
5. Electromagnetism and Relativity

We’ve seen that Maxwell’s equations have wave solutions which travel at the speed

of light. But there’s another place in physics where the speed of light plays a promi-

nent role: the theory of special relativity. How does electromagnetism fit with special

relativity?

Historically, the Maxwell equations were discovered before the theory of special rel-

ativity. It was thought that the light waves we derived above must be oscillations of

some substance which fills all of space. This was dubbed the aether. The idea was that

Maxwell’s equations only hold in the frame in which the aether is at rest; light should

then travel at speed c relative to the aether.

We now know that the concept of the aether is unnecessary baggage. Instead,

Maxwell’s equations hold in all inertial frames and are the first equations of physics

which are consistent with the laws of special relativity. Ultimately, it was by studying

the Maxwell equations that Lorentz was able to determine the form of the Lorentz

transformations which subsequently laid the foundation for Einstein’s vision of space

and time.

Our goal in this section is to view electromagnetism through the lens of relativity.

We will find that observers in di↵erent frames will disagree on what they call electric

fields and what they call magnetic fields. They will observe di↵erent charge densities

and di↵erent currents. But all will agree that these quantities are related by the same

Maxwell equations. Moreover, there is a pay-o↵ to this. It’s only when we formulate

the Maxwell equations in a way which is manifestly consistent with relativity that we

see their true beauty. The slightly cumbersome vector calculus equations that we’ve

been playing with throughout these lectures will be replaced by a much more elegant

and simple-looking set of equations.

5.1 A Review of Special Relativity

We start with a very quick review of the relevant concepts of special relativity. (For

more details see the lecture notes on Dynamics and Relativity). The basic postulate of

relativity is that the laws of physics are the same in all inertial reference frames. The

guts of the theory tell us how things look to observers who are moving relative to each

other.

The first observer sits in an inertial frame S with spacetime coordinates (ct, x, y, z)

the second observer sits in an inertial frame S 0 with spacetime coordinates (ct0, x0, y0, z0).
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If we take S
0 to be moving with speed v in the x-direction relative to S then the

coordinate systems are related by the Lorentz boost

x0 = �
⇣
x�

v

c
ct
⌘

and ct0 = �
⇣
ct�

v

c
x
⌘

(5.1)

while y0 = y and z0 = z. Here c is the speed of light which has the value,

c = 299792458 ms�1

Meanwhile � is the ubiquitous factor

� =

s
1

1� v2/c2
(5.2)

The Lorentz transformation (5.1) encodes within it all of the fun ideas of time dilation

and length contraction that we saw in our first course on relativity.

5.1.1 Four-Vectors

It’s extremely useful to package these spacetime coordinates in 4-vectors, with indices

running from µ = 0 to µ = 3

Xµ = (ct, x, y, z) µ = 0, 1, 2, 3

Note that the index is a superscript rather than subscript. This will be important

shortly. A general Lorentz transformation is a linear map from X to X 0 of the form

(X 0)µ = ⇤µ
⌫X

⌫

Here ⇤ is a 4⇥ 4 matrix which obeys the matrix equation

⇤T⌘⇤ = ⌘ , ⇤⇢
µ⌘⇢�⇤

�
⌫ = ⌘µ⌫ (5.3)

with ⌘µ⌫ the Minkowski metric

⌘µ⌫ = diag(+1,�1,�1,�1)

The solutions to (5.3) fall into two classes. The first class is simply rotations. Given a

3⇥ 3 rotation matrix R obeying RTR = 1, we can construct a Lorentz transformation

⇤ obeying (5.3) by embedding R in the spatial part,

⇤µ
⌫ =

0

BBBB@

1 0 0 0

0

0 R

0

1

CCCCA
(5.4)

These transformations describe how to relate the coordinates of two observers who are

rotated with respect to each other.
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The other class of solutions to (5.3) are the Lorentz boosts. These are the transfor-

mations appropriate for observers moving relative to each other. The Lorentz transfor-

mation (5.1) is equivalent to

⇤µ
⌫ =

0

BBBB@

� ��v/c 0 0

��v/c � 0 0

0 0 1 0

0 0 0 1

1

CCCCA
(5.5)

There are similar solutions associated to boosts along the y and z axes.

The beauty of 4-vectors is that it’s extremely easy to write down invariant quantities.

These are things which all observers, no matter which their reference frame, can agree

on. To construct these we take the inner product of two 4-vectors. The trick is that

this inner product uses the Minkowski metric and so comes with some minus signs. For

example, the square of the distance from the origin to some point in spacetime labelled

by X is

X ·X = Xµ⌘µ⌫X
⌫ = c2t2 � x2

� y2 � z2

which is the invariant interval. Similarly, if we’re given two four-vectors X and Y then

the inner product X · Y = Xµ⌘µ⌫Y ⌫ is also a Lorentz invariant.

5.1.2 Proper Time

The key to building relativistic theories of Nature is to find the variables that have

nice properties under Lorentz transformations. The 4-vectors X, labelling spacetime

points, are a good start. But we need more. Here we review how the other kinematical

variables of velocity, momentum and acceleration fit into 4-vectors.

Suppose that, in some frame, the particle traces out a worldline. The clever trick is to

find a way to parameterise this path in a way that all observers agree upon. The natural

choice is the proper time ⌧ , the duration of time experienced by the particle itself.

If you’re sitting in some frame, watching some particle move with an old-fashioned

Newtonian 3-velocity u(t), then it’s simple to show that the relationship between your

time t and the proper time of the particle ⌧ is given by

dt

d⌧
= �(u)
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The proper time allows us to define the 4-velocity and the 4-momentum. Suppose that

the particle traces out a path X(⌧) in some frame. Then the 4-velocity is

U =
dX

d⌧
= �

 
c

u

!

Similarly, the 4-momentum is P = mU where m is the rest mass of the particle. We

write

P =

 
E/c

p

!
(5.6)

where E = m�c2 is the energy of the particle and p = �mu is the 3-momentum in

special relativity.

The importance of U and P is that they too are 4-vectors. Because all observers

agree on ⌧ , the transformation law of U and P are inherited from X. This means that

under a Lorentz transformation, they too change as U ! ⇤U and P ! ⇤P . And it

means that inner products of U and P are guaranteed to be Lorentz invariant.

5.1.3 Indices Up, Indices Down

Before we move on, we do need to introduce one extra notational novelty. The minus

signs in the Minkowski metric ⌘ means that it’s useful to introduce a slight twist to

the usual summation convention of repeated indices. For all the 4-vectors that we

introduced above, we always place the spacetime index µ = 0, 1, 2, 3 as a superscript

(i.e. up) rather than a subscript.

Xµ =

 
ct

x

!

This is because the same object with an index down, Xµ, will mean something subtly

di↵erent. We define

Xµ =

 
ct

�x

!

With this convention, the Minkowski inner product can be written using the usual

convention of summing over repeated indices as

XµXµ = c2t2 � x · x

In contrast, XµXµ = c2t2 + x2 is a dumb thing to write in the context of special

relativity since it looks very di↵erent to observers in di↵erent inertial frames. In fact,

we will shortly declare it illegal to write things like XµXµ.
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There is a natural way to think of Xµ in terms of Xµ using the Minkowski metric

⌘µ⌫ = diag(+1,�1,�1,�1). The following equation is trivially true:

Xµ = ⌘µ⌫X
⌫

This means that we can think of the Minkowski metric as allowing us to lower indices.

To raise indices back up, we need the inverse of ⌘µ⌫ which, fortunately, is the same

matrix: ⌘µ⌫ = diag(+1,�1,�1,�1) which means we have ⌘µ⇢⌘⇢⌫ = �µ⌫ and we can

write

X⌫ = ⌘⌫µXµ

From now on, we’re going to retain this distinction between all upper and lower indices.

All the four-vectors that we’ve met so far have upper indices. But all can be lowered

in the same way. For example, we have

Uµ = �

 
c

�u

!
(5.7)

This trick of distinguishing between indices up and indices down provides a simple

formalism to ensure that all objects have nice transformation properties under the

Lorentz group. We insist that, just as in the usual summation convention, repeated

indices only ever appear in pairs. But now we further insist that pairs always appear

with one index up and the other down. The result will be an object which is invariant

under Lorentz transformations.

5.1.4 Vectors, Covectors and Tensors

In future courses, you will learn that there is somewhat deeper mathematics lying be-

hind distinguishing Xµ and Xµ: formally, these objects live in di↵erent spaces (some-

times called dual spaces). We’ll continue to refer to Xµ as vectors, but to distinguish

them, we’ll call Xµ covectors. (In slightly fancier language, the components of the vec-

tor Xµ are sometimes said to be contravariant while the components of the covector

Xµ are said to be covariant).

For now, the primary di↵erence between a vector and covector is how they transform

under rotations and boosts. We know that, under a Lorentz transformation, any 4-

vector changes as

Xµ
! X 0µ = ⇤µ

⌫X
⌫
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From this, we see that a covector should transform as

Xµ ! X 0
µ = ⌘µ⇢X

0 ⇢

= ⌘µ⇢⇤
⇢
�X

�

= ⌘µ⇢⇤
⇢
�⌘

�⌫X⌫

Using our rule for raising and lowering indices, now applied to the Lorentz transforma-

tion ⇤, we can also write this as

Xµ ! ⇤ ⌫
µ X⌫

where our notation is now getting dangerously subtle: you have to stare to see whether

the upper or lower index on the Lorentz transformation comes first.

There is a sense in which ⇤ ⌫
µ can be thought of a the components of the inverse

matrix ⇤�1. To see this, we go back to the definition of the Lorentz transformation

(5.3), and start to use our new rules for raising and lowering indices

⇤⇢
µ⌘⇢�⇤

�
⌫ = ⌘µ⌫ ) ⇤⇢

µ⇤⇢⌫ = ⌘µ⌫

) ⇤⇢
µ⇤

�
⇢ = ��µ

) ⇤ �
⇢ ⇤⇢

µ = ��µ

In the last line above, we’ve simply reversed the order of the two terms on the left.

(When written in index notation, these are just the entries of the matrix so there’s no

problem with commuting them). Now we compare this to the formula for the inverse

of a matrix,

(⇤�1)�⇢⇤
⇢
µ = ��µ ) (⇤�1)�⇢ = ⇤ �

⇢ (5.8)

Note that you need to be careful where you place the indices in equations like this.

The result (5.8) is analogous to the statement that the inverse of a rotation matrix is

the transpose matrix. For general Lorentz transformations, we learn that the inverse

is sort of the transpose where “sort of” means that there are minus signs from raising

and lowering. The placement of indices in (5.8) tells us where those minus signs go.

The upshot of (5.8) is that if we want to abandon index notation all together then

vectors transform as X ! ⇤X while covectors – which, for the purpose of this sentence,

we’ll call X̃ – transform as X̃ ! ⇤�1X̃. However, in what follows, we have no intention

of abandoning index notation. Instead, we will embrace it. It will be our friend and

our guide in showing that the Maxwell equations are consistent with special relativity.
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A particularly useful example of a covector is the four-derivative. This is the rela-

tivistic generalisation of r, defined by

@µ =
@

@Xµ
=

✓
1

c

@

@t
,r

◆

Notice that the superscript on the spacetime 4-vector Xµ has migrated to a subscript

on the derivative @µ. For this to make notational sense, we should check that @µ does

indeed transform as covector. This is a simple application of the chain rule. Under a

Lorentz transformation, Xµ
! X 0µ = ⇤µ

⌫X
⌫ , so we have

@µ =
@

@Xµ
!

@

@X 0µ =
@X⌫

@X 0µ
@

@X⌫
= (⇤�1)⌫µ@⌫ = ⇤ ⌫

µ @⌫

which is indeed the transformation of a co-vector.

Tensors

Vectors and covectors are the simplest examples of objects which have nice transfor-

mation properties under the Lorentz group. But there are many more examples. The

most general object can have a bunch of upper indices and a bunch of lower indices,

T µ1...µn
⌫1...⌫m . These objects are also called tensors of type (n,m). In order to qualify

as a tensor, they must transform under a Lorentz transformation as

T 0µ1...µn
⌫1...⌫m = ⇤µ1

⇢1 . . .⇤
µn
⇢n⇤

�1
⌫1 . . .⇤ �m

⌫m T ⇢1...⇢n
�1...�m

(5.9)

You can always use the Minkowski metric to raise and lower indices on tensors, changing

the type of tensor but keeping the total number of indices n+m fixed.

Tensors of this kind are the building blocks of all our theories. This is because if you

build equations only out of tensors which transform in this manner then, as long as

the µ, ⌫, . . . indices match up on both sides of the equation, you’re guaranteed to have

an equation that looks the same in all inertial frames. Such equations are said to be

covariant. You’ll see more of this kind of thing in courses on General Relativity and

Di↵erential Geometry.

In some sense, this index notation is too good. Remember all those wonderful things

that you first learned about in special relativity: time dilation and length contraction

and twins and spaceships so on. You’ll never have to worry about those again. From

now on, you can guarantee that you’re working with a theory consistent with relativity

by ensuring two simple things

• That you only deal with tensors.

• That the indices match up on both sides of the equation.

It’s sad, but true. It’s all part of growing up and not having fun anymore.

– 101 –



5.2 Conserved Currents

We started these lectures by discussing the charge density ⇢(x, t), the current density

J(x, t) and their relation through the continuity equation,

@⇢

@t
+r · J = 0

which tells us that charge is locally conserved.

The continuity equation is already fully consistent with relativity. To see this, we

first need to appreciate that the charge and current densities sit nicely together in a

4-vector,

Jµ =

 
⇢c

J

!

Of course, placing objects in a four-vector has consequence: it tells us how these objects

look to di↵erent observers. Let’s quickly convince ourselves that it makes sense that

charge density and current do indeed transform in this way. We can start by considering

a situation where there are only static charges with density ⇢0 and no current. So

Jµ = (⇢0, 0). Now, in a frame that is boosted by velocity v, the current will appear as

J 0µ = ⇤µ
⌫J

⌫ with the Lorentz transformation given by (5.5). The new charge density

and current are then

⇢0 = �⇢0 , J0 = ��⇢v

The first of these equations tells us that di↵erent observers see di↵erent charge densities.

This is because of Lorentz contraction: charge density means charge per unit volume.

And the volume gets squeezed because lengths parallel to the motion undergo Lorentz

contraction. That’s the reason for the factor of � in the observed charge density.

Meanwhile, the second of these equations is just the relativistic extension of the formula

J = ⇢v that we first saw in the introduction. (The extra minus sign is because v here

denotes the velocity of the boosted observer; the charge is therefore moving with relative

velocity �v).

In our new, relativistic, notation, the continuity equation takes the particularly sim-

ple form

@µJ
µ = 0 (5.10)

This equation is Lorentz invariant. This follows simply because the indices are con-

tracted in the right way: one up, and one down.
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5.2.1 Magnetism and Relativity

We’ve learned something unsurprising: boosted charge gives rise to a current. But,

combined with our previous knowledge, this tells us something new and important:

boosted electric fields must give rise to magnetic fields. The rest of this chapter will

be devoted to understanding the details of how this happens. But first, we’re going to

look at a simple example where we can re-derive the magnetic force purely from the

Coulomb force and a dose of Lorentz contraction.

To start, consider a bunch of positive charges

A

vv

u

Figure 47:

+q moving along a line with speed +v and a bunch of

negative charges �q moving in the opposite direction

with speed�v as shown in the figure. If there is equal

density, n, of positive and negative charges then the

charge density vanishes while the current is

I = 2nAqv

where A is the cross-sectional area of the wire. Now consider a test particle, also

carrying charge q, which is moving parallel to the wire with some speed u. It doesn’t

feel any electric force because the wire is neutral, but we know it experiences a magnetic

force. Here we will show how to find an expression for this force without ever invoking

the phenomenon of magnetism.

The trick is to move to the rest frame of the test particle. This means we have to

boost by speed u. The usual addition formula tells us that the velocities of the positive

and negative charges now di↵er, given by

v± =
v ⌥ u

1⌥ uv/c2

But with the boost comes a Lorentz contraction which means that the charge density

changes. Moreover, because the velocities of positive and negative charges are now

di↵erent, this will mean that, viewed from the rest frame of our particle, the wire is

no longer neutral. Let’s see how this works. First, we’ll introduce n0, the density of

charges when the particles in the wire are at rest. Then the density of the +q charges

in the original frame is

⇢ = qn = �(v)qn0

The charge density of the �q particles is the same, but with opposite sign, so that in

the original frame the wire is neutral. However, in our new frame, the charge densities
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are

⇢± = qn± = q�(v±)n0 =
⇣
1⌥

uv

c2

⌘
�(u)�(v) qn0

where you’ve got to do a little bit of algebra to get to the last result. Since v� > v+,

we have n� > n+ and the wire carries negative charge. The overall net charge density

in the new frame is

⇢0 = qn0 = q(n+ � n�) = �
2uv

c2
�(u) qn

But we know that a line of electric charge creates an electric field; we calculated it in

(2.6); it is

E(r) = �
2uv

c2
�(u) qnA

2⇡✏0r
r̂

where r is the radial direction away from the wire. This means that, in its rest frame,

the particle experiences a force

F 0 = �u�(u)
nAq2v

⇡✏0c2r

where the minus sign tells us that the force is towards the wire for u > 0. But if there’s

a force in one frame, there must also be a force in another. Transforming back to where

we came from, we conclude that even when the wire is neutral there has to be a force

F =
F 0

�(u)
= �u

nq2Av

⇡✏0c2r
= �uq

µ0I

2⇡r
(5.11)

But this precisely agrees with the Lorentz force law, with the magnetic field given by

the expression (3.5) that we computed for a straight wire. Notice that if u > 0 then

the test particle – which has charge q – is moving in the same direction as the particles

in the wire which have charge q and the force is attractive. If u < 0 then it moves in

the opposite direction and the force is repulsive.

This analysis provides an explicit demonstration of how an electric force in one frame

of reference is interpreted as a magnetic force in another. There’s also something rather

surprising about the result. We’re used to thinking of length contraction as an exotic

result which is only important when we approach the speed of light. Yet the electrons

in a wire crawl along. They take around an hour to travel a meter! Nonetheless, we

can easily detect the magnetic force between two wires which, as we’ve seen above, can

be directly attributed to the length contraction in the electron density.

– 104 –



The discussion above needs a minor alteration for actual wires. In the rest frame of

the wire the positive charges – which are ions, atoms stripped of some of their electrons

– are stationary while the electrons move. Following the explanation above, you might

think that there is an imbalance of charge density already in this frame. But that’s not

correct. The current is due to some battery feeding electrons into the wire and taking

them out the other end. And this is done in such a way that the wire is neutral in the

rest frame, with the electron density exactly compensating the ion density. In contrast,

if we moved to a frame in which the ions and electrons had equal and opposite speeds,

the wire would appear charged. Although the starting point is slightly di↵erent, the

end result remains.

5.3 Gauge Potentials and the Electromagnetic Tensor

Under Lorentz transformations, electric and magnetic fields will transform into each

other. In this section, we want to understand more precisely how this happens. At

first sight, it looks as if it’s going to be tricky. So far the objects which have nice

transformation properties under Lorentz transformations are 4-vectors. But here we’ve

got two 3-vectors, E and B. How do we make those transform into each other?

5.3.1 Gauge Invariance and Relativity

To get an idea for how this happens, we first turn to some objects that we met previ-

ously: the scalar and vector potentials � and A. Recall that we introduced these to

solve some of the equations of electrostatics and magnetostatics,

r⇥ E = 0 ) E = �r�

r ·B = 0 ) B = r⇥A

However, in general these expressions can’t be correct. We know that when B and E

change with time, the two source-free Maxwell equations are

r⇥ E+
@B

@t
= 0 and r ·B = 0

Nonetheless, it’s still possible to use the scalar and vector potentials to solve both of

these equations. The solutions are

E = �r��
@A

@t
and B = r⇥A

where now � = �(x, t) and A = A(x, t).
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Just as we saw before, there is no unique choice of � and A. We can always shift

A ! A +r� and B remains unchanged. However, now this requires a compensating

shift of �.

�! ��
@�

@t
and A ! A+r� (5.12)

with � = �(x, t). These are gauge transformations. They reproduce our earlier gauge

transformation for A, while also encompassing constant shifts in �.

How does this help with our attempt to reformulate electromagnetism in a way

compatible with special relativity? Well, now we have a scalar, and a 3-vector: these

are ripe to place in a 4-vector. We define

Aµ =

 
�/c

A

!

Or, equivalently, Aµ = (�/c,�A). In this language, the gauge transformations (5.12)

take a particularly nice form,

Aµ ! Aµ � @µ� (5.13)

where � is any function of space and time

5.3.2 The Electromagnetic Tensor

We now have all the ingredients necessary to determine how the electric and magnetic

fields transform. From the 4-derivative @µ = (@/@(ct),r) and the 4-vector Aµ =

(�/c,�A), we can form the anti-symmetric tensor

Fµ⌫ = @µA⌫ � @⌫Aµ

This is constructed to be invariant under gauge transformations (5.13). We have

Fµ⌫ ! Fµ⌫ + @µ@⌫�� @⌫@µ� = Fµ⌫

This already suggests that the components involve the E and B fields. To check that

this is indeed the case, we can do a few small computations,

F01 =
1

c

@(�Ax)

@t
�
@(�/c)

@x
=

Ex

c

and

F12 =
@(�Ay)

@x
�
@(�Ax)

@y
= �Bz
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Similar computations for all other entries give us a matrix of electric and magnetic

fields,

Fµ⌫ =

0

BBBB@

0 Ex/c Ey/c Ez/c

�Ex/c 0 �Bz By

�Ey/c Bz 0 �Bx

�Ez/c �By Bx 0

1

CCCCA
(5.14)

This, then, is the answer to our original question. You can make a Lorentz covariant

object consisting of two 3-vectors by arranging them in an anti-symmetric tensor. Fµ⌫

is called the electromagnetic tensor. Equivalently, we can raise both indices using the

Minkowski metric to get

F µ⌫ = ⌘µ⇢⌘⌫�F⇢� =

0

BBBB@

0 �Ex/c �Ey/c �Ez/c

Ex/c 0 �Bz By

Ey/c Bz 0 �Bx

Ez/c �By Bx 0

1

CCCCA

Both Fµ⌫ and F µ⌫ are tensors. They are tensors because they’re constructed out of

objects, Aµ, @µ and ⌘µ⌫ , which themselves transform nicely under the Lorentz group.

This means that the field strength must transform as

F 0µ⌫ = ⇤µ
⇢⇤

⌫
�F

⇢� (5.15)

Alternatively, if you want to get rid of the indices, this reads F 0 = ⇤F⇤T . The observer

in a new frame sees electric and magnetic fields E0 and B0 that di↵er from the original

observer. The two are related by (5.15). Let’s look at what this means in a couple of

illustrative examples.

Rotations

To compute the transformation (5.15), it’s probably simplest to just do the sums that

are implicit in the repeated ⇢ and � labels. Alternatively, if you want to revert to

matrix multiplication then this is the same as F 0 = ⇤F⇤T . Either way, we get the

same result. For a rotation, the 3 ⇥ 3 matrix R is embedded in the lower-right hand

block of ⇤ as shown in (5.4). A quick calculation shows that the transformation of the

electric and magnetic fields in (5.15) is as expected,

E0 = RE and B0 = RB
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Boosts

Things are more interesting for boosts. Let’s consider a boost v in the x-direction, with

⇤ given by (5.5). Again, you need to do a few short calculations. For example, we have

�
E 0

x

c
= F 0 01 = ⇤0

⇢⇤
1
�F

⇢�

= ⇤0
0⇤

1
1F

01 + ⇤0
1⇤

1
0F

10

=
�2v2

c2
Ex

c
� �2

Ex

c
= �

Ex

c

and

�
E 0

y

c
= F 0 02 = ⇤0

⇢⇤
2
�F

⇢�

= ⇤0
0⇤

2
2F

02 + ⇤0
1⇤

2
2F

12

= ��
Ey

c
+
�v

c
Bz = �

�

c
(Ey � vBz)

and

�B0
z = F 0 12 = ⇤1

⇢⇤
2
�F

⇢�

= ⇤1
0⇤

2
2F

02 + ⇤1
1⇤

2
2F

12

=
�v

c2
Ey � �Bz = ��(Bz � vEy/c

2)

The final result for the transformation of the electric field after a boost in the x-direction

is

E 0
x = Ex

E 0
y = �(Ey � vBz) (5.16)

E 0
z = �(Ez + vBy)

and, for the magnetic field,

B0
x = Bx

B0
y = �

⇣
By +

v

c2
Ez

⌘
(5.17)

B0
z = �

⇣
Bz �

v

c2
Ey

⌘

As we anticipated above, what appears to be a magnetic field to one observer looks like

an electric field to another, and vice versa.
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Note that in the limit v ⌧ c, we have E0 = E + v ⇥ B and B0 = B. This can be

thought of as the Galilean boost of electric and magnetic fields. We recognise E+v⇥B

as the combination that appears in the Lorentz force law. We’ll return to this force in

Section 5.4.1 where we’ll see how it’s compatible with special relativity.

