin θ cos φ dφ

dY = cos r sin θ cos φ dr + sin r cos θ cos φ dθ − sin r sin θ sin φ dφ

dZ = cos r cos θ dr − sin r sin θ dθ ,

from which one gets dS2 = ds2. The transformation maps the Einstein
universe into the product of the T -axis and the three-sphere

S3 = {W 2 + X2 + Y 2 + Z2 = 1} .

The tasks ‘What portion . . . ’ and ‘Deduce that . . . ’ are not precisely
defined as they stand, because neither the manifold on which the Einstein
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metric is defined nor the ranges of the coordinates have been specified.
They are intended to provoke consideration of the analogous coordinate
systems on the surface of the earth. The hyperspherical coordinates (and
t) define a chart on almost all of the product of the T -axis and the three-
sphere, less, for example X = 0, Y ≤ 0. This corresponds to making the
natural choices in which the manifold is R × S3 and the ranges of the
coordinates are

−∞ < t < ∞, 0 < r < π, 0 < θ < π, −π < φ < π .

The geodesics on which r = θ = π/2 are mapped to

X2 + Y 2 = 1 .

Because ẗ = 0, they are the paths given by travelling at constant speed on
a great circle on the three-sphere. By rotational symmetry, all geodesics
are of this form.

This is very similar to the relationship between the sphere metric dθ2 +
sin2 θ dϕ2 and the Euclidean metric dx2 + dy2 + dz2, given by x =
sin θ cos ϕ, y = sin θ sin ϕ, z = cos θ. Thus the Einstein universe is a
curved ‘hypersurface’ in a ‘flat’ five-dimensional space, in the same way
that the sphere is a curved surface in three-dimensional Euclidean space.

5.2 Since U, V, W are coplanar, it is only necessary to check that the inner
products of both sides with U and V are equal. For the inner product
with U , we use

g(U, V sinh θOQ − U sinh θPQ) = cosh θOP sinh θOQ − sinh θPQ

= cosh θOP sinh θOQ − sinh(θOQ − θOP )

= cosh θOQ sinh θOP ,

by using the identity sinh(A − B) = sinhA cosh B − sinhB cosh A.

5.3 In local inertial coordinates at an event,

Xb∇bY
a − Y b∇bX

a = Xb∂bY
a − Y b∂bX

a .

5.4 We have

∂aαb = ∂a

(
∂x̃d

∂xb
α̃d

)

=
∂2x̃d

∂xa∂xb
α̃d +

∂x̃d

∂xb
∂aα̃d

=
∂2x̃d

∂xa∂xb
α̃d +

∂x̃c

∂xa

∂x̃d

∂xb
∂̃cα̃d .
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The result follows because the second partial derivative is symmetric in
a, b. The other part follows from

∇aαb −∇bαa = ∂aαb − Γ c
abαc − ∂bαa + Γ c

baαc = ∂aαb − ∂bαa

because Γ c
ab = Γ c

ba.

5.5 We have

∇agbc = ∂agbc − gdcΓ
d
ab − gbdΓ

d
ac

= ∂agbc − Kcab − Kbac.

We note that Kcab = Kcba because ∇ is torsion-free. Therefore

∂agbc = Kbac + Kcab

∂bgca = Kcba + Kabc

∂cgab = Kacb + Kbca .

By adding the last two equations and subtracting the first, we obtain

2Kabc = ∂bgca + ∂cgab − ∂agbc ,

from which it follows that Γ a
bc is the Christoffel symbol.

5.6 If we substitute

gab =
∂x̃c

∂xa

∂x̃d

∂xb
g̃cd, gab =

∂xa

∂x̃c

∂xb

∂x̃d
g̃cd

into
Γ a

bc = 1
2gad

(
∂bgcd + ∂cgbd − ∂dgbc

)
,

then we get

Γ a
bc = Γ̃ d

ef

∂xa

∂x̃d

∂x̃e

∂xb

∂x̃f

∂x̃c
+ g̃pq g̃rs

∂xa

∂x̃p

∂xd

∂x̃q

[
∂

∂xb

(
∂x̃r

∂xc

∂x̃s

∂xd

)

+
∂

∂xc

(
∂x̃r

∂xb

∂x̃s

∂xd

)
− ∂

∂xd

(
∂x̃r

∂xb

∂x̃s

∂xc

)]

= Γ̃ d
ef

∂xa

∂x̃d

∂x̃e

∂xb

∂x̃f

∂x̃c
+

∂xa

∂x̃p

∂2x̃p

∂xb∂xc
+ 1

2 g̃pq g̃rs
∂xa

∂x̃p

∂xd

∂x̃q

(
∂x̃r

∂xc

∂2x̃s

∂xb∂xd

+
∂x̃r

∂xb

∂2x̃s

∂xc∂xd
− ∂x̃r

∂xb

∂2x̃s

∂xd∂xc
− ∂x̃s

∂xc

∂2x̃r

∂xd∂xb

)

= Γ̃ d
ef

∂xa

∂x̃d

∂x̃e

∂xb

∂x̃f

∂x̃c
+

∂xa

∂x̃p

∂2x̃p

∂xb∂xc
.
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5.7 For any square matrix B, we have

det(1 + εB) = 1 + εtr(B) + O(ε2) ,

where 1 denotes the identity matrix. Therefore

det
(
A + εB

)
= det

(
A
(
1 + εA−1B

))
+ O(ε2)

= det A
(
1 + εtr

(
A−1B

))
+ O(ε2) .

Therefore if A is a function of t,

1
det A

d
dt

(
det A

)
= tr

(
A−1 dA

dt

)
.

We conclude that
∂a log |g| = gbc∂agbc ,

because the right-hand side is the trace of A−1∂aA when A is the matrix
with entries gbc. Therefore

Γ b
ab = 1

2gbd
(
∂bgad + ∂agbd − ∂dgab

)
= 1

2gbd∂agbd = ∂a log
√
|g| .

