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Simulating Projectile Motion in the Air with Spreadsheets

Abstract
The paper gives two examples of simulating motion with spreadsheets, which are projectile motion in vacuum,
and projectile motion in the air with quadratic drag.
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1. Introduction 

It is well known that the trajectory of a projectile in a vacuum is a parabola and the 

maximum range is reached with launch angle 45°. In the air, resistance force (drag) acts, 

and the trajectory is a ballistic curve. If the projectile is moving slowly, the drag is 

proportional to the velocity (linear drag). In this case, the equation of motion is linear 

and solvable analytically [1]. At higher velocities, provided that the projectile speed does 

not exceed 270 m/s which is 80% of the sonic speed [2], the magnitude of the drag is 

proportional to the speed squared [3]  

 0
D vF 2

a5.0= vρCS , (1) 

where C  is the drag coefficient of the body [4], S is the maximum cross-section area of 

the body perpendicular to the velocity vector, aρ  is the air density, v is the speed, and 
0v  is the velocity unit vector. This drag formula applies to football, cricket, golf, and 

other balls, as well as stones, darts, arrows, and other projectiles used in various 

mechanical shooting weapons [5].  

The problem of projectile motion with quadratic drag was analytically solved first by 

Johann Bernoulli in 1711 [6]. The solution comprises definite integrals that require 

numerical integration performed by a computer program.  

Neuwirth and Arganbright in [7] present an interactive spreadsheet model of projectile 

motion with quadratic drag that is based upon solving the governing differential 

equations by Euler’s method. The great advantage of the model is that it uses standard 

spreadsheet functions only, that is, no programming skills are required to build it up. 

The model enables the user to experiment with the inputs and make investigations into 

the shape of the trajectory, and the horizontal and vertical ranges. A model for motion in 

a vacuum is also presented.  

Neuwirth and Arganbright in [7] and [8] present two methods of moving a point along 

a curve. The point is a ball-shaped one-point xy graph. In the first method, the 

coordinates of the point are returned by the OFFSET function from the numbered list of 

the points of the graph. The ordinal number of the point is taken from a cell that is 

linked with a scrollbar. Hence, the value of the scrollbar determines the position of the 

point on the curve. The second method uses a macro with two loops. The first one goes 

over the list of graph points. The second one sums numbers from 1 to 100000, and it is 

embedded into the first loop to slow down the calculation and make the motion of the 

ball visible. Wischniewsky in [9] presents another method of moving a point along 

a graph where the iteration, that is, getting the ball into the next position, is governed by 

a circular reference, and the automatic regime is performed by a macro.  

In this paper, a variant of the model in [7] is presented that simulates the projectile 

motion. At the simulation, another method of moving a point along a graph is used. The 

model works with spherical projectiles of various smoothness, radius, and material, and 

it allows investigation into the effect of the inputs on the motion of the projectile. The 

trajectory is graphed using Euler’s method over 5000 points, which makes the accuracy 

of the model very good. The horizontal and vertical ranges and the duration of the flight 
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are calculated promptly. The trajectory is drawn, and the projectile flight along it is 

simulated. The simulation works with a constant time interval, which makes the 

simulated motion consistent with the physical principles – the ball slows down going up 

and speeds up going down. The actual time is calculated as a proportion of the total 

flight time, where the multiplier ( 1≤ ) is a fraction whose numerator and denominator 

are taken from two cells. The denominator is an empirical value; setting the value 

changes the duration of the simulated flight. Thus, a real flight time can be achieved, 

which makes the model an accurate diminishment of the real motion. The numerator 

changes from zero up to the denominator by one, which is performed by a macro. The 

ball coordinates that correspond to the actual time are returned from the graph points 

list by the VLOOKUP function. The trajectory in a vacuum can be graphed in the same 

chart to compare (switched on or off by a checkbox). To make the application a kind of 

computer game, a target with random position is set into the chart to be shot down. The 

aim of the paper is to show the reader another method of moving a point along the 

graph along with the possibilities that Excel offers in simulating for school physics. 

Pedagogical remark: 35 years ago when I was in the first class of secondary grammar 

school, our physics teacher performed the theory of projectile motion, which is a most 

interesting topic for me so far [10], [11]. To my great disappointment, she finished with 

the note that the derived formulas are only valid in a vacuum. Hence, the nearest place 

where the theory works is on the Moon. The solution on the Earth was said to be too 

complicated for grammar school physics. The ballistic curve that she sketched on the 

blackboard by chalk just increased my interests. When computers came, making a model 

of projectile motion in the air was the reason why I learned BASIC. However, with the 

advent of spreadsheets, making numeric models of dynamic systems that are given by 

differential equations “is a cinch.” In particular, if Euler’s method is applicable directly, 

the mathematics of the model only comprises rewriting the differential equation into the 

difference one. The obtained recursive equations are ideal for performing the calculation 

in spreadsheets. If the students are familiar with the basics of calculus, the use of Euler’s 

method is clear. 35 years ago, I would have appreciated the possibility to make such 

model or just to use it and experiment with it. However, no spreadsheet was in schools 

that time (even no computer). Despite the fact that more than thirty years have passed 

since spreadsheets sprung up [12], many maths and physics teachers do not know how 

wonderful a tool spreadsheets are. That is why spreadsheets still stay a rather 

“overlooked technology” [13].  