5.3.3 An Example: A Boosted Line Charge

In Section 2.1.3, we computed the electric field due to a line with uniform charge density

⌘ per unit length. If we take the line to lie along the x-axis, we have (2.6)

E =
⌘

2⇡✏0(y2 + z2)

 
0
y
z

!
(5.18)

Meanwhile, the magnetic field vanishes for static electric charges: B = 0. Let’s see

what this looks like from the perspective of an observer moving with speed v in the

x-direction, parallel to the wire. In the moving frame the electric and magnetic fields

are given by (5.16) and (5.17). These read

E0 =
⌘�

2⇡✏0(y2 + z2)

 
0
y
z

!
=

⌘�

2⇡✏0(y0 2 + z0 2)

 
0
y0

z0

!

B0 =
⌘�v

2⇡✏0c2(y2 + z2)

 
0
z
�y

!
=

⌘�v

2⇡✏0c2(y0 2 + z0 2)

 
0
z0

�y0

!
(5.19)

In the second equality, we’ve rewritten the expression in terms of the coordinates of S 0

which, because the boost is in the x-direction, are trivial: y = y0 and z = z0.

From the perspective of an observer in frame S
0, the charge density in the wire is

⌘0 = �⌘, where the factor of � comes from Lorentz contraction. This can be seen in

the expression above for the electric field. Since the charge density is now moving, the

observer in frame S
0 sees a current I 0 = ��⌘v. Then we can rewrite (5.19) as

B0 =
µ0I 0

2⇡
p

y0 2 + z0 2
'̂0 (5.20)

But this is something that we’ve seen before. It’s the magnetic field due to a current

in a wire (3.5). We computed this in Section 3.1.1 using Ampére’s law. But here we’ve

re-derived the same result without ever mentioning Ampére’s law! Instead, our starting

point (5.18) needed Gauss’ law and we then used only the Lorentz transformation of

electric and magnetic fields. We can only conclude that, under a Lorentz transforma-

tion, Gauss’ law must be related to Ampére’s law. Indeed, we’ll shortly see explicitly

that this is the case. For now, it’s worth repeating the lesson that we learned in Section

5.2.1: the magnetic field can be viewed as a relativistic e↵ect.
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5.3.4 Another Example: A Boosted Point Charge

Consider a point charge Q, stationary in an inertial frame S. We know that it’s electric

field is given by

E =
Q

4⇡✏0r2
r̂ =

Q

4⇡✏0[x2 + y2 + z2]3/2

 
x
y
z

!

while its magnetic field vanishes. Now let’s look at this same particle from the frame

S
0, moving with velocity v = (v, 0, 0) with respect to S. The Lorentz boost which

relates the two is given by (5.5) and so the new electric field are given by (5.16),

E0 =
Q

4⇡✏0[x2 + y2 + z2]3/2

 
x
�y
�z

!

But this is still expressed in terms of the original coordinates. We should now rewrite

this in terms of the coordinates of S 0, which are x0 = �(x� vt) and y0 = y and z0 = z.

Inverting these, we have

E0 =
Q�

4⇡✏0[�2(x0 + vt0)2 + y0 2 + z0 2]3/2

 
x0 + vt0

y0

z0

!
(5.21)

In the frame S
0, the particle sits at x0 = (�vt0, 0, 0), so we see that the electric field

emanates from the position of the charge, as it should. For now, let’s look at the electric

field when t0 = 0 so that the particle sits at the origin in the new frame. The electric

field points outwards radially, along the direction

r0 =

 
x0

y0

z0

!

However, the electric field is not isotropic. This arises from the denominator of (5.21)

which is not proportional to r0 3 because there’s an extra factor of �2 in front of the x0

component. Instead, at t0 = 0, the denominator involves the combination

�2x0 2 + y0 2 + z0 2 = (�2 � 1)x0 2 + r0 2

=
v2�2

c2
x0 2 + r0 2

=

✓
v2�2

c2
cos2 ✓ + 1

◆
r0 2

= �2
✓
1�

v2

c2
sin2 ✓

◆
r0 2
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v

Figure 48: The isotropic field lines of a

static charge

Figure 49: The squeezed field lines of a

moving charge

where the ✓ is the angle between r0 and the x0-axis and, in the last line, we’ve just used

some simple trig and the definition of �2 = 1/(1 � v2/c2). This means that we can

write the electric field in frame S 0 as

E0 =
1

�2(1� v2 sin2 ✓/c2)3/2
Q

4⇡✏0r0 2
r̂0

The pre-factor is responsible for the fact that the electric field is not isotropic. We see

that it reduces the electric field along the x0-axis (i.e when ✓ = 0) and increases the field

along the perpendicular y0 and z0 axes (i.e. when ✓ = ⇡/2). This can be thought of as

a consequence of Lorentz contraction, squeezing the electric field lines in the direction

of travel.

The moving particle also gives rise to a magnetic field. This is easily computed using

the Lorentz transformations (5.17). It is

B =
µ0Q�v

4⇡[�2(x0 + vt0)2 + y0 2 + z0 2]3/2

 
0
z0

�y0

!

5.3.5 Lorentz Scalars

We can now ask a familiar question: is there any combination of the electric and

magnetic fields that all observers agree upon? Now we have the power of index notation

at our disposal, this is easy to answer. We just need to write down an object that doesn’t

have any floating µ or ⌫ indices. Unfortunately, we don’t get to use the obvious choice

of ⌘µ⌫F µ⌫ because this vanishes on account of the anti-symmetry of F µ⌫ . The simplest

thing we can write down is

1

2
Fµ⌫F

µ⌫ = �
E2

c2
+B2

Note the relative minus sign between E and B, mirroring a similar minus sign in the

spacetime interval.
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However, this isn’t the only Lorentz scalar that we can construct from E and B.

There is another, somewhat more subtle, object. To build this, we need to appreciate

that Minkowski spacetime comes equipped with another natural tensor object, beyond

the familiar metric ⌘µ⌫ . This is the fully anti-symmetric object known as the alternating

tensor,

✏µ⌫⇢� =

(
+1 if µ⌫⇢� is an even permutation of 0123

�1 if µ⌫⇢� is an odd permutation of 0123

while ✏µ⌫⇢� = 0 if there are any repeated indices.

To see why this is a natural object in Minkowski space, let’s look at how it changes

under Lorentz transformations. The usual tensor transformation is

✏0µ⌫⇢� = ⇤µ
⇤

⌫
�⇤

⇢
↵⇤

�
�✏

�↵�

It’s simple to check that ✏0µ⌫⇢� is also full anti-symmetric; it inherits this property from

✏�↵� on the right-hand side. But this means that ✏0µ⌫⇢� must be proportional to ✏µ⌫⇢�.

We only need to determine the constant of proportionality. To do this, we can look at

✏0 0123 = ⇤0
⇤

1
�⇤

2
↵⇤

3
�✏

�↵� = det(⇤)

Now any Lorentz transformations have det(⇤) = ±1. Those with det(⇤) = 1 make

up the “proper Lorentz group” SO(1, 3). (This was covered in the Dynamics and

Relativity notes). These proper Lorentz transformations do not include reflections or

time reversal. We learn that the alternating tensor ✏µ⌫⇢� is invariant under proper

Lorentz transformations. What it’s really telling us is that Minkowski space comes

with an oriented orthonormal basis. By lowering indices with the Minkowski metric,

we can also construct the tensor ✏µ⌫⇢� which has ✏0123 = �1.

The alternating tensor allows us to construct a second tensor field, sometimes called

the dual electromagnetic tensor (although “dual” is perhaps the most overused word in

physics),

F̃ µ⌫ =
1

2
✏µ⌫⇢�F⇢� =

0

BBBB@

0 �Bx �By �Bz

Bx 0 Ez/c �Ey/c

By �Ez/c 0 Ex/c

Bz Ey/c �Ex/c 0

1

CCCCA
(5.22)

F̃ µ⌫ is sometimes also written as ?F µ⌫ . We see that this is looks just like F µ⌫ but with

the electric and magnetic fields swapped around. Actually, looking closely you’ll see

that there’s a minus sign di↵erence as well: F̃ µ⌫ arises from F µ⌫ by the substitution

E ! cB and B ! �E/c.

– 112 –



The statement that F̃ µ⌫ is a tensor means that it too has nice properties under

Lorentz transformations,

F̃ 0µ⌫ = ⇤µ
⇢⇤

⌫
�F̃

⇢�

and we can use this to build new Lorentz invariant quantities. Taking the obvious

square of F̃ doesn’t give us anything new, since

F̃ µ⌫F̃µ⌫ = �F µ⌫Fµ⌫

But by contracting F̃ with the original F we do find a new Lorentz invariant

1

4
F̃ µ⌫Fµ⌫ =

1

c
E ·B

This tells us that the inner-product of E and B is the same viewed in all frames.

5.4 Maxwell Equations

We now have the machinery to write the Maxwell equations in a way which is manifestly

compatible with special relativity. They take a particularly simple form:

@µF
µ⌫ = µ0J

⌫ and @µF̃
µ⌫ = 0 (5.23)

Pretty aren’t they!

The Maxwell equations are not invariant under Lorentz transformations. This is

because there is the dangling ⌫ index on both sides. However, because the equations

are built out of objects which transform nicely – F µ⌫ , F̃ µ⌫ , Jµ and @µ – the equations

themselves also transform nicely. For example, we will see shortly that Gauss’ law

transforms into Ampére’s law under a Lorentz boost, something we anticipated in

Section 5.3.3. We say that the equations are covariant under Lorentz transformations.

This means that an observer in a di↵erent frame will mix everything up: space

and time, charges and currents, and electric and magnetic fields. Although observers

disagree on what these things are, they all agree on how they fit together. This is what

it means for an equation to be covariant: the ingredients change, but the relationship

between them stays the same. All observers agree that, in their frame, the electric and

magnetic fields are governed by the same Maxwell equations.

Given the objects F µ⌫ , F̃ µ⌫ , Jµ and @µ, the Maxwell equations are not the only

thing you could write down compatible with Lorentz invariance. But they are by

far the simplest . Any other equation would be non-linear in F or F̃ or contain more

derivative terms or some such thing. Of course, simplicity is no guarantee that equations

are correct. For this we need experiment. But surprisingly often in physics we find

that the simplest equations are also the right ones.
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Unpacking the Maxwell Equations

Let’s now check that the Maxwell equations (5.23) in relativistic form do indeed coincide

with the vector calculus equations that we’ve been studying in this course. We just

need to expand the di↵erent parts of the equation. The components of the first Maxwell

equation give

@iF
i0 = µ0J

0
) r · E =

⇢

✏0

@µF
µi = µ0J

i
) �

1

c2
@E

@t
+r⇥B = µ0J

In the first equation, which arises from ⌫ = 0, we sum only over spatial indices i = 1, 2, 3

because F 00 = 0. Meanwhile the components of the second Maxwell equation give

@iF̃
i0 = 0 ) r ·B = 0

@µF̃
µi = 0 )

@B

@t
+r⇥ E = 0

These, of course, are the familiar equations that we’ve all grown to love over this course.

Here a few further, simple comments about the advantages of writing the Maxwell

equations in relativistic form. First, the Maxwell equations imply that current is con-

served. This follows because F µ⌫ is anti-symmetric, so @µ@⌫F µ⌫ = 0 automatically,

simply because @µ@⌫ is symmetric. The first of the Maxwell equations (5.23) then

requires that the continuity equation holds

@µJ
µ = 0

This is the same calculation that we did in vector notation in Section 4.2.1. Note that

it’s marginally easier in the relativistic framework.

The second Maxwell equation can be written in a number of di↵erent ways. It is

equivalent to:

@µF̃
µ⌫ = 0 , ✏µ⌫⇢�@⌫F⇢� = 0 , @⇢Fµ⌫ + @⌫F⇢µ + @µF⌫⇢ = 0

where the last of these equalities follows because the equation is constructed so that it

is fully anti-symmetric with respect to exchanging any of the indices ⇢, µ and ⌫. (Just

expand out for a few examples to see this).
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The gauge potential Aµ was originally introduced to solve the two Maxwell equations

which are contained in @µF̃ µ⌫ = 0. Again, this is marginally easier to see in relativistic

notation. If we write Fµ⌫ = @µA⌫ � @⌫Aµ then

@µF̃
µ⌫ =

1

2
✏µ⌫⇢�@µF⇢� =

1

2
✏µ⌫⇢�@µ(@⇢A� � @�A⇢) = 0

where the final equality holds because of the symmetry of the two derivatives, combined

with the anti-symmetry of the ✏-tensor. This means that we could equally well write

the Maxwell equations as

@µF
µ⌫ = µ0J

⌫ where Fµ⌫ = @µA⌫ � @⌫Aµ

The first of these coincides with the first equation in (5.23); the second is an alternative

way of writing the second equation in (5.23). In more advanced formulations of elec-

tromagnetism (for example, in the Lagrangian formulation), this is the form in which

the Maxwell equations arise.

5.4.1 The Lorentz Force Law

There’s one last aspect of electromagnetism that we need to show is compatible with

relativity: the Lorentz force law. In the Newtonian world, the equation of motion for

a particle moving with velocity u and momentum p = mu is

dp

dt
= q(E+ u⇥B) (5.24)

We want to write this equation in 4-vector notation in a way that makes it clear how

all the objects change under Lorentz transformations.

By now it should be intuitively clear how this is going to work. A moving particle

experiences the magnetic force. But if we boost to its rest frame, there is no magnetic

force. Instead, the magnetic field transforms into an electric field and we find the same

force, now interpreted as an electric force.

The relativistic version of (5.24) involves the 4-momentum P µ, defined in (5.6), the

proper time ⌧ , reviewed in Section 5.1.2, and our new friend the electromagnetic tensor

F µ⌫ . The electromagnetic force acting on a point particle of charge q can then be

written as

dP µ

d⌧
= q F µ⌫U⌫ (5.25)
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where the 4-velocity is

Uµ =
dXµ

d⌧
= �

 
c

u

!
(5.26)

and the 4-momentum is P = mU . Again, we see that the relativistic form of the

equation (5.25) is somewhat prettier than the original equation (5.24).

Unpacking the Lorentz Force Law

Let’s check to see that the relativistic equation (5.25) is giving us the right physics.

It is, of course, four equations: one for each µ = 0, 1, 2, 3. It’s simple to multiply

out the right-hand side, remembering that Uµ comes with an extra minus sign in the

spatial components relative to (5.26). We find that the µ = 1, 2, 3 components of (5.25)

arrange themselves into a familiar vector equation,

dp

d⌧
= q�(E+ u⇥B) )

dp

dt
= q(E+ u⇥B) (5.27)

where we’ve used the relationship dt/d⌧ = �. We find that we recover the Lorentz

force law. Actually, there’s a slight di↵erence from the usual Newtonian force law

(5.24), although the di↵erence is buried in our notation. In the Newtonian setting, the

momentum is p = mu. However, in the relativistic setting above, the momentum is

p = m�u. Needless to say, the relativistic version is correct, although the di↵erence

only shows up at high speeds.

The relativistic formulation of the Lorentz force (5.25) also contains an extra equation

coming from µ = 0. This reads

dP 0

d⌧
=

q

c
� E · u (5.28)

Recall that the temporal component of the four-momentum is the energy P 0 = E/c.

Here the energy is E = m�c2 which includes both the rest-mass of the particle and its

kinetic energy. The extra equation in (5.25) is simply telling us that the kinetic energy

increases when work is done by an electric field

d(Energy)

dt
= qE · u

where I’ve written energy as a word rather than as E to avoid confusing it with the

electric field E.
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5.4.2 Motion in Constant Fields

We already know how electric and magnetic fields act on particles in a Newtonian world.

Electric fields accelerate particles in straight lines; magnetic fields make particles go

in circles. Here we’re going to redo this analysis in the relativistic framework. The

Lorentz force law remains the same. The only di↵erence is that momentum is now

p = m�u. We’ll see how this changes things.

Constant Electric Field

Consider a vanishing magnetic field and constant electric field E = (E, 0, 0). (Note

that E here denotes electric field, not energy!). The equation of motion (5.27) for a

charged particle with velocity u = (u, 0, 0) is

m
d(�u)

dt
= qE ) m�u = qEt

where we’ve implicitly assumed that the particle starts from rest at t = 0. Rearranging,

we get

u =
dx

dt
=

qEtp
m2 + q2E2t2/c2

Reassuringly, the speed never exceeds the speed of light. Instead, u ! c as t ! 1 as

one would expect. It’s simple to integrate this once more. If the particle starts from

the origin, we have

x =
mc2

qE

 r
1 +

q2E2t2

m2c2
� 1

!

For early times, when the speeds are not too high, this reduces to

mx ⇡
1

2
qEt2 + . . .

which is the usual non-relativistic result for particles undergoing constant acceleration

in a straight line.

Constant Magnetic Field

Now let’s turn the electric field o↵ and look at the case of constant magnetic field

B = (0, 0, B). In the non-relativistic world, we know that particles turn circles with

frequency ! = qB/m. Let’s see how relativity changes things.
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We start by looking at the zeroth component of the force equation (5.28) which, in

the absence of an electric field, reads

dP 0

d⌧
= 0

This tells us that magnetic fields do no work. We knew this from our course on

Newtonian physics, but it remains true in the relativistic context. So we know that

energy, E = m�c2, is constant. But this tells us that the speed (i.e. the magnitude of

the velocity) remains constant. In other words, the velocity, and hence the position,

once again turn circles. The equation of motion is now

m
d(�u)

dt
= qu⇥B

Since � is constant, the equation takes the same form as in the non-relativistic case

and the solutions are circles (or helices if the particle also moves in the z-direction).

The only di↵erence is that the frequency with which the particle moves in a circle now

depends on how fast the particle is moving,

! =
qB

m�

If you wanted, you could interpret this as due to the relativistic increase in the mass

of a moving particle. Naturally, for small speeds � ⇡ 1 and we reproduce the more

familiar cyclotron frequency ! ⇡ qB/m.

So far we have looked at situations in which E = 0 and in which B = 0. But we’ve

seen that E ·B = 0 and E2
�B2 are both Lorentz invariant quantities. This means that

the solutions we’ve described above can be boosted to apply to any situation where

E ·B = 0 and E2
�B2 is either > 0 or < 0. In the general situation, both electric and

magnetic fields are turned on so E ·B 6= 0 and we have three possibilities to consider

depending on whether E2
�B2 is > 0 or < 0 or = 0.
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6. Electromagnetic Radiation

We’ve seen that Maxwell’s equations allow for wave solutions. This is light. Or, more

generally, electromagnetic radiation. But how do you generate these waves from a

collection of electric charges? In other words, how do you make light?

We know that a stationary electric charge produce a stationary electric field. If we

boost this charge so it moves at a constant speed, it produces a stationary magnetic

field. In this section, we will see that propagating electromagnetic waves are created

by accelerating charges.

6.1 Retarded Potentials

We start by simply solving the Maxwell equations for a given current distribution

Jµ = (⇢c,J). We did this in Section 2 and Section 3 for situations where both charges

and currents are independent of time. Here we’re going to solve the Maxwell equations

in full generality where the charges and currents are time dependent.

We know that we can solve half of Maxwell’s equations by introducing the gauge

potential Aµ = (�/c,�A) and writing Fµ⌫ = @µA⌫ � @⌫Aµ. Then the remaining

equations become

@⌫F
⌫µ = µ0J

µ
) ⇤Aµ

� @µ(@⌫A
⌫) = µ0J

µ (6.1)

where ⇤ is the wave operator: ⇤ = @µ@µ = (1/c2)@2/@t2 �r
2.

This equation is invariant under gauge transformations

Aµ
! Aµ + @µ� (6.2)

Any two gauge potentials related by the transformation (6.2) are considered physically

equivalent. We will use this symmetry to help us solve (6.1). To do this we make a

gauge choice:

Claim: We can use the gauge symmetry (6.2) to choose Aµ to satisfy

@µA
µ = 0 (6.3)

This is known as Lorentz Gauge. It was actually discovered by a guy named Lorenz who

had the misfortune to discover a gauge choice that is Lorentz invariant: all observers

will agree on the gauge condition (6.3).
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Proof: Suppose you are handed a gauge potential Aµ which doesn’t obey (6.3) but,

instead, satisfies @µAµ = f for some function f . Then do a gauge transformation of

the form (6.2). Your new gauge potential will obey @µAµ +⇤� = f . This means that

if you can find a gauge transformation � which satisfies ⇤� = f then your new gauge

potential will be in Lorentz gauge. Such a � can always be found. This follows from

general facts about di↵erential equations. (Note that this proof is essentially the same

as we used in Section 3.2.2 when proving that we could always choose Coulomb gauge

r ·A = 0). ⇤

If we are in Lorentz gauge then the Maxwell equations (6.1) become particularly

simple; they reduce to the sourced wave equation

⇤Aµ =

✓
1

c2
@2

@t2
�r

2

◆
Aµ = µ0J

µ (6.4)

Our goal is to solve this equation, subject to the condition (6.3). We’ll assume that J

has compact spatial support, meaning that the charges and currents are restricted to

some finite region of space. As an aside, notice that this is the same kind of equation

as ⇤� = �f which we needed to solve to go Lorentz gauge in the first place. This

means that the methods we develop below will allow us to figure out both how to go

to Lorentz gauge, and also how to solve for Aµ once we’re there.

In the following, we’ll solve (6.4) in two (marginally) di↵erent ways. The first way is

quicker; the second way gives us a deeper understanding of what’s going on.

6.1.1 Green’s Function for the Helmholtz Equation

For our first method, we will Fourier transform Aµ and Jµ in time, but not in space.

We write

Aµ(x, t) =

Z +1

�1

d!

2⇡
Ãµ(x,!) e

�i!t and Jµ(x, t) =

Z +1

�1

d!

2⇡
J̃µ(x,!) e

�i!t

Now the Fourier components Ãµ(x,!) obey the equation

✓
r

2 +
!2

c2

◆
Ãµ = �µ0J̃µ (6.5)

This is the Helmholtz equation with source given by the current J̃ .
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When ! = 0, the Helmholtz equation reduces to the Poisson equation that we needed

in our discussion of electrostatics. We solved the Poisson equation using the method

of Green’s functions when discussing electrostatics in Section 2.2.3. Here we’ll do the

same for the Helmholtz equation. The Green’s function for the Helmholtz equation

obeys

✓
r

2 +
!2

c2

◆
G!(x;x

0) = �3(x� x0)

Translational and rotational invariance ensure that the solutions to this equation are of

the form G!(x;x0) = G!(r) with r = |x� x0
|. We can then write this as the ordinary

di↵erential equation,

1

r2
d

dr

✓
r2
dG!

dr

◆
+
!2

c2
G! = �3(r) (6.6)

We want solutions that vanish as r ! 1. However, even with this restriction, there

are still two such solutions. Away from the origin, they take the form

G! ⇠
e±i!r/c

r

We will see shortly that there is a nice physical interpretation of these two Green’s

functions. First, let’s figure out the coe�cient that sits in front of the Green’s function.

This is determined by the delta-function. We integrate both sides of (6.6) over a ball

of radius R. We get

4⇡

Z R

0

dr r2

1

r2
d

dr

✓
r2
dG!

dr

◆
+
!2

c2
G!