In general coordinates on flat space–time

∇a∇au = ∇a

(
gab∂bu

)
= ∂a

(
gab∂bu

)
+ Γ a

acg
cb∂bu

= ∂a

(
gab∂bu

)
+ ∂a

(
log
√
|g|
)
gab∂bu

= |g|−1/2∂a

(
|g|1/2gab∂bu

)
.

The left-hand side is invariant. In inertial coordinates, the first line gives

∇a∇au =
∂2u

∂t2
− ∂2u

∂x2
− ∂2u

∂y2
− ∂2u

∂z2
,

which is the wave equation.

In spherical polars, we have

ds2 = dt2 − dr2 − r2 dθ2 − r2 sin2 θ dφ2 ,

from which we have |g|1/2 = r2 sin θ . We also have

(
gab
)

=

⎛
⎜⎜⎝

1
−1

−1/r2

−1/r2 sin2 θ

⎞
⎟⎟⎠ .
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Therefore the wave equation is

∂2u

∂t2
− 1

r2

∂

∂r

(
r2 ∂u

∂r

)
− 1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
− 1

r2 sin2 θ

∂2u

∂φ2
= 0 .

5.8 Suppose that there exists such a coordinate system. Then

∇aXd = ∂aXd + 1
2Xcgbd

(
∂agbc + ∂cgba − ∂bgca

)
= 1

2gbd
(
∂ag0b + ∂0gba − ∂dg0b

)
.

Hence

∇aXb = gbd∇aXd = 1
2

(
∂ag0b − ∂bg0a

)
,

and therefore ∇aXb + ∇bXa = 0.

Vector fields with this property are called Killing vectors: they arise from
symmetries of space–time.

The corresponding result is ∇aXb + ∇bXa = fgab. By contracting with
gab, we have f = 1

2∇aXa because gabg
ab = 4.

5.9 A skew-symmetric tensor changes sign when two indices are interchanged.
Therefore any components with equal values of two indices must vanish.
For a tensor with five indices, at least two must be equal. Therefore
T[bcde] = 0.

5.10 The ‘number of independent components’ is the dimension of the corre-
sponding vector space of tensors.

(a) 1
2n(n− 1), by the same argument as in the question, noting that the
components with a = b vanish by skew-symmetry.

(b) For k ≤ n, there are (
n

k

)
independent ways of choosing k distinct values for the indices, and
therefore that number of independent components. For k > n, the
answer is zero, by the same argument as in Exercise 5.9.

(c) There are 1
2n(n−1) ways of choosing the first pair of indices and the

same number of ways of choosing the second, so there are 1
4n2(n−1)2

independent components.

(d) If we add Rabcd = Rcdab to the conditions in (c), then the number
is reduced to 1

2N(N + 1), where N = 1
2n(n − 1) (because this is the

number of independent entries in an N × N symmetric matrix).
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5.12 By definition,
∇a∇bX

c −∇b∇aXc = Rabd
cXd .

The result follows by lowering the index c, and by using Rabcd = −Rabdc.

∇a∇bXc −∇b∇aXc = −RabcdX
d

∇b∇cXa −∇c∇bXa = −RbcadX
d

∇c∇aXb −∇a∇cXb = −RcabdX
d

(the second two equations are obtained from the first by cyclic permu-
tation of a, b, c). By adding the first and last, and by subtracting the
second,

2∇a∇bXc =
(−Rabcd + Rbcad − Rcabd

)
Xd .

But, by the symmetries of the Riemann tensor,

Rabcd + Rbcad + Rcabd = 0 .

By adding this to the expression in brackets above, we get

2∇a∇bXc = 2RbcadX
d .

By contracting the identity with V aV b, where V a = dxa/dτ , we obtain

D2Xc = V aV b∇a∇bXc = V aV bRbcadX
d = RabdcV

aXbV d ,

which is the equation of geodesic deviation.

5.13 By Exercise 5.4, we have Fab = 2∂[aΦb] everywhere, in any coordinate
system. Thus

∇[aFbc] = 2∇[a∂bΦc] .

However, in local inertial coordinates at an event, this reduces to

2∂[a∂bΦc]

at the event, which vanishes because partial derivatives commute. (In the
language of differential forms, we have shown that d2 = 0.)

For the other Maxwell equation, we have

∇a
(∇aΦb −∇bΦa

)
= �Φb + Ra

bacΦ
c −∇b

(∇aΦa

)
.

Therefore the second set of Maxwell equations ∇aFab = 0 reduces to

�Φb −∇b

(∇aΦa

)
= −RabΦ

a .
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5.14 Because Xa = ∇af , we have ∇aXb = ∇bXa. Therefore,

Xa∇aXb = Xa∇bXa = 1
2∇b(XaXa) = 0 ,

and so the curves are geodesics.

5.15 The geodesic equations are

d
dτ

(
1
2 v̇ + log(x2 + y2)u̇

)
= 0 ,

together with

ü = 0, ẍ +
xu̇2

x2 + y2
= 0, ÿ +

yu̇2

x2 + y2
= 0 .

The x and y equations are the same as those obtained from the La-
grangian

L = 1
2

(
ẋ2 + ẏ2 − A2 log(x2 + y2)

)
= 1

2

(
ṙ2 + r2θ̇2 − A2 log r2

)
in classical mechanics, where A is the constant value of u̇ and r, θ are plane
polar coordinates. This is the Lagrangian of a central force problem with
potential V = A2 log r. We have K = xẏ − yẋ = r2θ̇ is constant because
∂L/∂θ = 0. Also energy is conserved (because L has no explicit time
dependence). Therefore

1
2

(
ṙ2 +

K2

r2

)
+ A2 log r = constant.

However, for K �= 0, we have A2 log r + K2/r2 → ∞ as r → 0, so no
solution can reach r = 0.

7.1 The Schwarzschild metric is

ds2 =
(

1 − 2m

r

)
dt2 − dr2

1 − 2m/r
− r2 dθ2 − r2 sin2 θ dφ2 .