2. Simulating projectile motion in vacuum 

If the projectile is launched in a vacuum from the origin ( )0,0  of an xy coordinate system 

at angle α  and speed 0v , then the velocity components xv , yv  are [7]  

 αvv cos0x = ,  (2) 

 gtαvv −= sin0y , (3) 

and the coordinates x , y  are 

2

Spreadsheets in Education (eJSiE), Vol. 3, Iss. 2 [2009], Art. 3

http://epublications.bond.edu.au/ejsie/vol3/iss2/3



 3 

 αtvx cos0= , (4) 

 2
0

2

1
sin gtαtvy −= . (5) 

Substitution for time t from Eq. (4) to Eq. (5) gives the trajectory parabola 

 2
22

0 cos2
tan x

αv

g
αxy −= . (6) 

Substituting 0=y  in Eq. (5) gives the duration of the flight 

 
g

αv
t

sin2 0
imp = . (7) 

Substituting impt  for t in Eq. (4) gives the x-coordinate at impact i.e. the x-range 

 
g

αv
x

2sin2
0

imp = .  (8) 

This is a maximum at °= 45α  with 

 
g

v
x

2
0

max = . (9) 

Substituting 0y =v  in Eq. (3) gives the duration of the flight to the vertex 

 
g

αv
t

sin0
ver = . (10) 

Substituting vert  for t in Eq. (5) gives the y-range 

 
g

αv
y

2

sin22
0

ver = .  (11) 

This is a maximum at °= 90α  with  

 
g

v
y

2

2
0

max = . (12) 

The application is in Fig. 1. The inputs are in cells Q2:Q4. The grey ones are only 

changeable by the scrollbars. The graph reacts interactively to the changes. First, 

duration impt , x-range impx , and y-range very  are calculated in cells T11:T13 using Eqs 

(7), (8), and (11). Then, the x-range is divided to 100 points x, and coordinate y is 

computed at each x according to Eq. (6) (range M19:N120). The trajectory parabola is an 
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xy line graphed over the 100 points ( )yx, . The fact that the x-range is a maximum at 45° 

can be revealed immediately.  

To simulate the motion, a ball-shaped one-point xy graph is embedded into the chart. 

The main time interval impt  is divided into N equal subintervals, and the actual time t of 

the projectile is calculated in cell P17 by the formula 

 impt
N

n
t = ,  (13) 

where n is in cell S17, and N is in cell S18. Number n goes from 0 to N by unit steps 

performed by the following macro of button “GO”: 
Private Sub btGo_Click() 

 Range("S17") = 0 

 For i = 1 To Range("S18") 

  Range("S17") = Range("S17") + 1 

  Calculate 

 Next i 

End Sub 

 

 

Figure 1: Projectile motion in vacuum (red) and in the air (blue) 

Command “Calculate” is necessary for picturing the ball. To move the ball step by step, 

a spinbutton is used that is linked with cell S17. The maximum of the spinbutton is set at 

each click according to cell S18. Button “RESET” puts 0 in cell S17. The (new) xy 

coordinates of the projectile are calculated in range Q17:R17 using Eqs. (4), (5), which 

causes moving the ball to the new position. The model matches reality – the ball slows 

down if going up and it speeds up if going down. Increasing N causes an increase in the 

duration of the simulated flight. For the inputs in Fig. 1, if N = 870, then the simulated 

flight lasts 39 seconds, which is the real time of the flight. This makes the model an 

accurate diminishment of the real motion, however, slowing down and speeding up are 

not observable in this case (put N = 100 and °= 80α  for that). To make the application 
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a kind of computer game, a square-shaped one-point xy graph is embedded into the 

chart as a target to be shot down. The coordinates of the target are random within the 

range set in cells Q23:R23, and the change is performed by a two-line macro assigned to 

the button “NEW” (put 0 in R23 for a target on the ground). 

3. Simulating projectile motion in the air 

Let the resistance force be given by Eq. (1). Let the body be launched at angle 

°<< 900 α , velocity 0v , and acceleration of gravity g (Fig. 1). The equation of motion is  

 0vj
v 2

a
2

1

d

d
vρCSmg

t
m −−= , ( ) 00 vv = , ( ) 00 =r ,  (14) 

where r  is the position vector jir yx += . As vv0 vv =2 , jiv yx vv +=  (note that 

2
y

2
x vvv += ), Eq. (14) can be recast into the coupled equations 

 vAv
t

v
x

x

d

d
−= , αvv cos)0( 0x = , 0)0( =x , (15) 

 vAvg
t

v
y

y

d

d
−−= , αvv sin)0( 0y = , 0)0( =y , (16) 

where 
m

ρCS
A

2
a= . 