�
= 1

Now, taking the limit R ! 0, only the first term on the left-hand side survives. More-

over, only the first term of dG!/dr ⇠ (�1/r2 ± i!/cr)e±i!r/c survives. We find that

the two Green’s functions for the Helmholtz equation are

G!(r) = �
1

4⇡

e±i!r/c

r

Note that this agrees with the Green’s function for the Poisson equation when ! = 0.

Retarded Potentials

So which ± sign should we take? The answer depends on what we want to do with the

Green’s function. For our purposes, we’ll nearly always need G! ⇠ e+i!r/c/r. Let’s see
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why. The Green’s function G! allows us to write the Fourier components Ãµ in (6.5)

as

Ãµ(x,!) =
µ0

4⇡

Z
d3x0 e

+i!|x�x0|/c

|x� x0|
J̃µ(x

0,!)

which, in turn, means that the time-dependent gauge potential becomes

Aµ(x, t) =
µ0

4⇡

Z
d!

2⇡

Z
d3x0 e

�i!(t�|x�x0|/c)

|x� x0|
J̃µ(x

0)

But now the integral over ! is just the inverse Fourier transform. With one di↵erence:

what was the time variable t has become the retarted time, tret, with

ctret = ct� |x� x0
|

We have our final result,

Aµ(x, t) =
µ0

4⇡

Z
d3x0 Jµ(x

0, tret)

|x� x0|
(6.7)

This is called the retarded potential. To determine the contribution at point x and time

t, we integrate the current over all of space, weighted with the Green’s function factor

1/|x� x0
| which captures the fact that points further away contribute more weakly.

After all this work, we’ve arrived at something rather nice. The general form of the

answer is very similar to the result for electrostatic potential and magnetostatic vector

potential that we derived in Sections 2 and 3. Recall that when the charge density and

current were independent of time, we found

�(x) =
1

4⇡✏0

Z
d3x0 ⇢(x0)

|x� x0|
and A(x) =

µ0

4⇡

Z
d3x0 J(x0)

|x� x0|

But when the charge density and current do depend on time, we see from (6.7) that

something new happens: the gauge field at point x and time t depends on the current

configuration at point x0 and the earlier time tret = t� |x�x0
|/c. This, of course, is due

to causality. The di↵erence t� tret is just the time it took the signal to propagate from

x0 to x, travelling at the speed of light. Of course, we know that Maxwell’s equations

are consistent with relativity so something like this had to happen; we couldn’t have

signals travelling instantaneously. Nonetheless, it’s pleasing to see how this drops out

of our Green’s functionology.
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Finally, we can see what would happen were we to choose the other Green’s function,

G! ⇠ e�i!r/c/r. Following through the steps above, we see that the retarded time tret
is replaced by the advanced time tadv = t + |x � x0

|/c. Such a solution would mean

that the gauge field depends on what the current is doing in the future, rather than in

the past. These solutions are typically thrown out as being unphysical. We’ll have (a

little) more to say about them at the end of the next section.

6.1.2 Green’s Function for the Wave Equation

The expression for the retarded potential (6.7) is important. In this section, we provide

a slightly di↵erent derivation. This will give us more insight into the origin of the

retarded and advanced solutions. Moreover, the techniques below will also be useful in

later courses4.

We started our previous derivation by Fourier transforming only the time coordinate,

to change the wave equation into the Helmholtz equation. Here we’ll treat time and

space on more equal footing and solve the wave equation directly. We again make use

of Green’s functions. The Green’s function for the wave equation obeys
✓
r

2
�

1

c2
@2

@t2

◆
G(x, t;x0, t0) = �3(x� x0)�(t� t0) (6.8)

Translational invariance in space and time means that the Green’s function takes the

form G(x, t;x0, t) = G(x�x0, t�t0). To determine this function G(r, t), with r = x�x0,

we Fourier transform both space and time coordinates,

G(x, t) =

Z
dw d3k

(2⇡)4
G̃(k,!) ei(k·r�!t) (6.9)

Choosing x0 = 0 and t0 = 0, the wave equation (6.8) then becomes
✓
r

2
�

1

c2
@2

@t2

◆
G(r, t) =

Z
dw d3k

(2⇡)4
G̃(!,k)

✓
r

2
�

1

c2
@2

@t2

◆
ei(k·r�!t)

=

Z
dw d3k

(2⇡)4
G̃(k,!)

✓
�k2 +

!2

c2

◆
ei(k·r�!t)

= �3(r)�(t) =

Z
dw d3k

(2⇡)4
ei(k·r�!t)

Equating the terms inside the integral, we see that the Fourier transform of the Green’s

function takes the simple form

G̃(k,!) = �
1

k2 � !2/c2

4
A very similar discussion can be found in the lecture notes on Quantum Field Theory.
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But notice that this diverges when !2 = c2k2. This pole results in an ambiguity in the

Green’s function in real space which, from (6.9), is given by

G(r, t) = �

Z
dw d3k

(2⇡)4
1

k2 � !2/c2
ei(k·r�!t)

We need some way of dealing with that pole in the integral. To see what’s going on,

it’s useful to change to polar coordinates for the momentum integrals over k. This will

allow us to deal with that eik·r factor. The best way to do this is to think of fixing r

and then choosing the kz axis to point along x. We then write k · r = kr cos ✓, and the

Green’s function becomes

G(r, t) = �
1

(2⇡)4

Z 2⇡

0

d�

Z ⇡

0

d✓ sin ✓

Z 1

0

dk k2

Z +1

�1
d!

1

k2 � !2/c2
ei(kr cos ✓�!t)

Now the d� integral is trivial, while the d✓ integral is

Z ⇡

0

d✓ sin ✓ eikr cos ✓ = �
1

ikr

Z ⇡

0

d✓


d

d✓
eikr cos ✓

�
= �

1

ikr

⇥
e�ikr

� e+ikr
⇤
= 2

sin kr

kr

After performing these angular integrals, the real space Green’s function becomes

G(r, t) =
1

4⇡3

Z 1

0

dk c2k2 sin kr

kr

Z +1

�1
d!

e�i!t

(! � ck)(! + ck)

Now we have to face up to those poles. We’ll work by fixing k and doing the ! integral

first. (Afterwards, we’ll then have to do the k integral). It’s clear that we run into two

poles at ! = ±ck when we do the ! integral and we need a prescription for dealing

with these. To do this, we need to pick a contour C in the complex ! plane which

runs along the real axis but skips around the poles. There are di↵erent choices for C.

Each of them provides a Green’s function which obeys (6.8) but, as we will now see,

these Green’s functions are di↵erent. What’s more, this di↵erence has a nice physical

interpretation.

Retarded Green’s Function

To proceed, let’s just pick a particular C and see what happens. We choose a contour

which skips above the poles at ! = ±ck as shown in the diagram. This results in

what’s called the retarded Greens function; we denote it as Gret(r, t). As we now show,

it depends crucially on whether t < 0 or t > 0.
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Let’s first look at the case with t < 0. Here,

Re(  )ω

Im(  )ω

C

−k +k

Figure 50:

e�i!t
! 0 when ! ! +i1. This means that, for t < 0,

we can close the contour C in the upper-half plane as

shown in the figure and the extra semi-circle doesn’t give

rise to any further contribution. But there are no poles

in the upper-half plane. This means that, by the Cauchy

residue theorem, Gret(r, t) = 0 when t < 0.

In contrast, when t > 0 we have e�i!t
! 0 when

! ! �i1, which means that we get to close the contour in the lower-half plane. Now

we do pick up contributions to the integral from the two poles at ! = ±ck. This time

the Cauchy residue theorem gives
Z

C

d!
e�i!t

(! � ck)(! + ck)
= �2⇡i


e�ickt

2ck
�

e+ickt

2ck

�

= �
2⇡

ck
sin ckt (t > 0)

So, for t > 0, the Green’s function becomes

Gret(r, t) = �
1

2⇡2

1

r

Z 1

0

dk c sin kr sin ckt

=
1

4⇡2

1

r

Z 1

�1
dk

c

4
(eikr � e�ikr)(eickt � e�ickt)

=
1

4⇡2

1

r

Z 1

�1
dk

c

4
(eik(r+ct) + e�ik(r+ct)

� eik(r�ct)
� e�ik(r�ct))

Each of these final integrals is a delta-function of the form �(r ± ct). But, obviously,

r > 0 while this form of the Green’s function is only valid for t > 0. So the �(r + ct)

terms don’t contribute and we’re left with

Gret(x, t) = �
1

4⇡

c

r
�(r � ct) t > 0

We can absorb the factor of c into the delta-function. (Recall that �(x/a) = |a|�(x) for

any constant a). So we finally get the answer for the retarded Green’s function

Gret(r, t) =

8
<

:
0 t < 0

�
1

4⇡r
�(tret) t > 0

where tret is the retarded time that we met earlier,

tret = t�
r

c
The delta-function ensures that the Green’s function is only non-vanishing on the light-

cone emanating from the origin.
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Finally, with the retarded Green’s function in hand, we can construct what we really

want: solutions to the wave equation (6.4). These solutions are given by

Aµ(x, t) = �µ0

Z
d3x0dt0 Gret(x, t;x

0, t0) Jµ(x
0, t0) (6.10)

=
µ0

4⇡

Z
d3x0dt0

�(tret)

|x� x0|
Jµ(x

0, t0)

=
µ0

4⇡

Z
d3x0 Jµ(x

0, tret)

|x� x0|

Happily, we find the same expression for the retarded potential that we derived previ-

ously in (6.7).

Advanced Green’s Function

Let us briefly look at other Green’s functions. We can
Re(  )ω

Im(  )ω

C

+k−k

Figure 51:

pick the contour C in the complex !-plane to skip below

the two poles on the real axis. This results in what’s

called the advanced Green’s function. Now, when t >

0, we complete the contour in the lower-half plane, as

shown in the figure, where the lack of poles means that

the advanced Green’s function vanishes. Meanwhile, for

t < 0, we complete the contour in the upper-half plane

and get

Gadv(r, t) =

8
<

:
�

1

4⇡r
�(tadv) t < 0

0 t > 0

where

tadv = t+
r

c

The resulting solution gives a solution known as the advanced potential,

Aµ(x, t) =
µ0

4⇡

Z
d3x0 Jµ(x

0, tadv)

|x� x0|

It’s hard to think of this solution as anything other than unphysical. Taken at face

value, the e↵ect of the current and charges now propagates backwards in time to de-

termine the gauge potential Aµ. The sensible thing is clearly to throw these solutions

away.
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However, it’s worth pointing out that the choice of the retarded propagator Gret

rather than the advanced propagator Gadv is an extra ingredient that we should add to

the theory of electromagnetism. The Maxwell equations themselves are time symmetric;

the choice of which solutions are physical is not.

There is some interesting history attached to this. A number of physicists have felt

uncomfortable at imposing this time asymmetry only at the level of solutions, and

attempted to rescue the advanced propagator in some way. The most well-known of

these is the Feynman-Wheeler absorber theory, which uses a time symmetric propaga-

tor, with the time asymmetry arising from boundary conditions. However, I think it’s

fair to say that these ideas have not resulted in any deeper understanding of how time

emerges in physics.

Finally, there is yet another propagator that we can
Re(  )ω

Im(  )ω

C −k

+k

Figure 52:

use. This comes from picking a contour C that skips

under the first pole and over the second. It is known as

the Feynman propagator and plays an important role in

quantum field theory.

6.1.3 Checking Lorentz Gauge

There is a loose end hanging over from our previous discussion. We have derived the

general solution to the wave equation (6.4) for Aµ.This is given by the retarded potential

Aµ(x, t) =
µ0

4⇡

Z
d3x0 Jµ(x

0, tret)

|x� x0|
(6.11)

But the wave equation is only equivalent to the Maxwell equations if it obeys the

Lorentz gauge fixing condition, @µAµ = 0. We still need to check that this holds. In

fact, this follows from the conservation of the current: @µJµ = 0. To show this, it’s

actually simplest to return to a slightly earlier form of this expression (6.10)

Aµ(x, t) = �µ0

Z
d3x0dt0 Gret(x, t;x

0, t0) Jµ(x
0, t0)

The advantage of this is that both time and space remain on an equal footing. We have

@µA
µ(x, t) = �µ0

Z
d3x0dt0 @µGret(x, t;x

0, t0) Jµ(x0, t0)

But now we use the fact that Gret(x, t;x0, t0) depends on x�x0 and t� t0 to change the

derivative @µ acting on x into a derivative @0µ acting on x0. We pick up a minus sign for
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our troubles. We then integrate by parts to find,

@µA
µ(x, t) = +µ0

Z
d3x0dt0 @0µGret(x, t;x

0, t0) Jµ(x0, t0)

= �µ0

Z
d3x0dt0 Gret(x, t;x

0, t0) @0µJ
µ(x0, t0)

= 0

as required. If you prefer, you can also run through the same basic steps with the form

of the solution (6.11). You have to be a little careful because tret now also depends on

x and x0 so you get extra terms at various stages when you di↵erentiate. But it all

drops out in the wash and you again find that Lorentz gauge is satisfied courtesy of

current conservation.

6.2 Dipole Radiation

Let’s now use our retarded potential do understand something new. This is the set-

up: there’s some localised region V in which there is a time-dependent distribution of

charges and currents. But we’re a long way from this region. We want to know what

the resulting electromagnetic field looks like.

Our basic formula is the retarded potential,

Aµ(x, t) =
µ0

4⇡

Z

V

d3x0 Jµ(x
0, tret)

|x� x0|
(6.12)

The current Jµ(x0, t) is non-zero only for x0
2 V . We denote the size of the region V

as d and we’re interested in what’s happening at a point x which is a distance r = |x|

away. (A word of warning: in this section we’re using r = |x| which di↵ers from our

notation in Section 6.1 where we used r = |x� x0
|). If |x� x0

| � d for all x0
2 V then

we can approximate |x�x0
| ⇡ |x| = r. In fact, we will keep the leading order correction

to this which we get by Taylor expansion. (This is the same Taylor expansion that we

needed when deriving the multipole expansion for electrostatics in Section 2.2.3). We

have

|x� x0
| = r �

x · x0

r
+ . . .

)
1

|x� x0|
=

1

r
+

x · x0

r3
+ . . . (6.13)

There is a new ingredient compared to the electrostatic case: we have a factor of |x�x0
|

that sits inside tret = t� |x� x0
|/c as well, so that

Jµ(x
0, tret) = Jµ(x

0, t� r/c+ x · x0/rc+ . . .)
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Now we’d like to further expand out this argument. But, to do that, we need to know

something about what the current is doing. We will assume that the motion of the

charges and current are non-relativistic so that the current doesn’t change very much

over the time ⌧ ⇠ d/c that it takes light to cross the region V . For example, if the

current varies with characteristic frequency ! (so that J ⇠ e�i!t), then this requirement

becomes d/c ⌧ 1/!. Then we can further Taylor expand the current to write

Jµ(x
0, tret) = Jµ(x

0, t� r/c) + J̇µ(x
0, t� r/c)

x · x0

rc
+ . . . (6.14)

We start by looking at the leading order terms in both these Taylor expansions.

6.2.1 Electric Dipole Radiation

At leading order in d/r, the retarded potential becomes simply

Aµ(x, t) ⇡
µ0

4⇡r

Z

V

d3x0 Jµ(x
0, t� r/c)

This is known as the electric dipole approximation. (We’ll see why very shortly). We

want to use this to compute the electric and magnetic fields far from the localised source.

It turns out to be simplest to first compute the magnetic field using the 3-vector form

of the above equation,

A(x, t) ⇡
µ0

4⇡r

Z

V

d3x0 J(x0, t� r/c)

We can manipulate the integral of the current using the conservation formula ⇢̇ +r ·

J = 0. (The argument is basically a repeat of the kind of arguments we used in the

magnetostatics section 3.3.2). We do this by first noting the identity

@j(Jjxi) = (@jJj) xi + Ji = �⇢̇ xi + Ji

We integrate this over all of space and discard the total derivative to find
Z

d3x0 J(x0) =
d

dt

Z
d3x0 ⇢(x0)x0 = ṗ

where we recognise p as the electric dipole moment of the configuration. We learn that

the vector potential is determined by the change of the electric dipole moment,

A(x, t) ⇡
µ0

4⇡r
ṗ(t� r/c)

This, of course, is where the electric dipole approximation gets its name.
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We now use this to compute the magnetic field B = r⇥A. There are two contri-

butions: one when r acts on the 1/r term, and another when r acts on the r in the

argument of ṗ. These give, respectively,

B ⇡ �
µ0

4⇡r2
x̂⇥ ṗ(t� r/c)�

µ0

4⇡rc
x̂⇥ p̈(t� r/c)

where we’ve used the fact that rr = x̂. Which of these two terms is bigger? As we

get further from the source, we would expect that the second, 1/r, term dominates

over the first, 1/r2 term. We can make this more precise. Suppose that the source is

oscillating at some frequency !, so that p̈ ⇠ !ṗ. We expect that it will make waves

at the characteristic wavelength � = c/!. Then, as long we’re at distances r � �, the

second term dominates and we have

B(t,x) ⇡ �
µ0

4⇡rc
x̂⇥ p̈(t� r/c) (6.15)

The region r � � is called the far-field zone or, sometimes, the radiation zone. We’ve

now made two successive approximations, valid if we have a hierarchy of scales in our

problem: r � �� d.

To get the corresponding electric field, it’s actually simpler to use the Maxwell equa-

tion Ė = c2r⇥B. Again, if we care only about large distances, r � �, the curl of B

is dominated by r acting on the argument of p̈. We get

r⇥B ⇡
µ0

4⇡rc2
x̂⇥ (x̂⇥

...
p(t� r/c))

) E ⇡
µ0

4⇡r
x̂⇥ (x̂⇥ p̈(t� r/c)) (6.16)

Notice that the electric and magnetic field are related in the same way that we saw for

plane waves, namely

E = �c x̂⇥B

although, now, this only holds when we’re suitably far from the source, r � �. What’s

happening here is that oscillating dipole is emitting spherical waves. At radius r � �

these can be thought of as essentially planar.

Notice, also, that the electric field is dropping o↵ slowly as 1/r. This, of course, is

even slower than the usual Coulomb force fall-o↵.
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6.2.2 Power Radiated: Larmor Formula

We can look at the power radiated away by the source. This is computed by the

Poynting vector which we first met in Section 4.4. It is given by

S =
1

µ0
E⇥B =

c

µ0
|B|

2x̂ =
µ0

16⇡2r2c
|x̂⇥ p̈|2 x̂

The fact that S lies in the direction x̂means that the power is emitted radially. The fact

that it drops o↵ as 1/r2 follows from the conservation of energy. It means that the total

energy flux, computed by integrating S over a large surface, is constant, independent

of r.

Although the radiation is radial, it is not uniform. Suppose that the dipole oscillates

in the ẑ direction. Then we have

S =
µ0

16⇡2r2c
|p̈|2 sin2 ✓ ẑ (6.17)

where ✓ is the angle between x̂ and the z-axis. The emitted power is largest in the

plane perpendicular to the dipole. A sketch of this is shown in the figure.

A device which converts currents into electro-

Figure 53:

magnetic waves (typically in the radio spectrum) is

called an antenna. We see that it’s not possible to cre-

ate a dipole antenna which emits radiation uniformly.

There’s actually some nice topology underlying this

observation. Look at a sphere which surrounds the

antenna at large distance. The radiation is emitted

radially, which means that the magnetic field B lies

tangent to the sphere. But there’s an intuitive result

in topology called the hairy ball theorem which says

that you can’t smoothly comb the hair on a sphere. Or, more precisely, there does not

exist a nowhere vanishing vector field on a sphere. Instead, any vector field like B must

vanish at two or more points. In this present context, that ensures that S too vanishes

at two points.

The total radiated power, P , is computed by integrating over a sphere,

P =

Z

S2

d2r · S =
µ0

16⇡2c
|p̈|2

Z 2⇡

0

d�

Z ⇡

0

d✓ sin3 ✓

where one of the factors of sin ✓ comes from the Jacobian. The integral is easily per-

formed, to get

P =
µ0

6⇡c
|p̈|2 (6.18)
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Finally, the dipole term p̈ is still time dependent. It’s common practice to compute the

time averaged power. The most common example is when the dipole oscillates with

frequency !, so that |p̈|2 ⇠ cos2(!t). (Recall that we’re only allowed to work with

complex expressions when we have linear equations). Then, integrating over a period,

T = 2⇡/!, just gives an extra factor of 1/2.

Let’s look at a simple example. Take a particle of charge Q, oscillating in the ẑ

direction with frequency ! and amplitude d. Then we have p = pẑei!t with the dipole

moment p = Qd. Similarly, p̈ = �!2pẑei!t. The end result for the time averaged power

P̄ is

P̄ =
µ0p2!4

12⇡c
(6.19)

This is the Larmor formula for the time-averaged power radiated by an oscillating

charge. The formula is often described in terms of the acceleration, a = d!2. Then it

reads

P̄ =
Q2a2

12⇡✏0c3
(6.20)

where we’ve also swapped the µ0 in the numerator for ✏0c2 in the denominator.

6.2.3 An Application: Instability of Classical Matter

The popular picture of an atom consists of a bunch of electrons

Figure 54: This is

not what an atom

looks like.

orbiting a nucleus, like planets around a star. But this isn’t what

an atom looks like. Let’s see why.

We’ll consider a Hydrogen atom, with an electron orbiting around

a proton, fixed at the origin. (The two really orbit each other

around their common centre of mass, but the mass of the electron

is me ⇡ 9⇥ 10�31 Kg, while the mass of the proton is about 1800

bigger, so this is a good approximation). The equation of motion

for the electron is

mer̈ = �
e2

4⇡✏0

r̂

r2

The dipole moment of the atom is p = er so the equation of motion tells us p̈. Plugging

this into (6.18), we can get an expression for the amount of energy emitted by the

electron,

P =
µ0

6⇡c

✓
e3

4⇡✏0mer2

◆2
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As the electron emits radiation, it loses energy and must, therefore, spiral towards the

nucleus. We know from classical mechanics that the energy of the orbit depends on its

eccentricity. For simplicity, let’s assume that the orbit is circular with energy

E = �
e2

4⇡✏0

1

2r

Then we can equate the change in energy with the emitted power to get

Ė =
e2

8⇡✏0r2
ṙ = �P = �

µ0

6⇡c

✓
e3

4⇡✏0mer2

◆2

which gives us an equation that tells us how the radius of the orbit changes,

ṙ = �
µ0e4

12⇡2c✏0m2
er

2

Suppose that we start at some time, t = 0, with a classical orbit with radius r0. Then

we can calculate how long it takes for the electron to spiral down to the origin at r = 0.

It is

T =

Z T

0

dt =

Z 0

r0

1

ṙ
dr =

4⇡2c✏0m2
er

3
0

µ0e4

Now let’s plug in some small numbers. We can take the size of the atom to be r0 ⇡

5 ⇥ 10�11m. (This is roughly the Bohr radius that can be derived theoretically using

quantum mechanics). Then we find that the lifetime of the hydrogen atom is

T ⇡ 10�11 s

That’s a little on the small size. The Universe is 14 billion years old and hydrogen

atoms seem in no danger of decaying.

Of course, what we’re learning here is something dramatic: the whole framework of

classical physics breaks down when we look at the atomic scale and has to be replaced

with quantum mechanics. And, although we talk about electron orbits in quantum

mechanics, they are very di↵erent objects than the classical orbits drawn in the picture.

In particular, an electron in the ground state of the hydrogen atom emits no radiation.

(Electrons in higher states do emit radiation with some probability, ultimately decaying

down to the ground state).

6.2.4 Magnetic Dipole and Electric Quadrupole Radiation

The electric dipole approximation to radiation is su�cient for most applications. Ob-

vious exceptions are when the dipole p vanishes or, for some reason, doesn’t change in

time. For completeness, we describe here the leading order corrections to the electric

dipole approximations.
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The Taylor expansion of the retarded potential was given in (6.13) and (6.14).