The four-velocity of an observer at rest has components(
ua
)

=
(
ṫ, 0, 0, 0

)
,

where
ṫ =

dt

dτ
=

1√
1 − 2m/r

,

because 1 = gabU
aU b = (1 − 2m/r)ṫ2.

Along a radial null geodesic, ds2 = 0, and θ and φ are constant. Therefore(
1 − 2m

r

)
dt2 − dr2

1 − 2m/r
= 0 ,
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and hence
dt

dr
=

r

r − 2m
.

By integrating this, we find that the coordinate time t1 at which the
photon leaves C1 is related to the coordinate time t2 at which the photon
arrives at C2 by

t2 − t1 =
∫ r2

r1

r dr

r − 2m
.

Because the right-hand side is independent of t1, we have that the coor-
dinate time interval ∆t1 between A and A′ is the same as the coordinate
time interval ∆t2 between B and B′. (This is essentially the same as the
argument in the first chapter that gravitational redshift is incompatible
with special relativity.) Therefore, by the formula above for dt/dτ , the
corresponding proper time intervals are related by

∆τ1

∆τ2
=

√
1 − 2m/r1√
1 − 2m/r2

.

When m is small the right-hand side is

1 − m

r1
+

m

r2
= 1 − mh

r2
1

,

where h = r2 − r1 and second-order terms in m/r and h/r are neglected.
In SI units, this gives

∆τ1 = ∆τ2

(
1 − Gmh

r2
2c

2

)
= ∆τ2

(
1 − gh

c2

)
,

where g = Gm/r2
2 is the acceleration due to gravity. By taking the ap-

proximate values (in SI units) g = 10, h = 1 (that is, 1m), c = 3 × 108,
and ∆τ2 = 3 × 107 (that is, one year in seconds), we get

∆τ1 ∼ ∆s2 − 3 × 10−9 s .

That is, the watch on your ankle (at r = r1) appears to lose 3 × 10−9

seconds relative to the watch on your wrist (at r = r2 = r1 + h).

7.2 If ∇ is the Levi-Civita connection, then

Xa∇aTbc + Tac∇bX
a + Tba∇cX

a

= Xa∂aTbc + Tac∂bX
a + Tba∂cX

a

+ XaΓ d
abTdc − TacΓ

a
bdX

d − TbaΓ a
cdX

d + XaΓ d
acTbd

= Xa∂aTbc + Tac∂bX
a + Tba∂cX

a ,
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because Γ d
ab = Γ d

ba. Hence the result follows from the fact that the left-
hand side is a tensor.

We know that if Z = [X, Y ], then

Za = Xb∇bY
a − Y b∇bX

a .

Hence

∇aZb + ∇bZa

= ∇a

(
Xc∇cYb − Y c∇cXb

)
+ ∇b

(
Xc∇cYa − Y c∇cXa

)
= ∇aXc∇cYb −∇aY c∇cXb + ∇bX

c∇cYa −∇bY
c∇cXa

+ Xc∇a∇cYb − Y c∇a∇cXb + Xc∇b∇cYa − Y c∇b∇cXa

= −RcbadX
cY d + RcbadX

dY c − RcabdX
cY d + RcabdY

cXd

= 0 ,

by Exercise 5.12, together with the symmetries of the Riemann tensor.

Another method is to prove first that

LXLy − LY LX = L[X,Y ] ,

where the operator LX (the ‘Lie derivative’) is defined on tensors of type
(0,2) by

LXTbc = Xa∂aTbc + Tac∂bX
a + Tba∂cX

a .

We now have the fact that C = Xaẋa is constant along a geodesic xa(s)
if and only if X is a Killing vector. Now

If X has components (1, 0, 0, 0) then C = (1 − 2m/r) ṫ;
If X has components (0, 0, 0, 1) then C = −r2 sin2 θ φ̇;
If X has components (0, 0 − cos φ, cot θ sin φ) then

C = r2 cos φ θ̇ − r2 sin2 θ cot θ sin φ φ̇ .

The first two are clearly constant because the geodesic Lagrangian

L = 1
2

[(
1 − 2m

r

)
ṫ2 − ṙ2

1 − 2m/r
− r2 θ̇2 − r2 sin2 θ φ̇2

]

is independent of t and φ. In the third case, we use the two geodesic
equations

d
dτ

(
−r2 sin2 θ φ̇

)
= 0

d
dτ

(
−r2θ̇

)
+ r2 sin θ cos θ φ̇2 = 0
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to deduce that

dC

dτ
=

d
dτ

(
r2θ̇
)

cos φ − r2 sin φ θ̇φ̇

− r2 sin2 θ φ̇
(−cosec2 θ sin φ θ̇ + cot θ cos φ φ̇

)
= 0 .

For the third Killing vector, we calculate the Lie bracket of the second
and third Killing vectors to get

∂φ(0, 0,− cos φ, cot θ sin φ) − (− cos φ ∂θ − cot θ sin φ ∂φ)(0, 0, 0, 1)

= (0, 0, sin φ, cot θ cos φ) .

8.2 The first statement is a consequence of ∂L/∂t = 0 = ∂L/∂φ. For large r,
the metric is that of Minkowski space, where ṫ = γ(u) ≥ 1. Therefore we
must have E ≥ 1 for escape.

By substituting for ṫ and φ̇ in the four-velocity condition(
1 − 2m

r

)
ṫ2 − ṙ2

1 − 2m/r
− r2φ̇2 = 1

(the orbit is equatorial, so θ = π/2), we obtain

ṙ2 + 1 +
J2

r2
− 2m

r
− 2mJ2

r3
= E2 .

Hence by differentiating with respect to r, and using 1
2d(ṙ2)/dr = r̈, we

have

r̈ − J2

r3
+

m

r2
+

3mJ2

r4
= 0 , (A.1)

and hence the given result.

For a circular orbit of radius R, we have

ṙ = 0 = r̈, r = R ,

and hence

J2

(
−3m

R4
+

1
R3

)
=

m

R2
,

which gives J2 = mR2/(R − 3m). Also

E2 =
(

1 +
J2

R2

)(
1 − 2m

R

)
=

(R − 2m)2

R(R − 3m)
.