This differential equation system is solvable numerically by Euler’s method that is 

simple enough for the students who are familiar with the basics of calculus. Replacing 

the differentials with differences gives 

 tvAvv ΔΔ xx −= , αvv cos00x = , (17) 

 ( ) tvAvgv ΔΔ yy +−= , αvv sin00y = . (18) 

First, the duration of the flight is estimated from above by the duration in a vacuum 

given by Eq. (7). Then, this time is divided to 5000 equal intervals tΔ . Eqs. (17), (18) 

enable discrete values of xv , yv  to be computed by the recursive formulae 

 ( ) ( ) tvAvvv iiii Δ11x1xx −−− −= , 5000...,,2,1=i , αvv cos00x = ,  (19) 

 ( ) ( )( ) tvAvgvv iiii Δ11y1yy −−− +−= , 5000...,2,1=i , αvv sin00y = ,  (20) 

where ( ) ( )
2

1y
2

1x1 −−− += iii vvv . 

The model is in Fig. 1. The inputs are in cells Q2:Q8. Parameter A is calculated in cell 

Q13, tΔ  is calculated in hidden cell Y11. Values of ivx , ivy , iv  are calculated in 
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columns D, E, F, starting at 0xv , 0yv , 0v  in row 20. Their values at 5000...,,2,1=i  

calculated from Eqs. (19) – (20) are in the next rows.  

As txv ΔΔx =  and tyv ΔΔy = , then  

 tvxx iii Δx1 += − , 00 =x , (21) 

 tvyy iii Δy1 += − , 00 =y , (22) 

Values of ix , iy  are calculated in columns G, H, starting at 0 in row 20. Their values at 

5000...,,2,1=i  calculated upon Eqs. (21), (22) are in the next rows.  

The trajectory is an xy line graph made over the 5001 points ( )yx,  (see Fig. 1). The graph 

reacts interactively to the changes.  

Values ttt ii Δ1 += − , 00 =t  of the time are calculated in column B, starting at 0 in row 20. 

Column “012” contains 0 if 0>y , otherwise it contains the series 1, 2, 3,… that starts (at 

1) in the last row where y is positive. The impact time impt  and x-coordinate impx  are 

calculated in cells U11:U12 using linear interpolation between the values of x and t that 

correspond to the last positive and first negative value of y – all the values are returned 

to cells K19:K24 by function VLOOKUP using column “012”.  

The simulation works upon the same principles as mentioned above for a vacuum. The 

actual time t of the projectile is calculated in cell P18 from Eq. (13) where impt  is that for 

the air. The xy coordinates of the projectile that correspond to time t are returned to cells 

Q18:R18 by function VLOOKUP using column “012”. However, if the checkbox 

“vacuum” is checked, i.e. the both trajectories are shown, then the simulation works 

with impt  valid for vacuum, which allows comparing the positions of the both projectile 

at the same time points.  

It can be easily shown that the maximum x-range is achieved in the air at a launch angle 

smaller than 45°. If the inputs are identical to those in Fig. 1, then it is 38° In this case, it 

is an iron ball of diameter 10 cm shot at 270 m/s. Enlarging the ball or increasing its 

density causes decreasing parameter A, which gets the trajectory closer to that one in 

a vacuum. Decreasing the launch speed decreases the influence of the drag, which gets 

the trajectory closer to that one in a vacuum, again. Consequently, the launch angle for 

achieving the maximum x-range is closer to 45°. For example, it is 40° for an iron ball of 

diameter 20 cm shot at 270 m/s, and it is 44° for an iron ball of diameter 20 cm shot at 80 

m/s. For comparing, it is 39° for a led ball of diameter 10 cm shot at 270 m/s, it is 41° for a 

led ball of diameter 20 cm shot at 270 m/s, and it is 45° for a led ball of diameter 20 cm 

shot at 80 m/s. 

The accuracy of the model is very good – if the inputs are set according to Fig. 1, then 

the x-range is 2714imp =x  m, which makes a difference of 2 m only from the exact value 

2716imp =x  m that gives the integral solution in [6] (calculation performed by a compute 

program),  i.e. the relative error is 0.074 %. Then, if air density aρ  is set to zero (that is, 

the motion takes place in a vacuum), the x-range is 7430imp =x  m, which makes a 

difference of 1 m only from the exact value 7431 m given by Eq. (8),  that is, the relative 

error is 0.013 %. 
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4. Conclusions 

The aim of the paper is to show a way of creating simulation models that are accurate 

diminishments of the real motion, including the duration. The crucial parts of the 

application do not require programming, except for the macros of button “GO” and the 

spinbutton (one can put manually 0 in S17 instead of clicking on button “RESET”, or put 

values from the target range in Q24:Q2 instead of clicking on button “NEW”). However, 

a click and holding down on the spinbutton can substitute the function of button “GO”, 

hence the line of VBA code in SpinButton1_Change routine is only necessary to 

implement. Even that can be bypassed by changing the spinbutton maximum manually, 

if necessary.  
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