Putting them together, we get

Aµ(x, t) =
µ0

4⇡

Z

A

d3x0 Jµ(x
0, tret)

|x� x0|

=
µ0

4⇡r

Z

A

d3x0
✓
Jµ(x

0, t� r/c) + J̇µ(x
0, t� r/c)

x · x0

rc

◆✓
1 +

x · x0

r2

◆
+ . . .

The first term is the electric dipole approximation that we discussed in above. We will

refer to this as AED
µ . Corrections to this arise as two Taylor series. Ultimately we will

only be interested in the far-field region. At far enough distance, the terms in the first

bracket will always dominate the terms in the second bracket, which are suppressed by

1/r. We therefore have

Aµ(x, t) ⇡ AED
µ (x, t) +

µ0

4⇡r2c

Z

A

d3x0 (x · x0)J̇µ(x
0, t� r/c)

As in the electric dipole case, it’s simplest if we focus on the vector potential

A(x, t) ⇡ AED(x, t) +
µ0

4⇡r2c

Z
d3x0 (x · x0) J̇(x0, t� r/c) (6.21)

The integral involves the kind of expression that we met first when we discussed mag-

netic dipoles in Section 3.3.2. We use the slightly odd expression,

@j(Jjxixk) = (@jJj)xixk + Jixk + Jkxi = �⇢̇xixk + Jixk + Jkxi

Because J in (6.21) is a function of x0, we apply this identity to the Jix0
j terms in the

expression. We drop the boundary term at infinity, remembering that we’re actually

dealing with J̇ rather than J , write the integral above as
Z

d3x0 xjx
0
jJ̇i =

xj

2

Z
d3x0 (x0

jJ̇i � x0
iJ̇j + ⇢̈x0

ix
0
j)

Then, using the appropriate vector product identity, we have
Z

d3x0 (x · x0)J̇ =
1

2
x⇥

Z
d3x0 J̇⇥ x0 +

1

2

Z
d3x0 (x · x0)x0 ⇢̈

Using this, we may write (6.21) as

A(x, t) ⇡ AED(x, t) +AMD(x, t) +AEQ(x, t)

where AMD is the magnetic dipole contribution and is given by

AMD(x, t) = �
µ0

8⇡r2c
x⇥

Z
d3x0 x0

⇥ J̇(x0, t� r/c) (6.22)
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and AEQ is the electric quadrupole contribution and is given by

AEQ(x, t) =
µ0

8⇡r2c

Z
d3x0 (x · x0)x0 ⇢̈(x0, t� r/c) (6.23)

The names we have given to each of these contributions will become clearer as we look

at their properties in more detail.

Magnetic Dipole Radiation

Recall that, for a general current distribution, the magnetic dipole m is defined by

m =
1

2

Z
d3x0 x0

⇥ J(x0)

The magnetic dipole contribution to radiation (6.22) can then be written as

AMD(x, t) = �
µ0

4⇡rc
x̂⇥ ṁ(t� r/c)

This means that varying loops of current will also emit radiation. Once again, the

leading order contribution to the magnetic field, B = r⇥A, arises when the curl hits

the argument of m. We have

BMD(x, t) ⇡
µ0

4⇡rc2
x̂⇥ (x̂⇥ m̈(t� r/c))

Using the Maxwell equation ĖMD = c2r⇥BMD to compute the electric field, we have

EMD(x, t) ⇡
µ0

4⇡rc
x̂⇥ m̈(t� r/c)

The end result is very similar to the expression for B and E that we saw in (6.15) and

(6.16) for the electric dipole radiation. This means that the radiated power has the

same angular form, with the Poynting vector now given by

SMD =
µ0

16⇡2r2c3
|m̈|

2 sin2 ✓ ẑ (6.24)

Integrating over all space gives us the power emitted,

P
MD =

µ0

6⇡c3
|m̈|

2 (6.25)

This takes the same form as the electric dipole result (6.18), but with the electric dipole

replaced by the magnetic dipole. Notice, however, that for non-relativistic particles, the

magnetic dipole radiation is substantially smaller than the electric dipole contribution.

For a particle of charge Q, oscillating a distance d with frequency !, we have p ⇠ Qd

and m ⇠ Qd2!. This means that the ratio of radiated powers is

P
MD

PED
⇠

d2!2

c2
⇠

v2

c2

where v is the speed of the particle.
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Electric Quadrupole Radiation

The electric quadrupole tensor Qij arises as the 1/r4 term in the expansion of the

electric field for a general, static charge distribution. It is defined by

Qij =

Z
d3x0 ⇢(x0)

�
3x0

ix
0
j � �ijx

0 2�

This is not quite of the right form to account for the contribution to the potential

(6.23). Instead, we have

AEQ
i (x, t) = �

µ0

24⇡r2c

✓
xjQ̈ij(t� r/c) + xi

Z
d3x0 x02⇢̈(x0, t� r/c)

◆

The second term looks like a mess, but it doesn’t do anything. This is because it’s

radial and so vanishes when we take the curl to compute the magnetic field. Neither

does it contribute to the electric field which, in our case, we will again determine from

the Maxwell equation. This means we are entitled to write

AEQ(x, t) = �
µ0

24⇡r2c
x · Q̈(t� r/c)

where (x · Q)i = xjQij. Correspondingly, the magnetic and electric fields at large

distance are

BEQ(x, t) ⇡
µ0

24⇡rc2
x̂⇥ (x̂ · Q̈)

EEQ(x, t) ⇡
µ0

24⇡rc

⇣
(x̂ · Q̈ · x̂)x̂� (x̂ · Q̈)

⌘

We may again compute the Poynting vector and radiated power. The details depend on

the exact structure of Q, but the angular dependence of the radiation is now di↵erent

from that seen in the dipole cases.

Finally, you may wonder about the cross terms between the ED, MD and EQ com-

ponents of the field strengths when computing the quadratic Poynting vector. It turns

out that, courtesy of their di↵erent spatial structures, these cross-term vanish when

computing the total integrated power.

6.2.5 An Application: Pulsars

Pulsars are lighthouses in the sky, spinning neutron stars continuously beaming out

radiation which sweeps past our line of sight once every rotation. They have been

observed with periods between 10�3 seconds and 8 seconds.
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Neutron stars typically carry a very large magnetic field. This arises from the parent

star which, as it collapses, reduces in size by a factor of about 105. This squeezes the

magnetic flux lines, which gets multiplied by a factor of 1010. The resulting magnetic

field is typically around 108 Tesla, but can be as high as 1011 Tesla. For comparison,

the highest magnetic field that we have succeeded in creating in a laboratory is a paltry

100 Tesla or so.

The simplest model of a pulsar has the resulting magnetic Ω

m

α

Figure 55:

dipole moment m of the neutron star misaligned with the angular

velocity. This resulting magnetic dipole radiation creates the desired

lighthouse e↵ect. Consider the set-up shown in the picture. We take

the pulsar to rotate about the z-axis with frequency ⌦. The magnetic

moment sits at an angle ↵ relative to the z-axis, so rotates as

m = m0 (sin(↵) cos(⌦t)x̂+ sin(↵) cos(⌦t)ŷ + cos↵ẑ)

The power emitted (6.25) is then

P =
µ0

6⇡c
m2

0⌦
2 sin2 ↵

At the surface of the neutron star, it’s reasonable to assume that the magnetic field is

given by the dipole moment. In Section 3.3, we computed the magnetic field due to a

dipole moment: it is

B(r) =
µ0

4⇡

✓
3(m · r̂)r̂�m

R3

◆

where R is the radius of the star. This means that Bmax = µ0m0/2⇡R3 and the power

emitted is

P =
2⇡R6B2

max

3cµ0
⌦2 sin2 ↵ (6.26)

Because the pulsar is emitting radiation, it must lose energy. And this means it slows

down. The rotational energy of a the pulsar is given by

E =
1

2
I⌦2

where I = 2
5MR2 is the moment of inertia of a sphere of mass M and radius R.

Equating the power emitted with the loss of rotational kinetic energy gives

P = �Ė = �I⌦⌦̇ (6.27)
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Figure 56: A composite image of the Crab Nebula, taken by the Hubble, Chandra and

Spitzer space telescopes.

Let’s put some big numbers into these equations. In 1054, Chinese astronomers saw a

new star appear in the sky. 6500 light years away, a star had gone supernova. It left

behind a pulsar which, today, emits large quantities of radiation, illuminating the part

of the sky we call the Crab nebula. This is shown in the picture.

The Crab pulsar has mass M ⇡ 1.4MSun ⇡ 3 ⇥ 1030 Kg and radius R ⇡ 15 km. It

spins about 30 times a second, so ⌦ ⇡ 60⇡ s�1. It’s also seen to be slowing down with

⌦̇ = �2⇥ 10�9 s�2. From this information alone, we can calculate that it loses energy

at a rate of Ė = I⌦⌦̇ ⇡ �1032 Js�1. That’s a whopping amount of energy to be losing

every second. In fact, it’s enough energy to light up the entire Crab nebula. Which, of

course, it has to be! Moreover, we can use (6.26) and (6.27) to estimate the magnetic

field on the surface of the pulsar. Plugging in the numbers give Bmax sin↵ ⇡ 108 Tesla.

6.3 Scattering

In this short section, we describe the application of our radiation formulae to the

phenomenon of scattering. Here’s the set-up: an electromagnetic wave comes in and

hits a particle. In response, the particle oscillates and, in doing so, radiates. This new

radiation moves out in di↵erent directions from the incoming wave. This is the way

that light is scattered.

6.3.1 Thomson Scattering

We start by considering free, charged particles where the process is known as Thomson
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scattering. The particles respond to an electric field by accelerating, as dictated by

Newton’s law

mẍ = qE

The incoming radiation takes the form E = E0ei(k·r�!t). To solve for the motion of the

particle, we’re going to assume that it doesn’t move very far from its central position,

which we can take to be the origin r = 0. Here, “not very far” means small compared

to the wavelength of the electric field. In this case, we can replace the electric field by

E ⇡ E0e�i!t, and the particle undergoes simple harmonic motion

x(t) = �
qE0

m!2
sin(!t)

We should now check that the motion of the particle is indeed small compared to the

wavelength of light. The maximum distance that the particle gets is xmax = qE0/m!2,

so our analysis will only be valid if we satisfy

qE0

m!2
⌧

c

!
)

qE0

m!c
⌧ 1 (6.28)

This requirement has a happy corollary, since it also ensures that the maximum speed

of the particle vmax = qE0/m! ⌧ c, so the particle motion is non-relativistic. This

means that we can use the dipole approximation to radiation that we developed in the

previous section. We computed the time-averaged radiated power in (6.20): it is given

by

P̄radiated =
µ0q4E2

0

12⇡m2c

It’s often useful to compare the strength of the emitted radiation to that of the incoming

radiation. The relevant quantity to describe the incoming radiation is the time-averaged

magnitude of the Poynting vector. Recall from Section 4.4 that the Poynting vector

for a wave with wavevector k is

S =
1

µ0
E⇥B =

cE2
0

µ0
k̂ sin2(k · x� !t)

Taking the time average over a single period, T = 2⇡/!, gives us the average energy

flux of the incoming radiation,

S̄incident =
cE2

0

2µ0
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with the factor of two coming from the averaging. The ratio of the outgoing to incoming

powers is called the cross-section for scattering. It is given by

� =
P̄radiated

S̄incident
=

µ2
0q

4

6⇡m2c2

The cross-section has the dimensions of area. To highlight this, it’s useful to write it

as

� =
8⇡

3
r2q (6.29)

where the length scale rq is known as the classical radius of the particle and is given by

q2

4⇡✏0rq
= mc2

This equation tells us how to think of rq. Up to some numerical factors, it equates

the Coulomb energy of a particle in a ball of size rq with its relativistic rest mass.

Ultimately, this is not the right way to think of the size of point particles. (The right

way involves quantum mechanics). But it is a useful concept in the classical world. For

the electron, re ⇡ 2.8⇥ 10�15 m.

The Thompson cross-section (6.29) is slightly smaller than the (classical) geometric

cross-section of the particle (which would be the area of the disc, 4⇡r2q). For us, the

most important point is that the cross-section does not depend on the frequency of

the incident light. It means that all wavelengths of light are scattered equally by

free, charged particles, at least within the regime of validity (6.28). For electrons, the

Thomson cross-section is � ⇡ 6⇥ 10�30 m2.

6.3.2 Rayleigh Scattering

Rayleigh scattering describes the scattering of light o↵ a neutral atom or molecule.

Unlike in the case of Thomson scattering, the centre of mass of the atom does not

accelerate. Instead, as we will see in Section 7.1.1, the atom undergoes polarisation

p = ↵E

We will present a simple atomic model to compute the proportionality constant in

Section 7.5.1, where we will show that it takes the form (7.29),

↵ =
q2/m

�!2 + !2
0 � i�!
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Figure 57: Now you know why.

Here !0 is the natural oscillation frequency of the atom while ! is the frequency of

incoming light. For many cases of interest (such as visible light scattering o↵ molecules

in the atmosphere), we have !0 � !, and we can approximate ↵ as a constant,

↵ ⇡
q2

!2
0m

We can now compute the time-average power radiated in this case. It’s best to use

the version of Larmor’s fomula involving the electric dipole (6.19), since we can just

substitute in the results above. We have

P̄radiated =
µ0↵2E2

0!
4

12⇡c

In this case, the cross-section for Rayleigh scattering is given by

� =
P̄radiated

S̄incident
=

µ2
0q

4

6⇡m2c2

✓
!

!0

◆4

=
8⇡r2q
3

✓
!

!0

◆4

We see that the cross-section now has more structure. It increases for high frequencies,

� ⇠ !4 or, equivalently, for short wavelengths � ⇠ 1/�4. This is important. The most

famous example is the colour of the sky. Nitrogen and oxygen in the atmosphere scatter

short-wavelength blue light more than the long-wavelength red light. This means that

the blue light from the Sun gets scattered many times and so appears to come from all

regions of the sky. In contrast, the longer wavelength red and yellow light gets scattered

less, which is why the Sun appears to be yellow. (In the absence of an atmosphere, the

light from the Sun would be more or less white). This e↵ect is particularly apparent at
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sunset, when the light from the Sun passes through a much larger slice of atmosphere

and, correspondingly, much more of the blue light is scattered, leaving behind only red.

6.4 Radiation From a Single Particle

In the previous section, we have developed the multipole expansion for radiation emitted

from a source. We needed to invoke a couple of approximations. First, we assumed

that we were far from the source. Second, we assumed that the motion of charges and

currents within the source was non-relativistic.

In this section, we’re going to develop a formalism which does not rely on these

approximations. We will determine the field generated by a particle with charge q,

moving on an arbitrary trajectory r(r), with velocity v(t) and acceleration a(t). It

won’t matter how far we are from the particle; it won’t matter how fast the particle is

moving. The particle has charge density

⇢(x, t) = q�3(x� r(t)) (6.30)

and current

J(x, t) = q v(t)�3(x� r(t)) (6.31)

Our goal is find the general solution to the Maxwell equations by substituting these

expressions into the solution (6.7) for the retarded potential,

Aµ(x, t) =
µ0

4⇡

Z
d3x0 Jµ(x

0, tret)

|x� x0|
(6.32)

The result is known as Liénard-Wierchert potentials.

6.4.1 Liénard-Wierchert Potentials

If we simply plug (6.30) into the expression for the retarded electric potential (6.32),

we get

�(x, t) =
q

4⇡✏0

Z
d3x0 1

|x� x0|
�3(x0

� r(tret))

Here we’re denoting the position of the particle as r(t), while we’re interested in the

value of the electric potential at some di↵erent point x which tdoes not lie on the

trajectory r(t). We can use the delta-function to do the spatial integral, but it’s a little

cumbersome because the x0 appears in the argument of the delta-function both in the
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obvious place, and also in tret = t � |x � x0
|/c. It turns out to be useful to shift this

awkwardness into a slightly di↵erent delta-function over time. We write,

�(x, t) =
q

4⇡✏0

Z
dt0
Z

d3x0 1

|x� x0|
�3(x0

� r(t0))�(t0 � tret)

=
q

4⇡✏0

Z
dt0

1

|x� r(t0)|
�(t� t0 � |x� r(t0)|/c) (6.33)

We still have the same issue in doing the
R
dt0 integral, with t0 appearing in two places

in the argument. But it’s more straightforward to see how to deal with it. We introduce

the separation vector

R(t) = x� r(t)

Then, if we define f(t0) = t0 +R(t0)/c, we can write

�(x, t) =
q

4⇡✏0

Z
dt0

1

R(t0)
�(t� f(t0))

=
q

4⇡✏0

Z
df

dt0

df

1

R(t0)
�(t� f(t0))

=
q

4⇡✏0


dt0

df

1

R(t0)

�

f(t0)=t

A quick calculation gives

df

dt0
= 1�

R̂(t0) · v(t0)

c

with v(t) = ṙ(t) = �Ṙ(t). This leaves us with our final expression for the scalar

potential

�(x, t) =
q

4⇡✏0

"
c

c� R̂(t0) · v(t0)

1

R(t0)

#

ret

(6.34)

Exactly the same set of manipulations will give us a similar expression for the vector

potential,

A(x, t) =
qµ0

4⇡

"
c

c� R̂(t0) · v(t0)

v(t0)

R(t0)

#

ret

(6.35)

Equations (6.34) and (6.35) are the Liénard-Wierchert potentials. In both expressions

“ret” stands for “retarded” and means that they should be evaluated at time t0 deter-

mined by the requirement that

t0 +R(t0)/c = t (6.36)
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This equation has an intuitive explanation. If you trace back
r(t) x

t/

Figure 58:

light-sheets from the point x, they intersect the trajectory of

the particle at time t0, as shown in the figure. The Liénard-

Wierchert potentials are telling us that the field at point x

is determined by what the particle was doing at this time t0.

6.4.2 A Simple Example: A Particle Moving with

Constant Velocity

The Liénard-Wierchert potentials (6.34) and (6.35) have

the same basic structure that we for the Coulomb law in electrostatics and the Biot-

Savart law in magnetostatics. The di↵erence lies in the need to evaluate the potentials

at time t0. But there is also the extra factor 1/(1� R̂ ·v/c). To get a feel for this, let’s

look at a simple example. We’ll take a particle which moves at constant speed in the

ẑ direction, so that

r(t) = vtẑ ) v(t) = vẑ

To simplify life even further, we’ll compute the potentials at a point in the z = 0 plane,

so that x = (x, y, 0). We’ll ask how the fields change as the particle passes through.

The equation (6.36) to determine the retarded time becomes

t0 +
p

x2 + y2 + v2t0 2/c = t

Squaring this equation (after first making the right-hand side t�t0) gives us a quadratic

in t0,

t0 2 � 2�2tt0 + �2(t2 � r2/c2) = 0

where we see the factor � = (1 � v2/c2)�1/2, familiar from special relativity naturally

emerging. The quadratic has two roots. We’re interested in the one with the minus

sign, corresponding to the retarded time. This is

t0 = �2t�
�

c

p
v2t2 + r2/�2 (6.37)

We now need to deal with the various factors in the numerator of the Liénard-Wierchert

potential (6.34). Pleasingly, they combine together nicely. We have R(t0) = c(t � t0).

Meanwhile, R(t0) · v(t0) = (x� r(t0)) · v = �r(t0) · v = �v2t0 since we’ve taken x to lie
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perpendicular to v. Put together, this gives us

�(x, t) =
q

4⇡✏0

1

[1 + v2t0/c(t� t0)]

1

c(t� t0)

=
q

4⇡✏0

1

c(t� t0) + v2t0

=
1

4⇡✏0

1

c(t� t0/�2)

But, using our solution (6.37), this becomes

�(x, t) =
q

4⇡✏0

1

[v2t2 + (x2 + y2)/�2]

Similarly, the vector potential is

A(x, t) =
qµ0

4⇡

v

[v2t2 + (x2 + y2)/�2]

How should we interpret these results? The distance from the particle to the point x is

r2 = x2+ y2+ v2t2. The potentials look very close to those due to a particle a distance

r away, but with one di↵erence: there is a contraction in the x and y directions. Of

course, we know very well what this means: it is the usual Lorentz contraction in special

relativity.

In fact, we previously derived the expression for the electric and magnetic field of a

moving particle in Section 5.3.4, simply by acting with a Lorentz boost on the static

fields. The calculation here was somewhat more involved, but it didn’t assume any rel-

ativity. Instead, the Lorentz contraction follows only by solving the Maxwell equations.

Historically, this kind of calculation is how Lorentz first encountered his contractions.

6.4.3 Computing the Electric and Magnetic Fields

We now compute the electric and magnetic fields due to a particle undergoing arbitrary

motion. In principle this is straightforward: we just need to take our equations (6.34)

and (6.35)

�(x, t) =
q

4⇡✏0

"
c

c� R̂(t0) · v(t0)

1

R(t0)

#

ret

A(x, t) =
qµ0

4⇡

"
c

c� R̂(t0) · v(t0)

v(t0)

R(t0)

#

ret

where R(t0) = x � r(t0). We then plug these into the standard expressions for the

electric field E = �r� � @A/@t and the magnetic field B = r ⇥ A. However, in
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practice, this is a little fiddly. It’s because the terms in these equations are evaluated

at the retarded time t0 determined by the equation t0 + R(t0)/c = t. This means that

when we di↵erentiate (either by @/@t or by r), the retarded time also changes and

so gives a contribution. It turns out that it’s actually simpler to return to our earlier

expression (6.33),

�(x, t) =
q

4⇡✏0

Z
dt0

1

R(t0)
�(t� t0 �R(t0)/c)

and a similar expression for the vector potential,

A(x, t) =
qµ0

4⇡

Z
dt0

v(t0)

R(t0)
�(t� t0 �R(t0)/c) (6.38)

This will turn out to be marginally easier to deal with.

The Electric Field

We start with the electric field E = �r� � @A/@t. We call the argument of the

delta-function

s = t� t0 �R(t0)

We then have

r� =
q

4⇡✏0

Z
dt0


�
rR

R2
�(s)�

1

R
�0(s)

rR

c

�

=
q

4⇡✏0

Z
ds

����
@t0

@s

����


�
rR

R2
�(s)�

rR

Rc
�0(s)

�
(6.39)

The Jacobian factor from changing the integral variable is the given by

@s

@t0
= �1 + R̂(t0) · v(t0)/c

This quantity will appear a lot in what follows, so we give it a new name. We define

 = 1� R̂(t0) · v(t0)/c

so that @t0/@s = �1/. Integrating the second term in (6.39) by parts, we can then

write

r� =
q

4⇡✏0

Z
ds


�
rR

R2
+

d

ds

✓
rR

Rc

◆�
�(s)

=
q

4⇡✏0

Z
ds


�
rR

R2
�

1



d

dt0

✓
rR

Rc

◆�
�(s)
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Meanwhile, the vector potential term gives

@A

@t
=

qµ0

4⇡

Z
dt0

v

R
�0(s)

@s

@t

But @s/@t = 1. Moving forward, we have

@A

@t
=

qµ0

4⇡

Z
ds

����
@t0

@s

����
v

R
�0(s)

= �
qµ0

4⇡

Z
ds


d

ds

⇣ v

R

⌘�
�(s)

=
qµ0

4⇡

Z
ds

1




d

dt0

⇣ v

R

⌘�
�(s)

Putting this together, we get

E =
q

4⇡✏0

Z
ds


rR

R2
+

1

c

d

dt0

✓
rR� v/c

R

◆�
�(s)

=
q

4⇡✏0

"
R̂

R2
+

1

c

d

dt0

 
R̂� v/c

R

!#

ret

(6.40)

We’re still left with some calculations to do. Specifically, we need to take the derivative

d/dt0. This involves a couple of small steps. First,

dR̂

dt0
=

d

dt0

✓
R

R

◆
= �

v

R
+

R

R2
(R̂ · v) = �

1

R

⇣
v � (v · R̂)R̂

⌘

Also,

d

dt0
(R) =

d

dt0
(R�R · v/c) = �v · R̂+ v2/c�R · a/c

Putting these together, we get

d

dt0

 
R̂� v/c

R

!
= �

1

R2

⇣
v � (v · R̂)R̂

⌘
�

a

Rc
+

R̂� v/c

2R2

⇣
v · R̂� v2/c+R · a/c

⌘

We write the v · R̂ terms as v · R̂ = c(1� ). Then, expanding this out, we find that

a bunch of terms cancel, until we’re left with

d

dt0

 
R̂� v/c

R

!
= �

cR̂

R2
+

c(R̂� v/c)

2R2
(1� v2/c2) +

1

2Rc

h
(R̂� v/c) R̂ · a� a

i

= �
cR̂

R2
+

c(R̂� v/c)

�22R2
+

R̂⇥ [(R̂� v/c)⇥ a]

2Rc
(6.41)
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where we’ve introduced the usual � factor from special relativity: �2 = 1/(1 � v2/c2).