Therefore

ṫ =
RE

R − 2m
=

√
R√

R − 3m
.
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It follows that (
dφ

dt

)2

=

(
φ̇

ṫ

)2

=
J2

R4

R − 3m

R
=

m

R3
.

By substituting r = R + ε into (A.1), and discarding second-order terms
in ε and its derivatives, we find

ε̈ +
m

R2
− 2mε

R3
− J2

R3
+

3J2ε

R4
+

3mJ2

R4
− 12mJ2ε

R5
= 0 ,

which gives

ε̈ +
m(R − 6m)ε
R3(R − 3m)

= 0 ,

and hence that the orbit is stable if and only if R > 6m (note that
R < 3m is not possible).

8.3 For null (nonradial) equatorial geodesics, the geodesic equations reduce
to

p2 = α2 + 2u3 − u2 ,

where u = m/r and p = du/dφ. By working from the given equation, we
have

log A + φ = log(1 − 3u) − 2 log
(√

3 +
√

1 + 6u
)
.

Hence by differentiating both sides with respect to u, we have

p−1 = − 3
1 − 3u

− 6√
1 + 6u(

√
3 +

√
1 + 6u)

= − 3
1 − 3u

(
1 +

√
3 −√

1 + 6u√
1 + 6u

)

= − 3
1 − 3u

√
3√

1 + 6u
.

Therefore

p2 =
(1 − 3u)2(1 + 6u)

27
=

1
27

− u2 + 2u3 ,

thus we have a solution of the geodesic equation. As φ → −∞, for A > 0
the orbit spirals in from infinity, asymptotic to the null geodesic orbit at
r = 3m; for A < 0, it spirals out towards it from the region 3m > r > 2m.
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11.2 You will find it helpful to establish

wab(0, r) =
1
2

∫ (
kab(n) + kab(−n)

)
exp(in . r) dV

and to use the Fourier inversion theorem

f(r) =
∫

f̂(n) exp(in . r) dV ′ ,

f̂(n) =
1

(2π)3

∫
f(r) exp(−in . r) dV ,

where dV ′ is the volume element in the space of ns.

11.5 Those who have studied exterior calculus will be able to deduce this
directly from the closure of the three-form Jaεabcd dxb ∧ dxc ∧ dxd. An
alternative direct method is to observe first that because Q is invariant,
it is only necessary to show that ∂Q/∂t′ = 0. Write

Q =
∫

V

([ρ] − e . [j]) dV ,

where e = (r′ − r)/|r′ − r| and ρ and j are the temporal and spatial
parts of the four-current Ja. Now find the derivative with respect to t′

by differentiating under the integral sign. The key steps are to use the
divergence theorem, the continuity equation

∂ρ

∂t
+ ∇ . j = 0 ,

and the identity
∇[f ] = [∇f ] + [∂tf ]e , (A.2)

which should be derived for a general function f(t, r). Here ∇ is the
gradient with respect to the spatial coordinates x, y, z.

12.1 To show existence, prove from the completeness of ω and from the fact
that dt/dτ > 1 that there is a value of τ for which t = x0(τ) = 0. Use
the intermediate value theorem to deduce that there is an event on ω at
which t ≤ 0 and t2−x2−y2−z2 = 0. To show uniqueness, show that any
two events on ω are connected by a timelike vector and then show that it
is not possible to express a timelike vector as the difference between two
future-pointing null vectors.

12.2 You need to show that na∇anb ∝ nb on Σ, which you can do by showing
that Xbn

a∇anb = 0 on Σ for every vector Xa such that Xana = 0.
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12.3 Suppose that gab and g̃ab are metrics on a space–time. Write g̃ab ≤ gab

if every vector which is timelike with respect to g̃ab is also timelike with
respect to gab. Prove that this is a partial ordering. Show that if I−(ω) and
Ĩ−(ω) are the pasts of a worldline ω with respect to the two metrics, and
that if g̃ab ≤ gab, then Ĩ−(ω) ⊆ I−(ω). By considering the Kerr metric
in the form (10.4) and by taking g̃ab = gab − ktatb for some constant k,
construct a flat space–time metric on r > r0 with g̃ab ≤ gab, where gab is
the Kerr metric.

12.7 It is helpful to start by writing v2 − w2 = (v + w)(v − w), dv2 − dw2 =
(dv + dw)(dv − dw), and

dr2+r2 dθ2+r2 sin2 dϕ2 = e−2t
(
(dx−xdt)2+(dy−y dt)2+(dz−z dt)2

)
.

Note that x2 + y2 + z2 = r2e2t.



Appendix B: Further Problems

The problems that follow are taken from final examination papers set in Oxford
over the past 15 years, in some cases adapted for notational consistency with
the text, and with any hints deleted. The passage of time and the conventions
of anonymity and collective responsibility of examiners make it hard to iden-
tify all the original authors; some may even be borrowed from other texts. I
must therefore apologise for including them without acknowledgement. A few
I recognise as my own, others are likely to be by my colleagues, Roger Penrose,
Paul Tod, and Lionel Mason.

B.1 A model universe has metric

ds2 = dt2 − R(t)2
(
dr2 + sin2 r(dθ2 + sin2 θdϕ2)

)
,

where R(t) > 0 for t ∈ (t0, t1). Obtain the geodesic equations and write
down the Christoffel symbols (with x0 = t, x1 = r, x2 = θ, x3 = ϕ).
Show that there are geodesics on which θ and r are constant and equal
to π/2. Show that if ∫ t1

t0

dt

R
< 2π ,

then a photon cannot make a complete circuit of the circle θ = r = π/2,
0 ≤ ϕ ≤ 2π between t = t0 and t = t1.

B.2 Let ∇ denote the Levi-Civita connection in a curved space–time. Show
that there is a tensor R d

abc such that

(∇a∇b −∇b∇a)Xd = R d
abc Xc

for every Xa. Show that

(∇a∇b −∇b∇a)Tcd = −R e
abc Ted − R e

abd Tce
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for every Tab. Show that if Fab = F[ab] satisfies Maxwell’s equations
∇aF ab = 0 and ∇[aFbc] = 0, then

∇a∇aFbc + 2RabcdF
ad − 2R d

[b Fc]d = 0.

B.3 The Riemann curvature tensor Rabc
d in a curved space–time endowed

with a torsion-free connection satisfies the equation

(∇a∇b −∇b∇a)Xd = Rabc
dXc

and can be expressed in the form

Rabc
d = ∂aΓ d

bc − ∂bΓ
d

ac + Γ d
aeΓ

e
bc − Γ d

beΓ
e
ac .

By using this show that the curvature tensor has the following symme-
tries.

Rabcd = −Rbacd, Rabcd = Rcdab, Rabcd = −Rabdc, R[abc]d = 0.

Now let Φa be the electromagnetic four-potential, so that the electro-
magnetic field tensor is Fab = ∂aΦb − ∂bΦa, and satisfies the free-space
Maxwell’s equations

∇aF ab = 0, ∇[aFbc] = 0.

Show that the second of these equations is satisfied for any four-potential
Φa, but that the first holds only if

∇b∇bΦa −∇a(∇bΦb) + RabΦ
b = 0,

where Rab is the Ricci tensor.

Suppose, in addition, that the Lorenz condition ∇aΦa = 0 holds. Show
that when the space–time scale of variations of S is much smaller than
those of C and of the connection, and second derivatives of S may be
ignored, there are approximate solutions of the form Φa = Ca exp(iS)
(the geometrical optics approximation), provided that ka = ∇aS is a null
covector field. By considering ∇a(kbkb) show that the integral curves of
k are null geodesics.

B.4 Explain briefly how the geodesic hypothesis for free particles and pho-
tons can be justified from the principle that special relativity should
hold over short times and distances in frames in free-fall.

A space–time has metric

ds2 = dt2 − dx2 − dy2 − dz2 + 2ϕ(dt + dz)2,

where ϕ is a function of x and y alone.
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(a) Show that if
(
t(τ), x(τ), y(τ), z(τ)

)
is a solution of the geodesic

equation, then
dx

dτ
= α

∂ϕ

∂x
,

dy

dτ
= α

∂ϕ

∂y
,

for some constant α, where τ is proper time.

(b) Suppose that O and O′ are observers with worldlines on which x, y,
and z are constant. By considering an appropriate constant of the
motion for the photon, show that if O sends a photon to O′ and if
the frequencies of the photon as measured by O and O′ are ω and
ω′, then

ω

ω′ =

√
1 + 2ϕ(O′)
1 + 2ϕ(O)

.

B.5 Let mab and mab be the covariant and contravariant metric tensors on
Minkowski space, M, with standard inertial coordinates xa so that

(mab) =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ = (mab) .

Let na be a constant null covector on M, and define a new metric on M

by
gab = mab + nanbf ,

where f is a function on M such that

mabna∂bf = 0 ,

and where ∂a = ∂/∂xa. Show that the connection derived from gab is
given by

Γ a
bc = mda

[
ndn(b∂c)f − 1

2nbnc∂df
]
.

Show that the Ricci tensor is

Rab =
1
2
nanb�f ,

where � = mab∂a∂b, and that Einstein’s vacuum field equations in this
case can have plane wave solutions provided the propagation vector ka

satisfies naka = 0. Deduce that the Ricci scalar vanishes and that then
the Ricci tensor satisfies the conservation equation

∇aRab = 0 .
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B.6 A space–time M has metric

ds2 = dt2 − α(t)2(dx2 + dy2 + dz2) .

You may assume without calculation that the nonzero components of
the Ricci tensor for M are given by

Rtt = 3α′′/α; Rxx = Ryy = Rzz = −αα′′ − 2α′ 2 ,

where α′ = dα/dt.

The space–time M is filled with dust of rest mass density ρ whose four-
velocity is orthogonal to the surfaces of constant t. Show that Einstein’s
field equations reduce to the two equations

3α′′ = −4πGρα

α′′α + 2(α′)2 = 4πGρα2 .

By assuming that α and α′ are both nonnegative, deduce that the gen-
eral solution is

α(t) = A(t − t0)2/3 ,

where A and t0 are constants.

B.7 A null geodesic γ lies in the equatorial plane θ = π/2 of the Schwarzschild
metric, which in conventional coordinates is given by:

ds2 = (1 − 2m/r)dt2 − (1 − 2m/r)−1dr2 − r2(dθ2 + sin2 θdϕ2) .

Write down the geodesic equations, and hence show that along γ,

p2 = 2u3 − u2 + α2 ,

where u = m/r, p = du/dϕ, and α is a constant. Sketch the trajectories
in the (u, p) phase-plane, both in the region 0 < u < 1/2 and also in
the region u > 1/2.

For the case α = 0 and u > 1/2, show that the geodesic has an equation
of form

r = 2m cos2(1/2(ϕ − ϕ0)); θ = π/2; t = t0

where ϕ0 and t0 are constants. Indicate by a sketch where this geodesic is
located in the complete Kruskal extension of the Schwarzschild solution.
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B.8 A space–time metric has the form

ds2 = f(r)2dτ2 − dr2 − dy2 − dz2 ,

where f is a positive function of r. Two nearby observers A and B have
respective worldlines given by

(A) y = z = 0, r = r0, (B) y = z = 0, r = r1 ,

where r0 < r1 are constants. Show that τ is a constant multiple of proper
time on each worldline. Are the worldlines geodesic? Give reasons for
your answer.

A light signal emitted by A at τ = τ0 is received by B at proper time
τ = τ1 and immediately reflected back to A, where it arrives at τ = τ2.
Show that

τ1 − τ0 =
∫ r1

r0

dr

f(r)
.

Deduce that light emitted by A with frequency ω is seen by B to have
frequency ωf(r0)/f(r1). Deduce also that

τ2 − τ0 = 2
∫ r1

r0

dr

f(r)
,

and hence that if A measures the distance to B by the radar method,
then this distance is constant.