Now we can plug this into (6.40) to find our ultimate expression for the electric field,

E(x, t) =
q

4⇡✏0

"
R̂� v/c

�23R2
+

R̂⇥ [(R̂� v/c)⇥ a]

3Rc2

#

ret

(6.42)

Since it’s been a long journey, let’s recall what everything in this expression means.

The particle traces out a trajectory r(t), while we sit at some position x which is

where the electric field is evaluated. The vector R(t) is the di↵erence: R = x � r.

The ret subscript means that we evaluate everything in the square brackets at time t0,

determined by the condition t0 +R(t0)/c = t. Finally,

 = 1�
R̂ · v

c
and �2 =

1

1� v2/c2

The electric field (6.42) has two terms.

• The first term drops o↵ as 1/R2. This is what becomes of the usual Coulomb

field. It can be thought of as the part of the electric field that remains bound to

the particle. The fact that it is proportional to R̂, with a slight o↵-set from the

velocity, means that it is roughly isotropic.

• The second term drops o↵ as 1/R and is proportional to the acceleration. This

describes the radiation emitted by the particle. Its dependence on the acceleration

means that it’s highly directional.

The Magnetic Field

To compute the magnetic field, we start with the expression (6.38),

A(x, t) =
qµ0

4⇡

Z
dt0

v(t0)

R(t0)
�(s)

with s = t� t0 �R(t0)/c. Then, using similar manipulations to those above, we have

B = r⇥A =
qµ0

4⇡

Z
dt0


�
rR

R2
⇥ v �(s) +

rs⇥ v

R
�0(s)

�

=
qµ0

4⇡

Z
ds


�
rR

R2
⇥ v �

1



d

dt0

✓
rR⇥ v

Rc

◆�
�(s) (6.43)
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We’ve already done the hard work necessary to compute this time derivative. We can

write,

d

dt0

✓
rR⇥ v

R

◆
=

d

dt0

 
(R̂� v/c)⇥ v

R

!

=
d

dt0

 
R̂� v/c

R

!
⇥ v +

R̂� v/c

R
⇥ a

Now we can use (6.41). A little algebra shows that terms of the form v⇥a cancel, and

we’re left with

d

dt0

 
R̂⇥ v

R

!
= �

cR̂⇥ v

R2
+

cR̂⇥ v

�22R2
+

(R · a) R̂⇥ v

c2R2
+

R̂⇥ a

R

Substituting this into (6.43), a little re-arranging of the terms gives us our final expres-

sion for the magnetic field,

B = �
qµ0

4⇡

"
R̂⇥ v

�23R2
+

(R̂ · a)(R̂⇥ v/c) + R̂⇥ a

c3R

#

ret

(6.44)

We see that this has a similar form to the electric field (6.42). The first term falls o↵ as

1/R2 and is bound to the particle. It vanishes when v = 0 which tells us that a charged

particle only gives rise to a magnetic field when it moves. The second term falls o↵ as

1/R. This is generated by the acceleration and describes the radiation emitted by the

particle. You can check that E in (6.42) and B in (6.44) are related through

B =
1

c
[R̂]ret ⇥ E (6.45)

as you might expect.

6.4.4 A Covariant Formalism for Radiation

Before we make use of the Liénard-Wierchert potentials, we’re going to do something

a little odd: we’re going to derive them again. This time, however, we’ll make use of

the Lorentz invariant notation of electromagnetism. This won’t teach us anything new

about physics and the results of this section aren’t needed for what follows. But it will

give us some practice on manipulating these covariant quantities. Moreover, the final

result will be pleasingly concise.
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A Covariant Retarded Potential

We start with our expression for the retarded potential (6.32) in terms of the current,

Aµ(x, t) =
µ0

4⇡

Z
d3x0 Jµ(x

0, tret)

|x� x0|
(6.46)

with tret = t�|x�x0
|/c. This has been the key formula that we’ve used throughout this

section. Because it was derived from the Maxwell equations, this formula should be

Lorentz covariant, meaning that someone in a di↵erent inertial frame will write down

the same equation. Although this should be true, it’s not at all obvious from the way

that (6.46) is written that it actually is true. The equation involves only integration

over space, and the denominator depends only on the spatial distance between two

points. Neither of these are concepts that di↵erent observers agree upon.

So our first task is to rewrite (6.46) in a way which is manifestly Lorentz covariant.

To do this, we work with four-vectors Xµ = (ct,x) and take a quantity which everyone

agrees upon: the spacetime distance between two points

(X �X 0)2 = ⌘µ⌫(X
µ
�X 0µ)(X⌫

�X 0 ⌫) = c2(t� t0)2 � |x� x0
|
2

Consider the delta-function �((X � X 0)2), which is non-vanishing only when X and

X 0 are null-separated. This is a Lorentz-invariant object. Let’s see what it looks like

when written in terms of the time coordinate t. We will need the general result for

delta-functions

�(f(x)) =
X

xi

�(x� xi)

|f 0(xi)|
(6.47)

where the sum is over all roots f(xi) = 0. Using this, we can write

�
�
(X �X 0)2

�
= � ([c(t0 � t) + |x� x0

|][c(t0 � t)� |x� x0
|])

=
�(ct0 � ct+ |x� x0

|)

2c|t� t0|
+
�(ct0 � ct� |x� x0

|)

2c|t� t0|

=
�(ct0 � ct+ |x� x0

|)

2|x� x0|
+
�(ct0 � ct� |x� x0

|)

2|x� x0|

The argument of the first delta-function is ct0 � ctret and so this term contributes only

if t0 < t. The argument of the second delta-function is ct0 � ctadv and so this term can

contribute only contribute if t0 > t. But the temporal ordering of two spacetime points

is also something all observers agree upon, as long as those points are either timelike

or null separated. And here the delta-function requires the points to be null separated.
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This means that if we picked just one of these terms, that choice would be Lorentz

invariant. Mathematically, we do this using the Heaviside step-function

⇥(t� t0) =

(
1 t > t0

0 t < t0

We have

�
�
(X �X 0)2

�
⇥ (t� t0) =

�(ct0 � ctret)

2|x� x0|
(6.48)

The left-hand side is manifestly Lorentz invariant. The right-hand side doesn’t look

Lorentz invariant, but this formula tells us that it must be! Now we can make use of

this to rewrite (6.46) in a way that the Lorentz covariance is obvious. It is

Aµ(X) =
µ0

2⇡

Z
d4X 0 Jµ(X

0) �
�
(X �X 0)2

�
⇥ (t� t0) (6.49)

where the integration is now over spacetime, d4X 0 = c dt0 d3x0. The combination of

the delta-function and step-functions ensure that this integration is limited to the past

light-cone of a point.

A Covariant Current

Next, we want a covariant expression for the current formed by a moving charged

particle. We saw earlier that a particle tracing out a trajectory y(t) gives rise to a

charge density (6.30) and current (6.31) given by

⇢(x, t) = q �3(x� y(t)) and J(x, t) = q v(t) �3(x� y(t)) (6.50)

(We’ve changed notation from r(t) to y(t) to denote the trajectory of the particle).

How can we write this in a manifestly covariant form?

We know from our course on Special Relativity that the best way to parametrise the

worldline of a particle is by using its proper time ⌧ . We’ll take the particle to have

trajectory Y µ(⌧) = (ct(⌧),y(⌧)). Then the covariant form of the current is

Jµ(X) = qc

Z
d⌧ Ẏ µ(⌧) �4(X⌫

� Y ⌫(⌧)) (6.51)

It’s not obvious that (6.51) is the same as (6.50). To see that it is, we can decompose

the delta-function as

�4(X⌫
� Y ⌫(⌧)) = �(ct� Y 0(⌧)) �3(x� y(⌧))
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The first factor allows us to do the integral over d⌧ , but at the expense of picking up

a Jacobian-like factor 1/Ẏ 0 from (6.47). We have

Jµ =
qcẎ µ

Ẏ 0
�3(x� y(⌧))

which does give us back the same expressions (6.50).

Covariant Liènard-Wierchert Potentials

We can now combine (6.49) and (6.51) to get the retarded potential,

Aµ(X) =
µ0qc

4⇡

Z
d4X 0

Z
d⌧ Ẏ µ(⌧) �4(X 0 ⌫

� Y ⌫(⌧))
�(ct0 � ctret)

|x� x0|

=
µ0qc

4⇡

Z
d⌧ Ẏ µ(⌧)

�(ct� Y 0(⌧)� |x� y(⌧)|

|x� y(⌧)|

This remaining delta-function implicitly allows us to do the integral over proper time.

Using (6.48) we can rewrite it as

�(ct� Y 0(⌧)� |x� y(⌧)|)

2|x� y(⌧)|
= �(R(⌧) ·R(⌧))⇥(R0(⌧)) (6.52)

where we’re introduced the separation 4-vector

Rµ = Xµ
� Y µ(⌧)

The delta-function and step-function in (6.52) pick out a unique value of the proper

time that contributes to the gauge potential at point X. We call this proper time ⌧?.

It is the retarded time lying along a null direction, R(⌧?) · R(⌧?) = 0. This should be

thought of as the proper time version of our previous formula (6.36).

The form (6.52) allows us to do the integral over ⌧ . But we still pick up a Jacobian-

like factor from (6.47). This gives

�(R(⌧) ·R(⌧))⇥(R0(⌧)) =
�(⌧ � ⌧?)

2|Rµ(⌧?)Ẏ µ(⌧?)|

Putting all of this together gives our covariant form for the Liènard-Wierchert potential,

Aµ(X) =
µ0qc

4⇡

Ẏ µ(⌧?)

|R⌫(⌧?)Ẏ⌫(⌧?)|

This is our promised, compact expression. Expanding it out will give the previous

results for the scalar (6.34) and vector (6.35) potentials. (To see this, you’ll need to

first show that |R⌫(⌧?)Ẏ ⌫(⌧?)| = c�(⌧?)R(⌧?)(1� R̂(⌧?) · v(⌧?)/c).)
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The next step is to compute the field strength Fµ⌫ = @µA⌫ � @⌫Aµ. This is what

took us some time in Section 6.4.3. It turns out to be somewhat easier in the covariant

approach. We need to remember that ⌧? is a function of Xµ. Then, we get

Fµ⌫ =
µ0qc

4⇡

 
Ÿ⌫(⌧?)

|R⇢(⌧?)Ẏ⇢(⌧?)|

@⌧?
@Xµ

�
Ẏ⌫(⌧?)

|R⇢(⌧?)Ẏ⇢(⌧?)|2
@|R�(⌧?)Ẏ�(⌧?)|

@Xµ

!
� (µ $ ⌫) (6.53)

The simplest way to compute @⌧?/@Xµ is to start with ⌘⇢�R⇢(⌧?)R�(⌧?) = 0. Di↵eren-

tiating gives

⌘⇢�R
⇢(⌧?)@µR

�(⌧?) = ⌘⇢�R
⇢(⌧?)

⇣
��µ � Ẏ �(⌧?) @µ⌧?

⌘
= 0

Rearranging gives

@⌧?
@Xµ

=
Rµ(⌧?)

R⌫(⌧?)Ẏ⌫(⌧?)

For the other term, we have

@|R�(⌧?)Ẏ�(⌧?)|

@Xµ
=
⇣
��µ � Ẏ �(⌧?)@µ⌧?

⌘
Ẏ�(⌧?) +R�(⌧?)Ÿ�(⌧?)@µ⌧?

=
⇣
R�(⌧?)Ÿ�(⌧?) + c2

⌘
@µ⌧? + Ẏµ(⌧?)

where we’ve used Ẏ µẎµ = c2. Using these in (6.53), we get our final expression for the

field strength,

Fµ⌫(X) =
µ0qc

4⇡

1

R⇢Ẏ⇢

"
(�c2 +R�Ÿ�)

RµẎ⌫ �R⌫ Ẏµ

(R�Ẏ�)2
+

ŸµR⌫ � Ÿ⌫Rµ

R�Ẏ�

#
(6.54)

This is the covariant field strength. It takes a little work to write this in terms of the

component E and B fields but the final answer is, of course, given by (6.42) and (6.44)

that we derived previously. Indeed, you can see the general structure in (6.54). The

first term is proportional to velocity and goes as 1/R2; the second term is proportional

to acceleration and goes as 1/R.

6.4.5 Bremsstrahlung, Cyclotron and Synchrotron Radiation

To end our discussion, we derive the radiation due to some simple relativistic motion.

Power Radiated Again: Relativistic Larmor Formula

In Section 6.2.2, we derived the Larmor formula for the emitted power in the electric

dipole approximation to radiation. In this section, we present the full, relativistic

version of this formula.
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We’ll work with the expressions for the radiation fields E (6.42) and B (6.44). As

previously, we consider only the radiative part of the electric and magnetic fields which

drops o↵ as 1/R. The Poynting vector is

S =
1

µ0
E⇥B =

1

µ0c
E⇥ (R̂⇥ E) =

1

µ0c
|E|2R̂

where all of these expressions are to be computed at the retarded time. The second

equality follows from the relation (6.45), while the final equality follows because the

radiative part of the electric field (6.42) is perpendicular to R̂. Using the expression

(6.42), we have

S =
q2

16⇡2✏0c3
|R̂⇥ [(R̂� v/c)⇥ a]|2

6R2
R̂

with  = 1� R̂ · v/c.

Recall that everything in the formula above is evaluated at the retarded time t0,

defined by t0 +R(t0)/c = t. This means, that the coordinates are set up so that we can

integrate S over a sphere of radius R that surrounds the particle at its retarded time.

However, there is a subtlety in computing the emitted power, associated to the Doppler

e↵ect. The energy emitted per unit time t is not the same as the energy emitted per

unit time t0. They di↵er by the factor dt/dt0 = . The power emitted per unit time t0,

per solid angle d⌦, is

dP

d⌦
= R2 S · R̂ =

q2

16⇡2✏0c3
|R̂⇥ [(R̂� v/c)⇥ a]|2

5
(6.55)

To compute the emitted power, we must integrate this expression over the sphere. This

is somewhat tedious. The result is given by

P =
q2

6⇡✏0c3
�4
✓
a2 +

�2

c2
(v · a)2

◆
(6.56)

This is the relativistic version of the Larmor formula (6.18). (There is a factor of 2

di↵erence when compared to (6.20) because the former equation was time averaged).

We now apply this to some simple examples.

Bremsstrahlung

Suppose a particle is travelling in a straight line, with velocity v parallel to acceleration

a. The most common situation of this type occurs when a particle decelerates. In this

case, the emitted radiation is called bremsstrahlung, German for “braking radiation”.
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We’ll sit at some point x, at which the radiation reaches us from the retarded point

on the particle’s trajectory r(t0). As before, we define R(t0) = x� r(t0). We introduce

the angle ✓, defined by

R̂ · v = v cos ✓

Because the v ⇥ a term in (6.55) vanishes, the angular dependence of the radiation is

rather simple in this case. It is given by

dP

d⌦
=

q2a2

16⇡✏0c3
sin2 ✓

(1� (v/c) cos ✓)5

For v ⌧ c, the radiation is largest in the direction ✓ ⇡ ⇡/2, perpendicular to the

direction of travel. But, at relativistic speeds, v ! c, the radiation is beamed in the

forward direction in two lobes, one on either side of the particle’s trajectory. The total

power emitted is (6.56) which, in this case, simplifies to

P =
q2�6a2

6⇡✏0c3

Cyclotron and Synchrotron Radiation

Suppose that the particle travels in a circle, with v · a = 0. We’ll pick axes so that a

is aligned with the x-axis and v is aligned with the z-axis. Then we write

R̂ = sin ✓ cos�x̂+ sin ✓ sin�ŷ + cos ✓ẑ

After a little algebra, we find that the angular dependence of the emitted radiation is

dP

d⌦
=

q2a2

16⇡✏0c3
1

(1� (v/c) cos ✓)3

✓
1�

sin2 ✓ cos2 �

�2(1� (v/c) cos ✓)2

◆

At non-relativistic speeds, v ⌧ c, the angular dependence takes the somewhat simpler

form (1� sin2 ✓ cos2 �). In this limit, the radiation is referred to as cyclotron radiation.

In contrast, in the relativistic limit v ! c, the radiation is again beamed mostly in the

forwards direction. This limit is referred to as synchrotron radiation. The total emitted

power (6.56) is this time given by

P =
q2�4a2

6⇡✏0c3

Note that the factors of � di↵er from the case of linear acceleration.
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7. Electromagnetism in Matter

Until now, we’ve focussed exclusively on electric and magnetic fields in vacuum. We end

this course by describing the behaviour of electric and magnetic fields inside materials,

whether solids, liquids or gases.

The materials that we would like to discuss are insulators which, in this context, are

usually called dielectrics. These materials are the opposite of conductors: they don’t

have any charges that are free to move around. Moreover, they are typically neutral so

that – at least when averaged – the charge density vanishes: ⇢ = 0. You might think

that such neutral materials can’t have too much e↵ect on electric and magnetic fields.

But, as we will see, things are more subtle and interesting.

7.1 Electric Fields in Matter

The fate of electric fields inside a dielectric depends
+ + +

+ + +

+ +

+

+

+ +

+

+

+

Figure 59: A simple model

of a neutral material

on the microscopic make-up of the material. We going to

work only with the simplest models. We’ll consider our

material to be constructed from a lattice of neutral atoms.

Each of these atoms consists of a positively charged nuclei,

surrounded by a negatively charged cloud of electrons. A

cartoon of this is shown in the figure; the nucleus is drawn

in red, the cloud of electrons in yellow.

Suppose that electric field E is applied to this material. What happens? Although

each atom is neutral, its individual parts are not. This results in an e↵ect called

polarisation: the positively charged nucleus gets pushed a little in the direction of E;

the negatively charged cloud gets pushed a little in the opposite direction. (This is

not to be confused with the orientation of the electromagnetic wave which also has the

name “polarisation”).

The net e↵ect is that the neutral atom gains an electric dipole moment. Recall from

Section 2 that two equal and opposite charges, +q and �q, separated by a distance d,

have an electric dipole p = qd. By convention, p points from the negative charge to

the positive charge.

It turns out that in most materials, the induced electric dipole is proportional to the

electric field,

p = ↵E (7.1)
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Figure 60: The polarisation of an atom

The proportionality factor ↵ is called the atomic polarisability. Because p points from

negative to positive charge, it points in the same direction as E. The electric field

will also result in higher multipole moments of the atoms. (For example, the cloud of

electrons will be distorted). We will ignore these e↵ects.

A Simple Model for Atomic Polarisability

Here’s a simple model which illustrates how the relationship (7.1) arises. It also gives

a ball-park figure for the value of the atomic polarisability ↵. Consider a nucleus of

charge +q, surrounded by a spherical cloud of electrons of radius a. We’ll take this

cloud to have uniform charge density. If we just focus on the electron cloud for now, the

electric field it produces was computed in Section 2: it rises linearly inside the cloud,

before dropping o↵ as 1/r2 outside the cloud. Here we’re interested in the linearly

increasing behaviour inside

Ecloud =
1

4⇡✏0

qr

a3
r̂ (r < a) (7.2)

In the absence of an external field, the nucleus feels the field due to the cloud and sits

at r = 0. Now apply an external electric field E. The nucleus will be displaced to sit

at a point where E+ Ecloud = 0. In other words, it will be displaced by

r =
4⇡✏0a3

q
E ) p = qr = 4⇡✏0a

3 E

This gives the simple expression ↵ = 4⇡✏0a3. This isn’t too far o↵ the experimentally

measured values. For example, for hydrogen ↵/4⇡✏0 ⇡ 0.7⇥ 10�30 m3 which, from the

above formula, suggests that the size of the cloud is around a ⇠ 10�10 m.

7.1.1 Polarisation

We’ve learnt that applying an electric field to a material causes each atom to pick up

a dipole moment. We say that the material is polarised. The polarisation P is defined
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to be the average dipole moment per unit volume. If n is the density of atoms, each

with dipole moment p, then we can write

P = np (7.3)

We’ve actually dodged a bullet in writing this simple equation and evaded a subtle, but

important, point. Let me try to explain. Viewed as a function of spatial position, the

dipole moment p(r) is ridiculously complicated, varying wildly on distances comparable

to the atomic scale. We really couldn’t care less about any of this. We just want the

average dipole moment, and that’s what the equation above captures. But we do care

if the average dipole moment varies over large, macroscopic distances. For example, the

density n may be larger in some parts of the solid than others. And, as we’ll see, this

is going to give important, physical e↵ects. This means that we don’t want to take the

average of p(r) over the whole solid since this would wash out all variations. Instead,

we just want to average over small distances, blurring out any atomic messiness, but

still allowing P to depend on r over large scales. The equation P = np is supposed to

be shorthand for all of this. Needless to say, we could do a better job of defining P if

forced to, but it won’t be necessary in what follows.

The polarisation of neutral atoms is not the only way that materials can become

polarised. One simple example is water. Each H2O molecule already carries a dipole

moment. (The oxygen atom carries a net negative charge, with each hydrogen carrying

a positive charge). However, usually these molecules are jumbled up in water, each

pointing in a di↵erent direction so that the dipole moments cancel out and the polari-

sation is P = 0. This changes if we apply an electric field. Now the dipoles all want to

align with the electric field, again leading to a polarisation.

In general, the polarisation P can be a complicated function of the electric field E.

However, most materials it turns out that P is proportional to E. Such materials are

called linear dielectrics. They have

P = ✏0�eE (7.4)

where �e is called the electric susceptibility. It is always positive: �e > 0. Our simple

minded computation of atomic polarisability above gave such a linear relationship, with

✏0�e = n↵.

The reason why most materials are linear dielectrics follows from some simple di-

mensional analysis. Any function that has P(E = 0) = 0 can be Taylor expanded as a

linear term + quadratic + cubic and so on. For suitably small electric fields, the linear
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term always dominates. But how small is small? To determine when the quadratic

and higher order terms become important, we need to know the relevant scale in the

problem. For us, this is the scale of electric fields inside the atom. But these are huge.

In most situations, the applied electric field leading to the polarisation is a tiny per-

turbation and the linear term dominates. Nonetheless, from this discussion it should

be clear that we do expect the linearity to fail for suitably high electric fields.

There are other exceptions to linear dielectrics. Perhaps the most striking exception

are materials for which P 6= 0 even in the absence of an electric field. Such materials

– which are not particularly common – are called ferroelectric. For what it’s worth, an

example is BaTiO3.

Bound Charge

Whatever the cause, when a material is po-
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Figure 61: A polarised material

larised there will be regions in which there is a

build up of electric charge. This is called bound

charge to emphasise the fact that it’s not allowed

to move and is arising from polarisation e↵ects.

Let’s illustrate this with a simple example before

we describe the general case. Let’s go back to our

lattice of neutral atoms. As we’ve seen, in the pres-

ence of an electric field they become polarised, as

shown in the figure. However, as long as the polarisation is uniform, so P is constant,

there is no net charge in the middle of the material: averaged over many atoms, the

total charge remains the same. The only place that there is a net build up of charge

is on the surface. In contrast, if P(r) is not constant, there will also be regions in the

middle that have excess electric charge.