Show that when f = r, the metric can be reduced to the Minkowski
metric by a coordinate change, and that the worldlines become

t = r sinh τ, x = r cosh τ, y = z = 0,

for two constant values of r.

Explain why the observed redshift of light travelling from the bottom to
the top of a tower in the earth’s gravitational field is incompatible with
any special relativistic theory of gravity in which photon worldlines are
null geodesics and the frame of the tower is inertial.

When f = r, the worldlines of A and B are a constant distance apart (as
measured by both observers), but there is a redshift for light travelling
from one to the other. Explain why this does not contradict your answer.

B.9 (i) You are given that Maxwell’s equations in curved space–time are

∇[aFbc] = 0, ∇aFab = 0 ,
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where F(ab) = 0 and where ∇ is the Levi-Civita connection. Show that
if Fab = ∇[aΦb] for some covector field Φ such that ∇aΦa = 0, then the
first equation is satisfied identically, and the second reduces to

∇b∇bΦa = −RabΦ
b.

(ii) Let fab be a nonzero skew-symmetric tensor at an event and suppose
that fabαb = 0 and f[abαc] = 0 for some nonzero covector αa. Show that
αa is null.

(iii) Suppose that u is a smooth function on space–time such that its
gradient αa = ∇au is nonzero on the hypersurface S defined by u = 0;
and suppose that Fab is a solution of Maxwell’s equations with the
property that the tensor fab = u−1Fab is smooth on S. Show that
Fab = 0 on S. Show also that if fab is nonzero on S, then S is null
(i.e., αa is null on S).

Comment on the physical significance of the fact that S must be null.

B.10 A spherically symmetric space–time metric has the form

ds2 = A(r) dt2 − dr2

A(r)
− r2 dθ2 − r2 sin2 θ dϕ2 (r > 0) .

Write down the geodesic equations and show that there are null nonra-
dial geodesics on which θ takes the constant value π/2. Show that such
geodesics are given by

p2 = k − u2Q(u) ,

where u = 1/r, p = du/dϕ, Q(u) = A(1/u), and k is a positive con-
stant (depending on the geodesic). Hence show that these nonradial null
geodesics are given by

d2u

dϕ2
= −uQ(u) − 1

2u2Q′(u) .

(i) Show that if A(r) = 1− 2m/r, then there is a photon orbit on which
r takes the constant value 3m.

(ii) Suppose that A(r) = Q(u), where Q is a polynomial in u such that
Q > 0 for all u > 0. Show that there are photon orbits on which r takes
any one of the constant values r = 1/ui, where 0 < u1 ≤ u2 ≤ · · · are
the positive roots of u2Q′(u) + 2uQ(u). Suppose that the roots of this
polynomial are distinct. Is the orbit at r = 1/u2 stable?
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B.11 Define the Riemann tensor Rabcd of a space–time metric and write down
its symmetries.

Show that for any vector fields X, Y ,

[X, Y ]b = Xa∇aY b − Y a∇aXb ,

where [X, Y ] has components [X, Y ]b = Xa∂aY b − Y a∂aXb in some
coordinate system xa, ∇ is the Levi-Civita connection, and ∂a denotes
∂/∂xa.

Show that if XaVa is constant along every affinely parametrized geodesic
xa = xa(s), where V a = dxa/ds, then X satisfies the Killing equation:

∇aXb + ∇bXa = 0 .

Deduce that
∇a∇cXb = RcbadX

d ,

and hence that Xa satisfies the Jacobi equation

D2Xd = Rabc
dV aXbV c, (D = V a∇a)

along any geodesic.

Let X, Y be solutions to the Killing equation. Show that if Xa = Y a and
∇aXb = ∇aY b at some event P , then Xa = Y a along every geodesic
through P . (You must state clearly any theorems that you use about the
uniqueness of solutions of systems of second-order ordinary differential
equations.)

Deduce that the space of solutions to the Killing equation has dimension
at most 10. Give an example of a space–time in which the dimension is
equal to 10.

B.12 Let gab be a general space–time metric. Show that for any event A,
there exists a coordinate system xa such that ∂agbc = 0 at A, where
∂a = ∂/∂xa.

Show that in such a coordinate system,

Γ a
bc = 0 and Rabcd = 1

2 [∂a∂cgbd + ∂b∂dgac − ∂a∂dgbc − ∂b∂cgad]

at the event A.

Show that there does not exist a coordinate transformation that reduces
the metric

ds2 = (1 + x2)dt2 − dx2 − dy2 − dz2

to the metric of Minkowski space.
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B.13 The gravitational field of a spherically symmetric black hole is repre-
sented by the Schwarzschild metric

ds2 =
(
1 − 2m/r

)
dt2 − (1 − 2m/r

)−1dr2 − r2dθ2 − r2 sin2 θdϕ2.

Explain briefly the sense in which r = 2m is only an apparent singularity.

A particle in free-fall has worldline (t, r, θ, ϕ) = (t(τ), r(τ), π/2, ϕ(τ)),
where τ is proper time and r > 2m. Show that

E =
(
1 − 2m

r

)
ṫ and J = r2ϕ̇

are constant along the worldline, where the dot denotes differentiation
with respect to τ . Explain why the particle cannot escape to infinity if
E < 1.

Show that
E2 − ṙ2

1 − 2m/r
− J2

r2
= 1.

Deduce that if E = 1 and J = 4m, then
√

r − 2
√

m√
r + 2

√
m

= Aeεϕ/
√

2 ,

where ε = ±1 and A is a constant. Describe the orbit that starts at
ϕ = 0 in each of the cases (i) A = 0, (ii) A = 1, ε = −1, (iii) A =
(
√

3 − 2)/(
√

3 + 2), ε = −1.

B.14 A space–time has the metric

ds2 = gabdxadxb.

Show that the Christoffel symbol, defined by

Γ a
bc =

1
2
gda(∂cgbd + ∂bgcd − ∂dgbc),

can be derived from this by using Lagrange’s equations. Calculate all
nonvanishing Christoffel symbols for the metric

ds2 = 2du dv − A(u)dx2 − B(u)dy2.