To describe this, recall that the electric potential due to each dipole p is

�(r) =
1

4⇡✏0

p · r

r3

(We computed this in Section 2). Integrating over all these dipoles, we can write the

potential in terms of the polarisation,

�(r) =
1

4⇡✏0

Z

V

d3r0
P(r0) · (r� r0)

|r� r0|3
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We then have the following manipulations.,

�(r) =
1

4⇡✏0

Z

V

d3r0 P(r0) ·r0
✓

1

|r� r0|

◆

=
1

4⇡✏0

Z

S

dS ·
P(r0)

|r� r0|
�

1

4⇡✏0

Z

V

d3r0
r

0
·P(r0)

|r� r0|

where S is the boundary of V . But both of these terms have a very natural interpre-

tation. The first is the kind of potential that we would get from a surface charge,

�bound = P · n̂

where n̂ is the normal to the surface S. The second term is the kind of potential that

we would get from a charge density of the form,

⇢bound(r) = �r ·P(r) (7.5)

This matches our intuition above. If the polarisation P is constant then we only find

a surface charge. But if P varies throughout the material then this can lead to non-

vanishing charge density sitting inside the material.

7.1.2 Electric Displacement

We learned in our first course that the electric field obeys Gauss’ law

r · E =
⇢

✏0

This is a fundamental law of Nature. It doesn’t change just because we’re inside a

material. But, from our discussion above, we see that there’s a natural way to separate

the electric charge into two di↵erent types. There is the bound charge ⇢bound that

arises due to polarisation. And then there is anything else. This could be some electric

impurities that are stuck in the dielectric, or it could be charge that is free to move

because our insulator wasn’t quite as good an insulator as we originally assumed. The

only important thing is that this other charge does not arise due to polarisation. We

call this extra charge free charge, ⇢free. Gauss’ law reads

r · E =
1

✏0
(⇢free + ⇢bound)

=
1

✏0
(⇢free �r ·P)

We define the electric displacement,

D = ✏0E+P (7.6)
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This obeys

r ·D = ⇢free (7.7)

That’s quite nice. Gauss’ law for the displacement involves only the free charge; any

bound charge arising from polarisation has been absorbed into the definition of D.

For linear dielectrics, the polarisation is given by (7.4) and the displacement is pro-

portional to the electric field. We write

D = ✏E

where ✏ = ✏0(1+�e) is the called the permittivity of the material. We see that, for linear

dielectrics, things are rather simple: all we have to do is replace ✏0 with ✏ everywhere.

Because ✏ > ✏0, it means that the electric field will be decreased. We say that it is

screened by the bound charge. The amount by which the electric field is reduced is

given by the dimensionless relative permittivity or dielectric constant,

✏r =
✏

✏0
= 1 + �e

For gases, ✏r is very close to 1. (It di↵ers at one part in 10�3 or less). For water,

✏r ⇡ 80.

An Example: A Dielectric Sphere

As a simple example, consider a sphere of dielectric material of radius R. We’ll place

a charge Q at the centre. This gives rise to an electric field which polarises the sphere

and creates bound charge. We want to understand the resulting electric field E and

electric displacement D.

The modified Gauss’ law (7.7) allows us to easily compute D using the same kind of

methods that we used in Section 2. We have

D =
Q

4⇡r2
r̂ (r < R)

where the condition r < R means that this holds inside the dielectric. The electric field

is then given by

E =
Q

4⇡✏r2
r̂ =

Q/✏r
4⇡✏0r2

r̂ (r < R) (7.8)
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This is what we’d expect from a charge Q/✏r placed at the

Figure 62: A polarised ma-

terial

origin. The interpretation of this is that there is the bound

charge gathers at the origin, screening the original charge

Q. This bound charge is shown as the yellow ring in the

figure surrounding the original charge in red. The amount

of bound charge is simply the di↵erence

Qbound =
Q

✏r
�Q =

1� ✏r
✏r

Q = �
�e

✏r
Q

This bound charge came from the polarisation of the sphere.

But the sphere is a neutral object which means that total

charge on it has to be zero. To accomplish this, there must

be an equal, but opposite, charge on the surface of the sphere. This is shown as the

red rim in the figure. This surface charge is given by

4⇡R2�bound = �Qbound =
✏r � 1

✏r
Q

We know from our first course that such a surface charge will lead to a discontinuity

in the electric field. And that’s exactly what happens. Inside the sphere, the electric

field is given by (7.8). Meanwhile outside the sphere, Gauss’ law knows nothing about

the intricacies of polarisation and we get the usual electric field due to a charge Q,

E =
Q

4⇡✏0r2
r̂ (r > R)

At the surface r = R there is a discontinuity,

E · r̂|+ � E · r̂|� =
Q

4⇡✏0R2
�

Q

4⇡✏R2
=
�bound
✏0

which is precisely the expected discontinuity due to surface charge.

7.2 Magnetic Fields in Matter

Electric fields are created by charges; magnetic fields are created by currents. We

learned in our first course that the simplest way to characterise any localised current

distribution is through a magnetic dipole moment m. For example, a current I moving

in a planar loop of area A with normal n̂ has magnetic dipole moment,

m = IAn̂

The resulting long-distance gauge field and magnetic field are

A(r) =
µ0

4⇡

m⇥ r

r3
) B(r) =

µ0

4⇡

✓
3(m · r̂)r̂�m

r3

◆
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The basic idea of this section is that current loops, and their associated dipole moments,

already exist inside materials. They arise through two mechanisms:

• Electrons orbiting the nucleus carry angular momentum and act as magnetic

dipole moments.

• Electrons carry an intrinsic spin. This is purely a quantum mechanical e↵ect.

This too contributes to the magnetic dipole moment.

In the last section, we defined the polarisation P to be the average dipole moment per

unit volume. In analogy, we define the magnetisation M to be the average magnetic

dipole moment per unit volume. Just as in the polarisation case, here “average” means

averaging over atomic distances, but keeping any macroscopic variations of the polari-

sation M(r). It’s annoyingly di�cult to come up with simple yet concise notation for

this. I’ll choose to write,

M(r) = nhm(r)i

where n is the density of magnetic dipoles (which can, in principle, also depend on

position) and the notation h·i means averaging over atomic distance scales. In most

(but not all) materials, if there is no applied magnetic field then the di↵erent atomic

dipoles all point in random directions. This means that, after averaging, hmi = 0

when B = 0. However, when a magnetic field is applied, the dipoles line up. The

magnetisation typically takes the form M / B. We’re going to use a slightly strange

notation for the proportionality constant. (It’s historical but, as we’ll see, it turns out

to simplify a later equation)

M =
1

µ0

�m

1 + �m
B (7.9)

where �m is the magnetic susceptibility. The magnetic properties of materials fall into

three di↵erent categories. The first two are dictated by the sign of �m:

• Diamagnetism: �1 < �m < 0. The magnetisation of diamagnetic materials

points in the opposite direction to the applied magnetic field. Most metals are

diamagnetic, including copper and gold. Most non-metallic materials are also

diamagnetic including, importantly, water with �m ⇡ �10�5. This means, fa-

mously, that frogs are also diamagnetic. Superconductors can be thought of as

“perfect” diamagnets with �m = �1.

• Paramagnetism: �m > 0. In paramagnets, the magnetisation points in the same

direction as the field. There are a number of paramagnetic metals, including

Tungsten, Cesium and Aluminium.
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We see that the situation is already richer than what we saw in the previous section.

There, the polarisation takes the form P = ✏0�eE with �e > 0. In contrast, �m can

have either sign. On top of this, there is another important class of material that don’t

obey (7.9). These are ferromagnets:

• Ferromagnetism: M 6= 0 when B = 0. Materials with this property are what you

usually call “magnets”. They’re the things stuck to your fridge. The direction of

B is from the south pole to the north. Only a few elements are ferromagnetic.

The most familiar is Iron. Nickel and Cobalt are other examples.

In this course, we won’t describe the microscopic e↵ects that cause these di↵erent mag-

netic properties. They all involve quantum mechanics. (Indeed, the Bohr-van Leeuwen

theorem says magnetism can’t happen in a classical world — see the lecture notes on

Classical Dynamics). A number of mechanisms for paramagetism and diamagnetism

in metals are described in the lecture notes on Statistical Physics.

7.2.1 Bound Currents

In the previous section, we saw that when a material is polarised, it results in bound

charge. There is a similar story here. When a material becomes magnetised (at least in

an anisotropic way), there will necessarily be regions in which there is a current. This

is called the bound current.

Let’s first give an intuitive picture for where these bound currents appear from.

Consider a bunch of equal magnetic dipoles arranged uniformly on a plane like this:

M

bound
K

The currents in the interior region cancel out and we’re left only with a surface current

around the edge. In Section 3, we denoted a surface current as K. We’ll follow this

notation and call the surface current arising from a constant, internal magnetisation

Kbound.

Now consider instead a situation where the dipoles are arranged on a plane, but have

di↵erent sizes. We’ll put the big ones to the left and the small ones to the right, like
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this:

Jbound

M

bound
K

In this case, the currents in the interior no longer cancel. As we can see from the

picture, they go into the page. Since M is out of the page, and we’ve arranged things

so that M varies from left to right, this suggests that Jbound ⇠ r⇥M.

Let’s now put some equations on this intuition. We know that the gauge potential

due to a magnetic dipole is

A(r) =
µ0

4⇡

m⇥ r

r3

Integrating over all dipoles, and doing the same kinds of manipulations that we saw for

the polarisations, we have

A(r) =
µ0

4⇡

Z

V

d3r0
M(r0)⇥ (r� r0)

|r� r0|3

=
µ0

4⇡

Z

V

d3r0 M(r0)⇥r
0
✓

1

|r� r0|

◆

= �
µ0

4⇡

Z

S

dS0
⇥

M(r0)

|r� r0|
+

µ0

4⇡

Z

V

d3r0
r⇥M(r0)

|r� r0|

Again, both of these terms have natural interpretation. The first can be thought of as

due to a surface current

Kbound = M⇥ n̂

where n̂ is normal to the surface. The second term is the bound current in the bulk

of the material. We can compare its form to the general expression for the Biot-Savart

law that we derived in Section 3,

A(r) =
µ0

4⇡

Z
d3r0

J(r0)

|r� r0|

We see that the bound current is given by

Jbound = r⇥M (7.10)

as expected from our intuitive description above. Note that the bound current is a

steady current, in the sense that it obeys r · Jbound = 0.
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7.2.2 Ampère’s Law Revisited

Recall that Ampère’s law describes the magnetic field generated by static currents.

We’ve now learned that, in a material, there can be two contributions to a current:

the bound current Jbound that we’ve discussed above, and the current Jfree from freely

flowing electrons that we were implicitly talking. In Section 3, we were implicitly

talking about Jfree when we discussed currents. Ampère’s law does not distinguish

between these two currents; the magnetic field receives contributions from both.

r⇥B = µ0(Jfree + Jbound)

= µ0Jfree + µ0r⇥M

We define the magnetising field, H as

H =
1

µ0
B�M (7.11)

This obeys

r⇥H = Jfree (7.12)

We see that the field H plays a similar role to the electric displacement D; the e↵ect of

the bound currents have been absorbed intoH, so that only the free currents contribute.

Note, however, that we can’t quite forget about B entirely, since it obeys r · B = 0.

In contrast, we don’t necessarily have “r ·H = 0”. Rather annoyingly, in a number of

books H is called the magnetic field and B is called the magnetic induction. But this

is stupid terminology so we won’t use it.

For diamagnets or paramagnets, the magnetisation is linear in the applied magnetic

field B and we can write

B = µH

A little algebra shows that µ = µ0(1 + �m). It is called the permeability. For most

materials, µ di↵ers from µ0 only by 1 part in 105 or so. Finally, note that the somewhat

strange definition (7.9) leaves us with the more sensible relationship between M and

H,

M = �mH
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7.3 Macroscopic Maxwell Equations

We’ve seen that the presence of bound charge and bound currents in matter can be

absorbed into the definitions of D and H. This allowed us to present versions of Gauss’

law (7.7) and Ampère’s law (7.12) which feature only the free charges and free currents.

These equations hold for electrostatic and magnetostatic situations respectively. In this

section we explain how to reformulate Maxwell’s equations in matter in more general,

time dependent, situations.

Famously, when fields depend on time there is an extra term required in Ampère’s

law. However, there is also an extra term in the expression (7.10) for the bound

current. This arises because the bound charge, ⇢bound, no longer sits still. It moves.

But although it moves, it must still be locally conserved which means that it should

satisfy a continuity equation

r · Jbound = �
@⇢bound
@t

From our earlier analysis (7.5), we can express the bound charge in terms of the polar-

isation: ⇢bound = �r ·P. Including both this contribution and the contribution (7.10)

from the magnetisation, we have the more general expression for the bound current

Jbound = r⇥M+
@P

@t
Let’s see how we can package the Maxwell equation using this notation. We’re inter-

ested in the extension to Ampère’s law which reads

r⇥B�
1

c2
@E

@t
= µ0Jfree + µ0Jbound

= µ0Jfree + µ0r⇥M+ µ0
@P

@t

As before, we can use the definition of H in (7.11) to absorb the magnetisation term.

But we can also use the definition of D to absorb the polarisation term. We’re left

with the Maxwell equation

r⇥H�
@D

@t
= Jfree

The Macroscopic Maxwell Equations

Let’s gather together everything we’ve learned. Inside matter, the four Maxwell equa-

tions become

r ·D = ⇢free and r⇥H�
@D

@t
= Jfree

r ·B = 0 and r⇥ E = �
@B

@t
(7.13)
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There are the macroscopic Maxwell equations. Note that half of them are written in

terms of the original E and B while the other half are written in terms of D and H.

Before we solve them, we need to know the relationships between these quantities. In

the simplest, linear materials, this can be written as

D = ✏E and B = µH

Doesn’t all this look simple! The atomic mess that accompanies most materials can

simply be absorbed into two constants, the permittivity ✏ and the permeability µ. Be

warned, however: things are not always as simple as they seem. In particular, we’ll see

in Section 7.5 that the permittivity ✏ is not as constant as we’re pretending.

7.3.1 A First Look at Waves in Matter

We saw earlier how the Maxwell equations give rise to propagating waves, travelling

with speed c. We call these waves “light”. Much of our interest in this section will be on

what becomes of these waves when we work with the macroscopic Maxwell equations.

What happens when they bounce o↵ di↵erent materials? What really happens when

they propagate through materials?

Let’s start by looking at the basics. In the absence of any free charge or currents,

the macroscopic Maxwell equations (7.13) become

r ·D = 0 and r⇥H =
@D

@t

r ·B = 0 and r⇥ E = �
@B

@t
(7.14)

which should be viewed together with the relationships D = ✏E and B = µH. But

these are of exactly the same form as the Maxwell equations in vacuum. Which means

that, at first glance, the propagation of waves through a medium works just like in

vacuum. All we have to do is replace ✏0 ! ✏ and µ0 ! µ. By the same sort of

manipulations that we used in Section 4.3, we can derive the wave equations

1

v2
@2E

@t2
�r

2E = 0 and
1

v2
@2H

@t2
�r

2H = 0

The only di↵erence from what we saw before is that the speed of propagation is now

given by

v2 =
1

✏µ
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This is less than the speed in vacuum: v2  c2. It’s common to define the index of

refraction, n, as

n =
c

v
� 1 (7.15)

In most materials, µ ⇡ µ0. In this case, the index of refraction is given in terms of the

dielectric constant as

n ⇡
p
✏r

The monochromatic, plane wave solutions to the macroscopic wave equations take the

familiar form

E = E0 e
i(k·x+!t) and B = B0 e

i(k·x+!t)

where the dispersion relation is now given by

!2 = v2k2

The polarisation vectors must obey E0 · k = B0 · k = 0 and

B0 =
k̂⇥ E0

v

Boundary Conditions

In what follows, we’re going to spend a lot of time bouncing waves o↵ various surfaces.

We’ll typically consider an interface between two dielectric materials with di↵erent

permittivities, ✏1 and ✏2. In this situation, we need to know how to patch together the

fields on either side.

Let’s first recall the boundary conditions that we derived in Sections 2 and 3. In

the presence of surface charge, the electric field normal to the surface is discontinuous,

while the electric field tangent to the surface is continuous. For magnetic fields, it’s the

other way around: in the presence of a surface current, the magnetic field normal to the

surface is continuous while the magnetic field tangent to the surface is discontinuous.

What happens with dielectrics? Now we have two options of the electric field, E and

D, and two options for the magnetic field, B and H. They can’t both be continuous

because they’re related by D = ✏E and B = µH and we’ll be interested in situation

where ✏ (and possibly µ) are di↵erent on either side. Nonetheless, we can use the

same kind of computations that we saw previously to derive the boundary conditions.

Roughly, we get one boundary condition from each of the Maxwell equations.
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Figure 63: The normal component of the

electric field is discontinuous

Figure 64: The tangential component of

the electric field is continuous.

For example, consider the Gaussian pillbox shown in the left-hand figure above.

Integrating the Maxwell equation r ·D = ⇢free tells us that the normal component of

D is discontinuous in the presence of surface charge,

n̂ · (D2 �D1) = � (7.16)

where n̂ is the normal component pointing from 1 into 2. Here � refers only to the free

surface charge. It does not include any bound charges. Similarly, integrating r ·B = 0

over the same Gaussian pillbox tells us that the normal component of the magnetic

field is continuous,

n̂ · (B2 �B1) = 0 (7.17)

To determine the tangential components, we integrate the appropriate field around the

loop shown in the right-hand figure above. By Stoke’s theorem, this is going to be

equal to the integral of the curl of the field over the bounding surface. This tells us

what the appropriate field is: it’s whatever appears in the Maxwell equations with a

curl. So if we integrate E around the loop, we get the result

n̂⇥ (E2 � E1) = 0 (7.18)

Meanwhile, integrating H around the loop tells us the discontinuity condition for the

magnetic field

n̂⇥ (H2 �H1) = K (7.19)

where K is the surface current.

7.4 Reflection and Refraction

We’re now going to shine light on something and watch how it bounces o↵. We did

something very similar in Section 4.3, where the light reflected o↵ a conductor. Here,

we’re going to shine the light from one dielectric material into another. These two

materials will be characterised by the parameters ✏1, µ1 and ✏2, µ2. We’ll place the

interface at x = 0, with “region one” to the left and “region two” to the right.
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Figure 65: Incident, reflected and transmitted waves in a dielectric interface.

We send in an incident wave from region one towards the interface with a frequency

!I and wavevector kI ,

Einc = EI e
i(kI ·x�!I t)

where

kI = kI cos ✓I x̂+ kI sin ✓I ẑ

When the wave hits the interface, two things can happen. It can be reflected, or it can

pass through to the other region. In fact, in general, both of these things will happen.

The reflected wave takes the general form,

Eref = ER ei(kR·x�!Rt)

where we’ve allowed for the possibility that the amplitude, frequency, wavevector and

polarisation all may change. We will write the reflected wavevector as

kR = �kR cos ✓R x̂+ kR sin ✓R ẑ

Meanwhile, the part of the wave that passes through the interface and into the second

region is the transmitted wave which takes the form,

Etrans = ET ei(kT ·x�!T t)

with

kT = kT cos ✓T x̂+ kT sin ✓T ẑ (7.20)
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Again, we’ve allowed for the possibility that all the di↵erent properties of the wave

could di↵er from the incoming wave. The electric field then takes the general form,

E =

(
Einc + Eref x < 0

Etrans x > 0

All of this is summarised in the figure.

We want to impose the matching conditions (7.16), (7.18), (7.19) and (7.17), with

no surface charges and no surface currents. To start, we need the phase factors to be

equal for all time. This means that we must have

!I = !R = !T (7.21)

and

kI · x = kR · x = kT · x at x = 0 (7.22)

This latter condition tells us that all of the wavevectors lie in the (x, z)-plane because

kI originally lay in this plane. It further imposes the equality of the ẑ components of

the wavevectors:

kI sin ✓I = kR sin ✓R = kT sin ✓T (7.23)

But, in each region, the frequency and wavenumbers are related, through the dispersion

relation, to the speed of the wave. In region 1, we have !I = v1kI and !R = v1kR which,

using (7.21) and (7.23), tells us that

✓I = ✓R

This is the familiar law of reflection.

Meanwhile, in region 2 we have !T = v2kT . Now (7.21) and (7.23) tell us that

sin ✓I
v1

=
sin ✓T
v2

In terms of the refractive index n = c/v, this reads

n1 sin ✓I = n2 sin ✓T (7.24)

This is the law of refraction, known as Snell’s law.
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Figure 66: Incident, reflected and transmitted waves with normal polarisation.

7.4.1 Fresnel Equations

There’s more information to be extracted from this calculation: we can look at the

amplitudes of the reflected and transmitted waves. As we now show, this depends on

the polarisation of the incident wave. There are two cases:

Normal Polarisation:

When the direction of EI = EI ŷ is normal to the (x, z)-plane of incidence, it’s simple

to check that the electric polarisation of the other waves must lie in the same direction:

ER = ET ŷ and ET = ET ŷ. This situation, shown in Figure 66, is sometimes referred

to as s-polarised (because the German word for normal begins with s).

The matching condition (7.18) requires

EI + ER = ET

Meanwhile, as we saw in (7.16), the magnetic fields are given by B = (k̂⇥ E)/v. The

matching condition (7.19) then tells us that

BI cos ✓I � BR cos ✓R = BT cos ✓T )
EI � ER

v1
cos ✓I =

ET

v2
cos ✓T

With a little algebra, we can massage these conditions into the expressions,

ER

EI
=

n1 cos ✓I � n2 cos ✓T
n1 cos ✓I + n2 cos ✓T

and
ET

EI
=

2n1 cos ✓I
n1 cos ✓I + n2 cos ✓T

(7.25)

These are the Fresnel equations for normal polarised light. We can then use Snell’s law

(7.24) to get the amplitudes in terms of the refractive indices and the incident angle

✓I .
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Figure 67: The reflected field with nor-

mal polarisation

Figure 68: The transmitted field with

normal polarisation

The most common example is if region 1 contains only air, with n1 ⇡ 1, and region

2 consists of some transparent material. (For example, glass which has n2 ⇡ 1.5). The

normalised reflected and transmitted fields are plotted in the figures above for n1 = 1

and n2 = 2, with ✓I plotted in degrees along the horizontal axis). Note that the vertical

axes are di↵erent; negative for the reflected wave, positive for the transmitted wave. In

particular, when ✓ = 90�, the whole wave is reflected and nothing is transmitted.

Parallel Polarisation:

The case in which the electric field lies lies within the (x, z)-plane of incidence is

sometimes referred to as p-polarised (because the English word for parallel begins with

p). It is shown in Figure 69. Of course, we still require EI · k = 0, which means that

EI = �EI sin ✓I x̂+ EI cos ✓I ẑ

with similar expressions for ER and ET . The magnetic field now lies in the±ŷ direction.

The matching condition (7.18) equates the components of the electric field tangential

to the surface. This means

EI cos ✓I + ER cos ✓R = ET cos ✓T

while the matching condition (7.19) for the components of magnetic field tangent to

the surface gives

BI � BR = BT )
EI � ER

v1
=

ET

v2

where the minus sign for BR can be traced to the fact that the direction of the B field

(relative to k) points in the opposite direction after a reflection. These two conditions

can be written as

ER

EI
=

n1 cos ✓T � n2 cos ✓I
n1 cos ✓T + n2 cos ✓I

and
ET

EI
=

2n1 cos ✓I
n1 cos ✓T + n2 cos ✓I

(7.26)
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Figure 69: Incident, reflected and transmitted waves with parallel polarisation.

These are the Fresnel equations for parallel polarised light. Note that when the incident

wave is normal to the surface, so both ✓I = ✓T = 0, the amplitudes for the normal (7.25)

and parallel (7.26) polarisations coincide. But in general, they are di↵erent.

We can again plot the reflected and transmitted amplitudes in the case n1 = 1 and

n2 = 2, shown in the figure.

Brewster’s Angle

We can see from the left-hand figure that something interesting happens in the case of

parallel polarisation. There is an angle for which there is no reflected wave. Everything

gets transmitted. This is called the Brewster Angle, ✓B. It occurs when n1 cos ✓T =

n2 cos ✓I . Of course, we also need to obey Snell’s law (7.24). These two conditions are

only satisfied when ✓I + ✓T = ⇡/2. The Brewster angle is given by

tan ✓B =
n2

n1

For the transmission of waves from air to glass, ✓B ⇡ 56�.

Brewster’s angle gives a simple way to create polarised light: shine unpolarised light

on a dielectric at angle ✓B and the only thing that bounces back has normal polarisation.

This is the way sunglasses work to block out polarised light from the Sun. It is also

the way polarising filters work.

7.4.2 Total Internal Reflection

Let’s return to Snell’s law (7.24) that tells us the angle of refraction,

sin ✓T =
n1

n2
sin ✓I
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Figure 70: The reflected field with par-

allel polarisation

Figure 71: The transmitted field with

parallel polarisation

But there’s a problem with this equation: if n2 > n1 then the right-hand side can be

greater that one, in which case there are no solutions. This happens at the critical

angle of incidence, ✓C , defined by

sin ✓C =
n2

n1

For example, if light is moving from glass, into air, then ✓C ⇡ 42�. At this angle,

and beyond, there is no transmitted wave. Everything is reflected. This is called total

internal reflection. It’s what makes diamonds sparkle and makes optical fibres to work.

Here our interest is not in jewellery, but rather in a theoretical puzzle about how

total internal reflection can be consistent. After all, we’ve computed the amplitude of

the transmitted electric field in (7.25) and (7.26) and it’s simple to check that it doesn’t

vanish when ✓I = ✓C . What’s going on?

The answer lies back in our expression for the transmitted wavevector kT which

we decomposed in (7.20) using geometry. The matching condition (7.22) tells us that

kT · ŷ = 0 and

kT · ẑ = kI · ẑ =
!I

v1
sin ✓I

But, from the matching of frequencies (7.21), we know that !I = !T ⌘ !. We also

know that the magnitude of the transmitted wavevector is given by |kT |
2 = !2/v22. But

this means that the component of the wavevector in the x̂ direction of propagation

must be

kT · x̂ = ±

p
|kT |

2 � (kT · ẑ)2 = ±
!

v2

s

1�
v22 sin

2 ✓I
v21

= ±
!

v2

s

1�
n2
1 sin

2 ✓I
n2
2
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We see that when n1 sin ✓I/n2 > 1, the x̂ component of the wavevector is imaginary!

We’ll write kT · x̂ = ±i!↵/v2. An imaginary wavevector sounds strange, but it’s very

simple to interpret: we simply substitute it into our wave solution to find

Etrans = ET e(ikT ·ẑ�!t) e⌥!↵x/v2 x > 0

Picking the minus sign in the exponent gives the physically sensible solution which

decays as we move into region 2. We see that beyond the critical angle ✓C , there is no

propagating wave in region 2. Instead it is replaced by a decaying solution. This is

called an evanescent wave.

As we’ll now see, the idea that the wavevector can be imaginary is very useful in a

many other circumstances.

7.5 Dispersion

The dielectric constant ✏r = ✏/✏0 is poorly named. It is not constant. This is because,

in the presence of time-dependent electric fields, the permittivity typically depends

on the frequency: ✏ = ✏(!). In this section, we will first provide a simple model to

understand why this is the case and what form of ✏(!) we should expect. We’ll then

move on to see the consequences of this frequency dependence.

7.5.1 Atomic Polarisability Revisited

In Section 7.1, we introduced a simple model for electric polarisability. This treats the

atom as a point-like nucleus with charge q, surrounded by a cloud of electrons which

we treat as a solid ball of radius a with uniform charge density. It’s obviously a daft

model for the atom, but it will do for our purposes.

Suppose that the centre of the electron cloud is displaced by a distance r. (You can

equivalently think of the nucleus as displaced by the same distance in the opposite

direction). We previously computed the restoring force (7.2) which acts on cloud,

Fcloud = �
q2

4⇡✏0a3
r = �m!2

0r

In the final equality, we’ve introduced the mass m of the cloud and defined the quantity

!0 which we will call the resonant frequency.

In Section 7.1, we just looked at the equilibrium configuration of the electron cloud.

Here, instead, we want to subject the atom to a time-dependent electric field E(t). In

this situation, the electron cloud also feels a damping force

Fdamping = �m�ṙ (7.27)
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for some constant coe�cient �. You might find it strange to see such a friction term

occurring for an atomic system. After all, we usually learn that friction is the e↵ect

of averaging over many many atoms. The purpose of this term is to capture the fact

that the atom can lose energy, either to surrounding atoms or emitted electromagnetic

radiation. If we now apply a time dependent electric field E(t) to this atom, the

equation of motion for the displacement it

mr̈ = �qE(t)�m!2
0r+m�ṙ (7.28)

Solutions to this describe the atomic cloud oscillating about

+

E

Figure 72:

the nucleus.

The time dependent electric field will be of the wave form that

we’ve seen throughout these lectures: E = E0ei(k·r�!t). However, the

atom is tiny. In particular, it is small compared to the wavelength

of (at least) visible light, meaning ka ⌧ 1. For this reason, we can

ignore the fact that the phase oscillates in space and work with an

electric field of the form E(t) = E0e�i!t. Then (7.28) is the equation

for a forced, damped harmonic oscillator. We search for solutions to (7.28) of the form

r(t) = r0e�i!t. (In the end we will take the real part). The solution is

r0 = �
qE0

m

1

�!2 + !2
0 � i�!

This gives the atomic polarisability p = ↵E, where

↵ =
q2/m

�!2 + !2
0 � i�!

(7.29)

As promised, the polarisability depends on the frequency. Moreover, it is also complex.

This has the e↵ect that the polarisation of the atom is not in phase with the oscillating

electric field.

Because the polarisability is both frequency dependent and complex, the permittivity

✏(!) will also be both frequency dependent and complex. (In the simplest settings, they

are related by ✏(!) = ✏0 + n↵(!) where n is the density of atoms). We’ll now see the

e↵ect this has on the propagation of electromagnetic waves through materials.

7.5.2 Electromagnetic Waves Revisited

To start, we’ll consider a general form of the permittivity ✏(!) which is both frequency

dependent and complex; we’ll return to the specific form arising from the polarisability
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(7.29) later. In contrast, we will assume that the magnetic thing µ is both constant

and real, which turns out to be a good approximation for most materials. This means

that we have

D = ✏(!)E and B = µH

We’ll look for plane wave solutions, so that the electric and magnetic fields takes the

form

E(x, t) = E(!) ei(k·x�!t) and B(x, t) = B(!) ei(k·x�!t)

Maxwell’s equations in matter were given in (7.14). The first two simply tell us

r ·D = 0 ) ✏(!)k · E(!) = 0

r ·B = 0 ) k ·B(!) = 0

These are the statements that the electric and magnetic fields remain transverse to the

direction of propagation. (In fact there’s a caveat here: if ✏(!) = 0 for some frequency

!, then the electric field need not be transverse. This won’t a↵ect our discussion

here, but we will see an example of this when we turn to conductors in Section 7.6).

Meanwhile, the other two equations are

r⇥H =
@D

@t
) k⇥B(!) = �µ✏(!)!E(!)

r⇥ E = �
@B

@t
) k⇥ E(!) = !B(!) (7.30)

We do the same manipulation that we’ve seen before: look at k⇥ (k⇥E) and use the

fact that k · E = 0. This gives us the dispersion relation

k · k = µ✏(!)!2 (7.31)

We need to understand what this equation is telling us. In particular, ✏(!) is typically

complex. This, in turn, means that the wavevector k will also be complex. To be

specific, we’ll look at waves propagating in the z-direction and write k = kẑ. We’ll

write the real and imaginary parts as

✏(!) = ✏1(!) + i✏2(!) and k = k1 + ik2

Then the dispersion relation reads

k1 + ik2 = !
p
µ
p
✏1 + i✏2 (7.32)
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and the electric field takes the form

E(x, t) = E(!) e�k2z ei(k1z�!t) (7.33)

We now see the consequence of the imaginary part of ✏(!); it causes the amplitude of

the wave to decay as it extends in the z-direction. This is also called attenuation. The

real part, k1, determines the oscillating part of the wave. The fact that ✏ depends on

! means that waves of di↵erent frequencies travel with di↵erent speeds. We’ll discuss

shortly the ways of characterising these speeds.

The magnetic field is

B(!) =
k

!
ẑ⇥ E(!) =

|k|ei�

!
ẑ⇥ E(!)

where � = tan�1(k2/k1) is the phase of the complex wavenumber k. This is the second

consequence of a complex permittivity ✏(!); it results in the electric and magnetic fields

oscillating out of phase. The profile of the magnetic field is

B(x, t) =
|k|

!
(ẑ⇥ E(!)) e�k2z ei(k1z�!t+�) (7.34)

As always, the physical fields are simply the real parts of (7.33) and (7.34), namely

E(x, t) = E(!) e�k2z cos(k1z � !t)

B(x, t) =
|k|

!
(ẑ⇥ E(!)) e�k2z cos(k1z � !t+ �)

To recap: the imaginary part of ✏ means that k2 6= 0. This has two e↵ects: it leads to

the damping of the fields, and to the phase shift between E and B.

Measures of Velocity

The other new feature of ✏(!) is that it depends on the frequency !. The dispersion

relation (7.31) then immediately tells us that waves of di↵erent frequencies travel at

di↵erent speeds. There are two, useful characterisations of these speeds. The phase

velocity is defined as

vp =
!

k1

As we can see from (7.33) and (7.34), a wave of a fixed frequency ! propagates with

phase velocity vp(!).
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Waves of di↵erent frequency will travel with di↵erent phase velocities vp. This means

that for wave pulses, which consist of many di↵erent frequencies, di↵erent parts of the

wave will travel with di↵erent speeds. This will typically result in a change of shape of

the pulse as it moves along. We’d like to find a way to characterise the speed of the

whole pulse. The usual measure is the group velocity, defined as

vg =
d!

dk1

where we’ve inverted (7.31) so that we’re now viewing frequency as a function of (real)

wavenumber: !(k1).

To see why the group velocity is a good measure of the speed, let’s build a pulse by

superposing lots of waves of di↵erent frequencies. To make life simple, we’ll briefly set

✏2 = 0 and k1 = k for now so that we don’t have to think about damping e↵ects. Then,

focussing on the electric field, we can build a pulse by writing

E(x, t) =

Z
dk

2⇡
E(k)ei(kz�!t)

Suppose that our choice of wavepacket E(k) is heavily peaked around some fixed

wavenumber k0. Then we can expand the exponent as

kz � !(k)t ⇡ kz � !(k0)t�
d!

dk

����
k0

(k � k0)t

= �[!(k0) + vg(k0)]t+ k[z � vg(k0)t]

The first term is just a constant oscillation in time; the second, k-dependent term is

the one of interest. It tells us that the peak of the wave pulse is moving to the right

with approximate speed vg(k0).

Following (7.15), we also define the index of refraction

n(!) =
c

vp(!)

This allows us to write a relation between the group and phase velocities:

1

vg
=

dk1
d!

=
d

d!

⇣n!
c

⌘
=

1

vp
+
!

c

dn

!

Materials with dn/d! > 0 have vg < vp; this is called normal dispersion. Materials

with dn/d! < 0 have vg > vp; this is called anomalous dispersion.
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Figure 73: The real part of the permit-

tivity, ✏1 � ✏0

Figure 74: The imaginary part of the

permittivity, ✏2

7.5.3 A Model for Dispersion

Let’s see how this story works for our simple model of atomic polarisability ↵(!) given

in (7.29). The permittivity is ✏(!) = ✏0 + n↵(!) where n is the density of atoms. The

real and imaginary parts ✏ = ✏1 + i✏2 are

✏1 = ✏0 �
nq2

m

!2
� !2

0

(!2 � !2
0)

2 + �2!2

✏2 =
nq2

m

�!

(!2 � !2
0)

2 + �2!2

These functions look like this: (These particular plots are made with � = 1 and !0 = 2

and nq2/m = 1).

The real part is an even function: it has a maximum at ! = !0 � �/2 and a minimum

at ! = !0+�/2, each o↵set from the resonant frequency by an amount proportional to

the damping �. The imaginary part is an odd function; it has a maximum at ! = !0,

the resonant frequency of the atom. The width of the imaginary part is roughly �/2.

A quantity that will prove important later is the plasma frequency, !p. This is defined

as

!2
p =

nq2

m✏0
(7.35)

We’ll see the relevance of this quantity in Section 7.6. But for now it will simply be a

useful combination that appears in some formulae below.

The dispersion relation (7.32) tells us

k2
1 � k2

2 + 2ik1k2 = !2µ(✏1 + i✏2)
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Equating real and imaginary parts, we have

k1 = ±!
p
µ

✓
1

2

q
✏21 + ✏22 +

1

2
✏1

◆1/2

k2 = ±!
p
µ

✓
1

2

q
✏21 + ✏22 �

1

2
✏1

◆1/2

(7.36)

To understand how light propagates through the material, we need to look at the values

of k1 and k2 for di↵erent values of the frequency. There are three di↵erent types of

behaviour.

Transparent Propagation: Very high or very low frequencies

The most straightforward physics happens when ✏1 > 0 and ✏1 � ✏2. For our simple

model, this ocurs when ! < !0 � �/2 or when ! > !?, the value at which ✏1(!?) = 0.

Expanding to leading order, we have

k1 ⇡ ±!
p
µ✏1 and k2 ⇡ ±!

s
µ✏22
4✏1

=

✓
✏2
2✏1

◆
k1 ⌧ k1

Because k2 ⌧ k1, the damping is small. This means that the material is transparent

at these frequencies.

There’s more to this story. For the low frequencies, ✏1 > ✏0 + nq2/m!2
0. This is the

same kind of situation that we dealt with in Section 7.3. The phase velocity vp < c in

this regime. For high frequencies, however, ✏1 < ✏0; in fact, ✏1(!) ! ✏0 from below as

! ! 1. This means that vp > c in this region. This is nothing to be scared of! The

plane wave is already spread throughout space; it’s not communicating any information

faster than light. Instead, pulses propagate at the group velocity, vg. This is less than

the speed of light, vg < c, in both high and low frequency regimes.

Resonant Absorption: ! ⇡ !0

Resonant absorption occurs when ✏2 � |✏1|. In our model, this phenomenon is most

pronounced when !0 � � so that the resonant peak of ✏2 is sharp. Then for frequencies

close to the resonance, ! ⇡ !0 ± �/2, we have

✏1 ⇡ ✏0 and ✏2 ⇡
nq2

m

1

!0�
= ✏0

✓
!p

!0

◆2 !0

�
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We see that we meet the requirement for resonant absorption if we also have !p & !0.

When ✏2 � |✏1|, we can expand (7.36) to find

k1 ⇡ k2 ⇡ ±!

r
µ✏2
2

The fact that k2 ⇡ k1 means that the wave decays very rapidly: it has e↵ectively

disappeared within just a few wavelengths of propagation. This is because the frequency

of the wave is tuned to coincide with the natural frequency of the atoms, which easily

become excited, absorbing energy from the wave.

Total Reflection:

The third region of interest occurs when ✏1 < 0 and |✏1| � ✏2. In our model, it is

roughly for frequencies !0 + �/2 < ! < !?. Now, the expansion of (7.36) gives

k1 ⇡ ±!
p
µ

✓
1

2
|✏1|+

1

4

✏22
|✏1|

+
1

2
✏1 + . . .

◆1/2

⇡ ±!
✏2
2

r
µ

|✏1|

and

k2 ⇡ ±!
p

µ|✏1| =
|✏1|

2✏2
k1 � k1

Now the wavenumber is almost pure imaginary. The wave doesn’t even manage to get

a few wavelengths before it decays. It’s almost all gone before it even travels a single

wavelength.

We’re not tuned to the resonant frequency, so this time the wave isn’t being absorbed

by the atoms. Instead, the applied electromagnetic field is almost entirely cancelled

out by the induced electric and magnetic fields due to polarisation.

7.5.4 Causality and the Kramers-Kronig Relation

Throughout this section, we used the relationship between the polarisation p and ap-

plied electric field E. In frequency space, this reads

p(!) = ↵(!)E(!) (7.37)

Relationships of this kind appear in many places in physics. The polarisability ↵(!) is

an example of a response function. As their name suggests, such functions tell us how

some object – in this case p – respond to a change in circumstance – in this case, the

application of an electric field.
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There is a general theory around the properties of response functions5. The most

important fact follows from causality. The basic idea is that if we start o↵ with a

vanishing electric field and turn it on only at some fixed time, t?, then the polarisation

shouldn’t respond to this until after t?. This sounds obvious. But how is it encoded in

the mathematics?

The causality properties are somewhat hidden in (7.37) because we’re thinking of

the electric field as oscillating at some fixed frequency, which implicitly means that it

oscillates for all time. If we want to turn the electric field on and o↵ in time then we

need to think about superposing fields of lots of di↵erent frequencies. This, of course,

is the essence of the Fourier transform. If we shake the electric field at lots of di↵erent

frequencies, its time dependence is given by

E(t) =

Z +1

�1

d!

2⇡
E(!) e�i!t

where, if we want E(t) to be real, we should take E(�!) = E(!)?. Conversely, for a

given time dependence of the electric field, the component at some frequency ! is given

by the inverse Fourier transform,

E(!) =

Z +1

�1
dt E(t) ei!t

Let’s now see what this tells us about the time dependence of the polarisation p. Using

(7.37), we have

p(t) =

Z +1

�1

d!

2⇡
p(!) e�i!t

=

Z +1

�1

d!

2⇡
↵(!)

Z +1

�1
dt0 E(t0) e�i!(t�t0)

=

Z +1

�1
dt0 ↵̃(t� t0)E(t0) (7.38)

where, in the final line, we’ve introduced the Fourier transform of the polarisability,

↵̃(t) =

Z +1

�1

d!

2⇡
↵(!) e�i!t (7.39)

(Note that I’ve been marginally inconsistent in my notation here. I’ve added the tilde

above ↵̃ to stress that this is the Fourier transform of ↵(!) even though I didn’t do the

same to p and E).

5
You can learn more about this in the Response Functions section of the lectures on Kinetic Theory.
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Equation (7.38) relates the time dependence of p to the time dependence of the

electric field E. It’s telling us that the e↵ect isn’t immediate; the polarisation at time

t depends on what the electric field was doing at all times t0. But now we can state the

requirement of causality: the response function must obey

↵̃(t) = 0 for t < 0

Using (7.39), we can translate this back into a statement ω

ωRe(  )

Im(  )

Figure 75:

about the response function in frequency space. When t <

0, we can perform the integral over ! by completing the

contour in the upper-half plane as shown in the figure. Along

the extra semi-circle, the exponent is �i!t ! �1 for t <

0, ensuring that this part of the integral vanishes. By the

residue theorem, the integral is just given by the sum of

residues inside the contour. If we want ↵(t) = 0 for t < 0, we need there to be no poles.

In other words, we learn that

↵(!) is analytic for Im! > 0

In contrast, ↵(!) can have poles in the lower-half imaginary plane. For example, if you

look at our expression for the polarisability in (7.29), you can see that there are two

poles at ! = �i�/2±
p
!2
0 � �2/4. Both lie in the lower-half of the complex ! plane.

The fact that ↵ is analytic in the upper-half plane means that there is a relationship

between its real and imaginary parts. This is called the Kramers-Kronig relation. Our

task in this section is to derive it. We start by providing a few general mathematical

statements about complex integrals.

A Discontinuous Function

First, consider a general function ⇢(!). We’ll ask that ⇢(!) is meromorphic, meaning

that it is analytic apart from at isolated poles. But, for now, we won’t place any

restrictions on the position of these poles. (We will shortly replace ⇢(!) by ↵(!) which,

as we’ve just seen, has no poles in the upper half plane). We can define a new function

f(!) by the integral,

f(!) =
1

i⇡

Z b

a

⇢(!0)

!0 � !
d!0 (7.40)

Here the integral is taken along the interval !0
2 [a, b] of the real line. However, when

! also lies in this interval, we have a problem because the integral diverges at !0 = !.
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To avoid this, we can simply deform the contour of the integral into the complex plane,

either running just above the singularity along !0 + i✏ or just below the singularity

along !0
� i✏. Alternatively (in fact, equivalently) we could just shift the position of

the singularity to ! ! ! ⌥ ✏. In both cases we just skim by the singularity and the

integral is well defined. The only problem is that we get di↵erent answers depending

on which way we do things. Indeed, the di↵erence between the two answers is given by

Cauchy’s residue theorem,

1

2
[f(! + i✏)� f(! � i✏)] = ⇢(!) (7.41)

The di↵erence between f(!+i✏) and f(!�i✏) means that the function f(!) is discontin-

uous across the real axis for ! 2 [a, b]. If ⇢(!) is everywhere analytic, this discontinuity

is a branch cut.

We can also define the average of the two functions either side of the discontinuity.

This is usually called the principal value, and is denoted by adding the symbol P before

the integral,

1

2
[f(! + i✏) + f(! � i✏)] ⌘

1

i⇡
P

Z b

a

⇢(!0)

!0 � !
d!0 (7.42)

We can get a better handle on the meaning of this principal part if we look at the real

and imaginary pieces of the denominator in the integrand 1/[!0
� (! ± i✏)],

1

!0 � (! ± i✏)
=

!0
� !

(!0 � !)2 + ✏2
±

i✏

(!0 � !)2 + ✏2
(7.43)

The real and imaginary parts of this function are shown in the figures.

We can isolate the real part by taking the sum of f(! + i✏) and f(! � i✏) in (7.42).

It can be thought of as a suitably cut-o↵ version of 1/(!0
� !). It’s as if we have

deleted an small segment of this function lying symmetrically about divergent point !

and replaced it with a smooth function going through zero. This is the usual definition

of the principal part of an integral.

Similarly, the imaginary part can be thought of as a regularised delta-function. As

✏! 0, it tends towards a delta function, as expected from (7.41).

Kramers-Kronig

Let’s now apply this discussion to our polarisability response function ↵(!). We’ll be

interested in the integral

1

i⇡

I

C

d!0 ↵(!
0)

!0 � !
! 2 R (7.44)
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Figure 76: The real part of the function

plotted with !0
= 1 and ✏ = 0.5.

Figure 77: The imaginary part of the

function plotted with !0
= 1 and ✏ = 0.5

where the contour C skims just above the real axis, before closing at infinity in the

upper-half plane. We’ll need to make one additional assumption: that ↵(!) falls o↵

faster than 1/|!| at infinity. If this holds, the integral is the same as we considered in

(7.40) with [a, b] ! [�1,+1]. Indeed, in the language of the previous discussion, the

integral is f(! � i✏), with ⇢ = ↵.

We apply the formulae (7.41) and (7.42). It gives

f(! � i✏) =
1

i⇡
P

Z +1

�1
d!0 ↵(!

0)

!0 � !

�
� ↵(!)

But we know the integral in (7.44) has to be zero since ↵(!) has no poles in the

upper-half plane. This means that f(! � i✏) = 0, or

↵(!) =
1

i⇡
P

Z +1

�1
d!0 ↵(!

0)

!0 � !

The important part for us is that factor of “i” sitting in the denominator. Taking real

and imaginary parts, we learn that

Re↵(!) = P

Z +1

�1

d!0

⇡

Im↵(!0)

!0 � !

and

Im↵(!) = �P

Z +1

�1

d!0

⇡

Re↵(!0)

!0 � !

These are the Kramers-Kronig relations. They follow from causality alone and tell us

that the imaginary part of the response function is determined in terms of the real

part, and vice-versa. However, the relationship is not local in frequency space: you

need to know Re↵(!) for all frequencies in order to reconstruct Im↵(!) for any single

frequency.
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7.6 Conductors Revisited

Until now, we’ve only discussed electromagnetic waves propagating through insulators.

(Or, dielectrics to give them their fancy name). What happens in conductors where

electric charges are free to move? We met a cheap model of a conductor in Section 2.4,

where we described them as objects which screen electric fields. Here we’ll do a slightly

better job and understand how this happens dynamically.