Obtain the equations of the geodesics and show that, for each geodesic,
we can find constants α, β, γ, δ such that

v =
1
2

∫ (
α2

A(u)
+

β2

B(u)

)
du + γu + δ.
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B.15 The portion of space–time outside a black hole of mass m has the
Schwarzschild metric

ds2 = (1 − 2m/r) dt2 − (1 − 2m/r)−1 dr2 − r2dθ2 − r2 sin2 θ dϕ2.

Obtain the equations of the photon orbits. Show that a light ray passing
the black hole at a distance D � m is deflected through an angle of
approximately 4m/D.

Sketch the phase portrait of the equatorial null geodesics in the u, p

plane, where u = m/r < 1
2 and p = du/dϕ. A photon is emitted at

r = 3m + ε in the equatorial plane in a direction orthogonal to the
radius vector, where |ε| � m. Describe the photon’s orbit in the two
cases ε > 0 and ε < 0, identifying the corresponding curves in the
u, p-plane.

B.16 Let T be a four-vector field on a space–time with metric ds2 =ab

dxadxb. Show that if the components T a are constant in the coordi-
nate system xa, then

∇aTb = ∂[aTb] + 1
2T c∂cgab,

where ∇ is the Levi-Civita connection. Deduce that if T c∂cgab = 0, then

∇(aTb) = 0, ∇c∇aTb = RabcdT
d,

and
RabT

aT b = 1
2�(T cTc) − (∇aTb)(∇aT b),

where � = ∇a∇a.

Suppose that
ds2 = A(dx0)2 − hαβdxαdxβ ,

where α, β = 1, 2, 3, with summation convention. Show that if A and
hαβ are independent of x0, then

R00 = −h−1/2∂α

(
h1/2hαβ∂βA

)
− 1

2A−1hαβ(∂αA)(∂βA),

where hαβhβγ = δα
γ and h = dethαβ .

B.17 A space–time has metric

gab = mab + εhab ,



208 Further problems

where mab is the Minkowski space metric, ε is a small parameter, and
hab is symmetric, with ∂0hab = O(ε). A particle is in free-fall, with four-
velocity V = (1,0) + O(ε). Show that, if terms of order ε2 are ignored,
then its equation of motion is

r̈ = − 1
2∇(εh00) + O(ε2) .

How can this result be used to recover Newton’s theory of gravity from
general relativity for slow-moving bodies in the weak-field limit?

Describe the corresponding Newtonian gravitational field when the met-
ric is

ds2 = (1 + 2εz)dt2 − dx2 − dy2 − dz2 .

Show that, if terms of order ε2 are ignored, then the coordinate trans-
formation

t̂ = (1 + εz)t, x̂ = x, ŷ = y, ẑ = z + 1
2εt2

reduces the metric to the Minkowski form. Explain this result in terms
of the equivalence principle.

B.18 Show that the quantities

E =
(

1 − 2m

r

)
ṫ and J = r2 sin2 θ ϕ̇

are constant along the timelike geodesics of the Schwarzschild metric

ds2 = (1 − 2m/r) dt2 − dr2

1 − 2m/r
− r2(dθ2 + sin2 θ dϕ2)

(the dot denotes differentiation with respect to proper time).

A stationary observer is one on whose worldline r, θ, and ϕ are constant.
Explain why there are no stationary observers at r < 2m. Show that if
a particle in free-fall has speed v relative to a stationary observer at an
event on its worldline, then

E =

√
1 − 2m/r√
1 − v2

.

Explain how the constancy of E reduces to a conservation law in Newto-
nian gravity (which you should identify) when m and v are small. What
can you say about orbits on which E < 1?

Show that the nonradial equatorial timelike geodesics (θ = π/2) are
given by (

du

dϕ

)2

= 2β2u + 2k − u2 + 2u3 ,
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where u = m/r, β = m/J , and k = (E2 − 1)m2/2J2. By making the
substitution u = (1/4) cosh2 x show that, if k = 0 and β = 1/4, then

dx

dϕ
=

± sinhx

2
√

2
.

Verify that a possible solution is

exp
(

ϕ

2
√

2

)
=

1 + ex

1 − ex
.

Describe the behaviour of the corresponding orbit as ϕ → ∞.

B.19 In a space–time M , a vector field has components Xa and the metric
has components gab, with respect to a coordinate system (x0, x1, x2, x3).
In these coordinates, Xa = (1, 0, 0, 0) and ∂gab/∂x0 is zero. Show that
Xa satisfies the Killing equation

∇aXb + ∇bXa = 0 .

By differentiating this equation, deduce that Xa also satisfies the equa-
tion

∇a∇bXc = RbcadX
d ,

where Rabcd is the Riemann tensor of M .

What is the geodesic deviation equation? Show that Xa satisfies the
geodesic deviation equation along any geodesic in M .

Show that, if Xa and Y a both satisfy the Killing equation, then so does
their commutator Za, defined by

Za = Xb∇bY
a − Y b∇bX

a .

B.20 The Minkowski metric in inertial coordinates (x0, x1, x2, x3) = (t, x, y, z)
is

ds2 = dt2 − dx2 − dy2 − dz2

and the wave operator is defined by

�u =
∂2u

∂t2
− ∂2u

∂x2
− ∂2u

∂y2
− ∂2u

∂z2
.

Explain why the wave operator in arbitrary coordinates x̃a can be writ-
ten as

�u = gab∇a∇bu,
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where you should explain what is meant by ∇a.

Rindler coordinates (T,X, Y, Z) are given implicitly in terms of inertial
coordinates (t, x, y, z) by

t = X sinhT, x = X cosh T, y = Y, z = Z .

Show that in these coordinates the metric becomes

ds2 = X2 dT 2 − dX2 − dY 2 − dZ2 .

By using the geodesic equation, or otherwise, obtain the Christoffel
symbols Γ c

ab for this metric and show that

gabΓ c
ab = X−1δc

1 .

By using the formula obtained above for �u obtain the wave equation
in Rindler coordinates. Show that u = f(XeT ) is a solution for any
smooth f .

B.21 In a space–time M , a timelike geodesic γ has four-velocity vector V a.
The vector-field Y a defined along γ is a connecting vector to an in-
finitesimally neighbouring geodesic. Assuming the equations

DV a = 0, DY a = Y b∇bV
a ,

where D is V b∇b, derive the geodesic deviation equation

D2Y a = R a
bcd V bY cV d .

Suppose that Y aVa = 0 at one point of γ. Deduce that Y aVa = 0 at all
points of γ.

Now suppose that the Riemann tensor Rabcd of M can be written in
terms of the metric gab and a function F in the form

Rabcd = F (gacgbd − gadgbc) .

What are the Ricci tensor Rab and the Ricci scalar R in terms of F and
gab?

What is the contracted Bianchi identity and what can you deduce about
F from it?

Show that with these assumptions the geodesic deviation equation in
M becomes

D2Y a = FY a .

Solve this equation by writing Y a as fXa where Xa is parallelly propa-
gated along γ and f is a function to be found. Show that if F < 0 then
Y a necessarily has a zero in any piece of γ with proper length greater
than 2π/

√−F .
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B.22 The Schwarzschild metric is given in coordinates (xa) = (t, r, θ, ϕ) by

ds2 = (1 − 2m/r) dt2 − (1 − 2m/r)−1 dr2 − r2(dθ2 + sin2 θ dϕ2) .

How may the geodesic equations for this metric be obtained from La-
grange’s equations?

Show that there are geodesics confined to the equatorial plane θ = π/2
and that these geodesics are determined by the equations

(1 − 2m/r) ṫ = E ,

r2ϕ̇ = J ,

ṙ2 = E2 −
(

1 − 2m

r

)(
µ + J2/r2

)
,

where J,E, and µ are constants and the dot denotes d/dτ . What is the
significance of µ?

Hence or otherwise, deduce the equation

r̈ = − 1
r4

(mµr2 − J2r + 3mJ2) .

Show that for each J with J2 > 12m2 there are two timelike circular
orbits at constant values of r, and for J > 0 there is a unique null
circular orbit at a value r0 of r, which you should find.

By setting r = r0 + ζ for small ζ, or otherwise, determine whether the
circular null orbit is stable.

B.23 Let ∇a denote the Levi-Civita connection in a curved space–time. Write
down a formula for ∇a∇bV

d −∇b∇aV d, where V a is a vector field, in
terms of V a and the Riemann tensor R d

abc .

Assuming the existence of local inertial coordinates, show that

Rabcd = R[ab][cd]

R[abc]d = 0

Rabcd = Rcdab .

Show that for any covariant tensor field Tab,

∇a∇bTcd −∇b∇aTcd = −R e
abc Ted − R e

abd Tce ,

where ∇a is the Levi-Civita connection.
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Show that if Rab = 0 and that if Fab is a skew-symmetric tensor such
that ∇[aFbc] = 0 and ∇aFab = 0, then

�Fab = RabcdF
cd ,

where � = ∇a∇a.

B.24 The Schwarzschild metric is

ds2 = (1 − 2m/r) dt2 − dr2

1 − 2m/r
− r2(dθ2 + sin2 θ dϕ2) .

Show that the coordinate transformation

v = t + r + 2m log(r − 2m) ,

changes it to the form

ds2 = (1 − 2m/r) dv2 − 2dv dr − r2(dθ2 + sin2 θ dϕ2) .

Show that the radial null geodesics are given by

v = constant or
(

1 − 2m

r

)
dv

dr
− 2 = 0 .

Explain how this metric models the interior and exterior of a black hole.
How would you show that the singularity at r = 0 is not an artefact of
the choice of coordinates?

Show that

E =
(

1 − 2m

r

)
v̇ − ṙ

is constant along timelike geodesics, where the dot denotes differentia-
tion with respect to proper time.

Show that along the worldline of a particle falling radially into the black
hole with E = 1,

ṙ = −
√

2m

r
.

Show that the particle reaches the singularity at r = 0 in finite proper
time.

B.25 What does it mean for a connection to be torsion-free? Show that the
connection ∇a defined by

∇aV b = ∂aV b + 1
2gbdV c(∂agcd + ∂cgad − ∂dgac)
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for any vector field V a is torsion-free and satisfies ∇agbc = 0. Show that
these conditions uniquely determine the connection.

Show that
∇aV a =

1√|g|
∂

∂xa

(√
|g|V a

)
,

where g is the determinant of the matrix (gab).

For a general set of metric coefficients gab in a coordinate system xa,
write down the components of four independent solutions to the equa-
tion ∇aV a = 0.

B.26 The Kerr metric in Boyer–Lindquist coordinates t, r, θ, φ is

ds2 =
(

1 − 2mr

Σ

)
dt2 +

4mar sin2 θ

Σ
dtdφ − Σ

∆
dr2 −

Σ dθ2 −
(

r2 + a2 +
2ma2r sin2 θ

Σ

)
sin2 θ dφ2,

where m > a > 0 are constant parameters, ∆ = r2 + a2 − 2mr, and
Σ = r2 + a2 cos2 θ.

Find two Killing vectors and explain how one of them, Ka, can be
chosen so as to be timelike as r → ∞ and can be used to define a notion
of conserved energy for a freely falling test particle. By evaluating the
energy to leading order as r → ∞, justify the interpretation of the
parameter m as the mass of the black hole. What is the interpretation of
the parameter a? Explain briefly how this interpretation can be justified.

Find the values of r, r+, and r− with r+ > r−, on which the surfaces
of constant r are null. What does it mean for r = r+ to be an event
horizon?

On which surfaces r = f±(θ) does the vector field Ka become null?
Explain why a particle with r+ < r < f+(θ) cannot remain at rest
as viewed from infinity in the given coordinates. Draw a diagram in a
plane containing the symmetry axis at constant t showing the location
of r = r±, r = f±, and the singularities.
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