7.6.1 The Drude Model

The Drude model is simple. Really simple. It describes the electrons moving in a

conductor as billiard-balls, bouncing o↵ things. The electrons have mass m, charge q

and velocity v = ṙ. We treat them classically using F = ma; the equation of motion is

m
dv

dt
= qE�

m

⌧
v (7.45)

The force is due to an applied electric field E, together with a linear friction term. This

friction term captures the e↵ect of electrons hitting things, whether the background

lattice of fixed ions, impurities, or each other. (Really, these latter processes should

be treated in the quantum theory but we’ll stick with a classical treatment here). The

coe�cient ⌧ is called the scattering time. It should be thought of as the average time

that the electron travels before it bounces o↵ something. For reference, in a good metal,

⌧ ⇡ 10�14 s. (Note that this friction term is the same as (7.27) that we wrote for the

atomic polarisability, although the mechanisms behind it may be di↵erent in the two

cases).

We start by applying an electric field which is constant in space but oscillating in

time

E = E(!)e�i!t

This can be thought of as applying an AC voltage to a conductor. We look for solutions

of the form

v = v(!) e�i!t

Plugging this into (7.45) gives
✓
�i! +

1

⌧

◆
v(!) =

q

m
E(!)

The current density is J = nqv, where n is the density of charge carriers, so the solution

tells us that

J(!) = �(!)E(!) (7.46)
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Figure 78: The real, dissipative part of

the conductivity

Figure 79: The imaginary, reactive part

of the conductivity

This, of course, is Ohm’s law. The proportionality constant �(!) depends on the

frequency and is given by

�(!) =
�DC

1� i!⌧
(7.47)

It is usually referred to as the optical conductivity. In the limit of vanishing frequency,

! = 0, it reduces to the DC conductivity,

�DC =
nq2⌧

m

The DC conductivity is real and is inversely related to the resistivity ⇢ = 1/�DC . In

contrast, the optical conductivity is complex. Its real and imaginary parts are given by

Re �(!) =
�DC

1 + !2⌧ 2
and Im �(!) =

�DC !⌧

1 + !2⌧ 2

These are plotted for �DC = 1 and ⌧ = 1:

The conductivity is complex simply because we’re working in Fourier space. The real

part tells us about the dissipation of energy in the system. The bump at low frequencies,

! ⇠ 1/⌧ , is referred to as the Drude peak. The imaginary part of the conductivity tells

us about the response of the system. (To see how this is relevant note that, in the

Fourier ansatz, the velocity is related to the position by v = ṙ = �i!r). At very large

frequencies, !⌧ � 1, the conductivity becomes almost purely imaginary, �(!) ⇠ i/!⌧ .

This should be thought of as the conductivity of a free particle; you’re shaking it so fast

that it turns around and goes the other way before it’s had the chance to hit something.

Although we derived our result (7.47) using a simple, Newtonian model of free elec-

trons, the expression for the conductivity itself is surprisingly robust. In fact, it survives

just about every subsequent revolution in physics; the development of quantum me-

chanics and Fermi surfaces, the presence of lattices and Bloch waves, even interactions

between electrons in a framework known as Landau’s Fermi liquid model. In all of
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these, the optical conductivity (7.47) remains the correct answer6. (This is true, at

least, at low frequencies, At very high frequencies other e↵ects can come in and change

the story).

7.6.2 Electromagnetic Waves in Conductors

Let’s now ask our favourite question: how do electromagnetic waves move through a

material? The macroscopic Maxwell equations (7.14) that we wrote before assumed

that there were no free charges or currents around. Now we’re in a conductor, we need

to include the charge density and current terms on the right-hand side:

r ·D = ⇢ and r⇥H = J+
@D

@t

r ·B = 0 and r⇥ E = �
@B

@t
(7.48)

It’s important to remember that here ⇢ refers only to the free charge. (We called it

⇢free in Section 7.1). We can still have bound charge in conductors, trapped around the

ions of the lattice, but this has already been absorbed in the definition of D which is

given by

D = ✏(!)E

Similarly, the current J is due only to the free charge.

We now apply a spatially varying, oscillating electromagnetic field, using the familiar

ansatz,

E(x, t) = E(!)ei(k·x�!t) and B(x, t) = B(!)ei(k·x�!t) (7.49)

At this point, we need to do something that isn’t obviously allowed: we will continue

to use Ohm’s law (7.46), even in the presence of a varying electric field, so that

J(x, t) = �(!)E(!)ei(k·x�!t) (7.50)

This looks dubious; we derived Ohm’s law by assuming that the electric field was the

same everywhere in space. Why do we now get to use it when the electric field varies?

For this to be valid, we need to assume that over the time scales ⌧ , relevant in the

6
As an extreme example, the conductivity of the horizon of certain black holes can be computed

in general relativity. Even here, the result at low frequency is given by the simple Drude formula

(7.47)! Details can be found in Gary Horowitz, Jorge Santos and David Tong, “Optical Conductivity
with Holographic Lattices, arXiv:1204.0519.
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derivation of Ohm’s law, the electric field is more or less constant. This will be true

if the wavelength of the electric field, � = 2⇡/|k| is greater than the distance travelled

by the electrons between collisions. This distance, known as the mean free path, is

given by l = hvi⌧ , where v is the average speed. In most metals, l ⇡ 10�7 m. (This is

around 1000 lattice spacings; to understand how it can be so large requires a quantum

treatment of the electrons). This means that we should be able to trust (7.50) for

wavelengths � & l ⇡ 10�7 m, which is roughly around the visible spectrum.

The continuity equation r · J+ d⇢/dt = 0 tells us that if the current oscillates, then

the charge density must as well. In Fourier space, the continuity equation becomes

⇢ =
k · J

!
=
�(!)

!
k · E(!) ei(k·x�!t) (7.51)

We can now plug these ansatze into the Maxwell equations (7.48). We also need

B = µH where, as previously, we’ll take µ to be independent of frequency. We have

r ·D = ⇢ ) i

✓
✏(!) + i

�(!)

!

◆
k · E(!) = 0 (7.52)

r ·B = 0 ) k ·B(!) = 0

As before, these tell us that the electric and magnetic fields are transverse to the

direction of propagation. Although, as we mentioned previously, there is a caveat to

this statement: if we can find a frequency for which ✏(!)+i�(!)/! = 0 then longitudinal

waves are allowed for the electric field. We will discuss this possibility in Section 7.6.3.

For now focus on the transverse fields k · E = k ·B = 0.

The other two equations are

r⇥H = J+
@D

@t
) ik⇥B(!) = �iµ!

✓
✏(!) + i

�(!)

!

◆
E(!)

r⇥ E = �
@B

@t
) k⇥ E(!) = !B(!)

The end result is that the equations governing waves in a conductor take exactly the

same form as those derived in (7.30) governing waves in an insulator. The only di↵er-

ence is that we have to make the substitution

✏(!) �! ✏e↵(!) = ✏(!) + i
�(!)

!

This means that we can happily import our results from Section 7.5. In particular, the

dispersion relation is given by

k · k = µ✏e↵(!)!2 (7.53)
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Let’s now see how this extra term a↵ects the physics, assuming that the optical con-

ductivity takes the Drude form

�(!) =
�DC

1� i!⌧

Low Frequencies

At frequencies that are low compared to the scattering time, !⌧ ⌧ 1, we have �(!) ⇡

�DC. This means that the real and imaginary parts of ✏e↵ are

✏e↵ = ✏e↵1 + i✏e↵2 ⇡ ✏1 + i
⇣
✏2 +

�DC

!

⌘
(7.54)

For su�ciently small !, we always have ✏e↵2 � ✏e↵1 . This is the regime that we called res-

onant absorption in Section 7.5. The physics here is the same; no waves can propagate

through the conductor; all are absorbed by the mobile electrons.

In this regime, the e↵ective dielectric constant is totally dominated by the contribu-

tion from the conductivity and is almost pure imaginary: ✏e↵ ⇡ i�DC/!. The dispersion

relation (7.53) then tells us that the wavenumber is

k = k1 + ik2 =
p

iµ!�DC =

r
µ!�DC

2
(1 + i)

So k1 = k2. This means that, for a wave travelling in the z-direction, so k = kẑ, the

electric field takes the form

E(z, t) = E(!)e�z/� ei(k1z�!t)

where

� =
1

k2
=

r
2

µ!�DC

The distance � is called the skin depth. It is the distance that electromagnetic waves

will penetrate into a conductor. Note that as ! ! 0, the waves get further and further

into the conductor.

The fact that k1 = k2 also tells us, through (7.34), that the electric and magnetic

fields oscillate ⇡/4 out of phase. (The phase di↵erence is given by tan� = k2/k1).

Finally, the magnitudes of the ratio of the electric and magnetic field amplitudes are

given by

|B(!)|

|E(!)|
=

k

!
=

r
µ�DC

!

As ! ! 0, we see that more and more of the energy lies in the magnetic, rather than

electric, field.
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High Frequencies

Let’s now look at what happens for high frequencies. By this, we mean both !⌧ � 1,

so that �(!) ⇡ i�DC/!⌧ and ! � !0 so that ✏(!) ⇡ ✏0. Now the e↵ective permittivity

is more or less real,

✏e↵(!) ⇡ ✏0 �
�DC

!2⌧
= ✏0

✓
1�

!2
p

!2

◆
(7.55)

where we are are using the notation of the plasma frequency !2
p = nq2/m✏0 that we

introduced in (7.35). What happens next depends on the sign of ✏e↵ :

• ! > !p: At these high frequencies, ✏e↵ > 0 and k is real. This is the regime of

transparent propagation. We see that, at suitably high frequencies, conductors

become transparent. The dispersion relation is !2 = !2
p + c2k2.

• ! < !p: This regime only exists if !p > !0, 1/⌧ . (This is usually the case). Now

✏e↵ < 0 so k is purely imaginary. This is the regime of total reflection; no wave

can propagate inside the conductor.

We see that the plasma frequency !p sets the lower-limit for when waves can propagate

through a conductor. For most metals, !�1
p ⇡ 10�16s with a corresponding wavelength

of �p ⇡ 3 ⇥ 10�10 m. This lies firmly in the ultraviolet, meaning that visible light is

reflected. This is why most metals are shiny. (Note, however, that this is smaller than

the wavelength that we needed to really trust (7.50); you would have to work harder

to get a more robust derivation of this e↵ect).

There’s a cute application of this e↵ect. In the upper atmosphere of the Earth,

many atoms are ionised and the gas acts like a plasma with !p ⇡ 2⇡ ⇥ 9 MHz. Only

electromagnetic waves above this frequency can make it through. This includes FM

radio waves. But, in contrast, AM radio waves are below this frequency and bounce

back to Earth. This is why you can hear AM radio far away. And why aliens can’t.

7.6.3 Plasma Oscillations

We noted in (7.52) that there’s a get out clause in the requirement that the electric

field is transverse to the propagating wave. The Maxwell equation reads

r ·D = ⇢ ) i

✓
✏(!) + i

�(!)

!

◆
k · E(!) = 0

Which means that we can have k · E 6= 0 as long as ✏e↵(!) = ✏(!) + i�(!)/! = 0.
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We could try to satisfy this requirement at low frequencies where the e↵ective per-

mittivity is given by (7.54). Since we typically have ✏1 � ✏2 in this regime, this is

approximately

✏e↵(!) ⇡ ✏1 + i
�DC

!

Which can only vanish if we take the frequency to be purely imaginary,

! = �i
�DC

✏1

This is easy to interpret. Plugging it into the ansatz (7.49), we have

E(x, t) = E(!) eik·x e��DCt/✏1

which is telling us that if you try to put such a low frequency longitudinal field in a

conductor then it will decay in time ⇠ ✏1/�DC. This is not the solution we’re looking

for.

More interesting is what happens at high frequencies, ! � 1/⌧,!0, where the e↵ective

permittivity is given by (7.55). It vanishes at ! = !p:

✏e↵(!p) ⇡ 0

Now we can have a new, propagating solution in which B = 0, while E is parallel to k.

This is a longitudinal wave. It is given by

E(x, t) = E(!p)e
i(k·x�!pt)

By the relation (7.51), we see that for these longitudinal waves the charge density is

also oscillating,

⇢(x, t) = k · E(!p)e
i(k·x�!pt)

These are called plasma oscillations.

Note that, while the frequency of oscillation is always !p, the wavenumber k can

be anything. This slightly strange state of a↵airs is changed if you take into account

thermal motion of the electrons. This results in an electron pressure which acts as a

restoring force on the plasma, inducing a non-trivial dispersion relation. When quan-

tised, the resulting particles are called plasmons.

7.6.4 Dispersion Relations in Quantum Mechanics

So far we’ve derived a number of dispersion relations for various wave excitations. In

all cases, these become particle excitations when we include quantum mechanics.
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The paradigmatic example is the way light waves are comprised of photons. These

are massless particles with energy E and momentum p given by

E = ~! and p = ~k (7.56)

With this dictionary, the wave dispersion relation becomes the familiar energy-momentum

relation for massless particles that we met in our special relativity course,

! = kc ) E = pc

The relationships (7.56) continue to hold when we quantise any other dispersion re-

lation. However, one of the main lessons of this section is that both the wavevector

and frequency can be complex. These too have interpretations after we quantise. A

complex k means that the wave dies away quickly, typically after some boundary. In

the quantum world, this just means that the particle excitations are confined close to

the boundary. Meanwhile, an imaginary ! means that the wave dies down over time.

In the quantum world, the imaginary part of ! has the interpretation as the lifetime

of the particle.

7.7 Charge Screening

Take a system in which charges are free to move around. To be specific, we’ll talk

about a metal but everything we say could apply to any plasma. Then take another

charge and place it at a fixed location in the middle of the system. This could be, for

example, an impurity in the metal. What happens?

The mobile charges will be either attracted or repelled by the impurity. If the impu-

rity has positive charge, the mobile, negatively charged electrons will want to cluster

around it. The charge of these electrons acts to cancel out the charge of the impurity

so that, viewed from afar, the region around the impurity will appear to have greatly

reduced charge. There is a similar story if the charge of the impurity is negative; now

the electrons are repelled, exposing the lattice of positively charged ions that lies un-

derneath. Once again, the total charge of a region around the impurity will be greatly

reduced. This is the phenomenon of charge screening.

Our goal here is to understand more quantitatively how this happens and, in par-

ticular, how the e↵ective charge of the impurity changes as we move away from it. As

we’ll see, ultimately quantum e↵ects will result in some rather surprising behaviour.

I should mention that, unlike other parts of these notes, this section will need results

from both quantum mechanics and statistical mechanics.
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7.7.1 Classical Screening: The Debye-Hückel model

We’ll start by looking at a simple classical model for charge screening which will give

us some intuition for what’s going on. Our metal consists of a mobile gas of electrons,

each of charge q. These are described by a charge density ⇢(r). In the absence of any

impurity, we would have ⇢(r) = ⇢0, some constant.

The entire metal is neutral. The charges of the mobile electrons are cancelled by

the charges of the ions that they leave behind, fixed in position in the crystal lattice.

Instead of trying to model this lattice with any accuracy, we’ll simply pretend that it

has a uniform, constant charge density �⇢0, ensuring that the total system is neutral.

This very simple toy model sometimes goes by the toy name of jellium.

Now we introduce the impurity by placing a fixed charge Q at the origin. We want

to know how the electron density ⇢(r) responds. The presence of the impurity sets up

an electric field, with the electrostatic potential �(r) fixed by Gauss’ law

r
2� = �

1

✏0

�
Q�3(r)� ⇢0 + ⇢(r)

�
(7.57)

Here the �⇢0 term is due to the uniform background charge, while ⇢(r) is due to the

electron density. It should be clear that this equation alone is not enough to solve for

both ⇢(r) and �(r). To make progress, we need to understand more about the forces

governing the charge distribution ⇢(r). This sounds like it might be a di�cult problem.

However, rather than approach it as a problem in classical mechanics, we do something

clever: we import some tools from statistical mechanics7.

We place our system at temperature T . The charge density ⇢(r) will be proportional

to the probability of finding a charge q at position r. If we assume that there are no

correlations between the electrons, this is just given by the Bolzmann distribution. The

potential energy needed to put a charge q at position r is simply q�(r) so we have

⇢(r) = ⇢0 e
�q�(r)/kBT (7.58)

where the normalisation ⇢0 is fixed by assuming that far from the impurity �(r) ! 0

and the system settles down to its original state.

7
See the lecture notes on Statistical Physics. The Debye-Hückel model was described in Section 2.6

of these notes.
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The result (7.58) is a very simple solution to what looks like a complicated problem.

Of course, in part this is the beauty of statistical mechanics. But there is also an

important approximation that has gone into this result: we assume that a given electron

feels the average potential produced by all the others. We neglect any fluctuations

around this average. This is an example of the mean field approximation, sometimes

called the Hartree approximation. (We used the same kind of trick in the Statistical

Physics notes when we first introduced the Ising model).

For suitably large temperatures, we can expand the Boltzmann distribution and write

⇢(r) ⇡ ⇢0

✓
1�

q�(r)

kBT
+ . . .

◆

Substituting this into Gauss’ law (7.57) then gives

✓
r

2
�

1

�2D

◆
�(r) = �

Q

✏0
�3(r)

where �D is called the Debye screening length (we’ll see why shortly) and is given by

�2D =
kBT ✏0
q2n0

(7.59)

We’ve written this in terms of the number density n0 of electrons instead of the charge

density ⇢0 = qn0. The solution to this equation is

�(r) =
Qe�r/�D

4⇡✏0r
(7.60)

This equation clearly shows the screening phenomenon that we’re interested in. At

short distances r ⌧ �D, the electric field due to the impurity doesn’t look very much

di↵erent from the familiar Coulomb field. But at larger distances r � �D, the screening

changes the potential dramatically and it now dies o↵ exponentially quickly rather than

as a power-law. Note that the electrons become less e�cient at screening the impurity

as the temperature increases. In contrast, if we take this result at face value, it looks

as if they can screen the impurity arbitrarily well at low temperatures. But, of course,

the classical description of electrons is not valid at low temperatures. Instead we need

to turn to quantum mechanics.

7.7.2 The Dielectric Function

Before we look at quantum versions of screening, it’s useful to first introduce some

new terminology. Let’s again consider introducing an impurity into the system, this
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time with some fixed charge distribution ⇢ext(r), where “ext” stands for “external”. We

know that, taken on its own, this will induce a background electric field with potential

r
2�ext = �

⇢ext

✏0

But we also know that the presence of the impurity will a↵ect the charge distribution

of the mobile electrons. We’ll call ⇢ind(r) = ⇢(r)� ⇢0 the “induced charge”. We know

that the actual electric field will be given by the sum of ⇢ext and ⇢ind,

r
2� = �

1

✏0

�
⇢ext(r) + ⇢ind(r)

�

This set-up is very similar to our discussion in Section 7.1 when we first introduced

the idea of polarisation P and the electric displacement D. In that case, we were

interested in insulators and the polarisation described the response of bound charge to

an applied electric field. Now we’re discussing conductors and the polarisation should

be thought of as the response of the mobile electrons to an external electric field. In

other words, r · P = �⇢ind. (Compare this to (7.5) for an insulator). Meanwhile, the

electric displacement D is the electric field that you apply to the material, as opposed

to E which is the actual electric field inside the material. In the present context, that

means

E = �r� and D = �✏0r�
ext

When we first introduced E and D, we defined the relationship between them to be

simply D = ✏E, where ✏ is the permittivity. Later, in Section 7.5, we realised that ✏

could depend on the frequency of the applied electric field. Now we’re interested in

static situations, so there’s no frequency, but the electric fields vary in space. Therefore

we shouldn’t be surprised to learn that ✏ now depends on the wavelength, or wavevector,

of the electric fields.

It’s worth explaining a little more how this arises. The first thing we could try is

to relate E(r) and D(r). The problem is that this relationship is not local in space.

An applied electric field D(r) will move charges far away which, in turn, will a↵ect the

electric field E(r) far away. This means that, in real space, the relationship between D

and E takes the form,

D(r) =

Z
d3r0 ✏(r� r0)E(r0) (7.61)

The quantity ✏(r� r0) is known as the dielectric response function. It depends only on

the di↵erence r � r0 because the underlying system is translationally invariant. This
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relationship looks somewhat simpler if we Fourier transform and work in momentum

space. We write

D(k) =

Z
d3r e�ik·r D(r) , D(r) =

Z
d3k

(2⇡)3
eik·r D(k)

and similar expressions for other quantities. (Note that we’re using the notation in

which the function and its Fourier transform are distinguished only by their argument).

Taking the Fourier transform of both sides of (7.61), we have

D(k) =

Z
d3r e�ik·rD(r) =

Z
d3r

Z
d3r0 e�ik·(r�r0)✏(r� r0) e�ik·r0E(r0)

But this final expression is just the product of two Fourier transforms. This tells us

that we have the promised expression

D(k) = ✏(k)E(k)

The quantity ✏(k) is called the dielectric function. The constant permittivity that we

first met in Section 7.1 is simply given by ✏(k ! 0).

In what follows, we’ll work with the potentials � and charge densities ⇢, rather than

D and E. The dielectric function is then defined as

�ext(k) = ✏(k)�(k) (7.62)

We write � = �ext + �ind, where

�r
2�ind =

⇢ind

✏0
) k2�ind(k) =

⇢ind(k)

✏0

Rearranging (7.62) then gives us an expression for the dielectric function in terms of

the induced charge ⇢ind and the total electrostatic potential �.

✏(k) = 1�
1

✏0k2

⇢ind(k)

�(k)
(7.63)

This will turn out to be the most useful form in what follows.

Debye-Hückel Revisited

So far, we’ve just given a bunch of definitions. They’ll be useful moving forward,

but first let’s see how we can recover the results of the Debye-Hückel model using
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this machinery. We know from (7.58) how the induced charge ⇢ind is related to the

electrostatic potential,

⇢ind(r) = ⇢0
�
e�q�(r)/kBT

� 1
�
⇡ �

q⇢0�(r)

kBT
+ . . . (7.64)

To leading order, we then also get a linear relationship between the Fourier components,

⇢ind(k) ⇡ �
q⇢0
kBT

�(k)

Substituting this into (7.63) gives us an expression for the dielectric function,

✏(k) = 1 +
k2
D

k2
(7.65)

where k2
D = q⇢0/✏0kBT = 1/�2D, with �D the Debye screening length that we introduced

in (7.59).

Let’s now see the physics that’s encoded in the dielectric function. Suppose that we

place a point charge at the origin. We have

�ext(r) =
Q

4⇡✏0r
) �ext(k) =

Q

✏0k2

Then, using the form of the dielectric function (7.65), the resulting electrostatic poten-

tial � is given by

�(k) =
�ext(k)

✏(k)
=

Q

✏0(k2 + k2
D)

We need to do the inverse Fourier transform of �(k) to find �(r). Let’s see how to do

it; we have

�(r) =

Z
d3k

(2⇡)3
eik·r�(k) =

Q

(2⇡)3✏0

Z 2⇡

0

d�

Z ⇡

0

d✓ sin ✓

Z 1

0

dk
k2

k2 + k2
D

eikr cos ✓

where, in the second equality, we’ve chosen to work in spherical polar coordinates in

which the kz axis is aligned with r, so that k · r = kr cos ✓. We do the integrals over

the two angular variables, to get

�(r) =
Q

(2⇡)2✏0

Z 1

0

dk
k2

k2 + k2
D

2 sin kr

kr

=
Q

(2⇡)2✏0r

Z 1

�1
dk

k sin kr

k2 + k2
D

=
Q

2⇡✏0r
Re

Z +1

�1

dk

2⇡i

keikr

k2 + k2
D

�
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We compute this last integral by closing the contour in the upper-half plane with

k ! +i1, picking up the pole at k = +ikD. This gives our final answer for the

electrostatic potential,

�(r) =
Qe�r/�D

4⇡✏0r

That’s quite nice: we see that the dielectric function (7.65) contains the same physics

(7.60) that we saw earlier in the direct computation of classical electrostatic screening.

We could also compute the induced charge density to find

⇢ind(r) = �
Qe�r/�D

4⇡�2Dr

which agrees with (7.64).

But the dielectric function ✏(k) contains more information: it tells us how the system

responds to each Fourier mode of an externally placed charge density. This means that

we can use it to compute the response to any shape ⇢ext(r).

Here, for example, is one very simple bit of physics contained in ✏(k). In the limit

k ! 0, we have ✏(k) ! 1. This means that, in the presence of any constant, applied

electric field D, the electric field inside the material will be E = D/✏ = 0. But you

knew this already: it’s the statement that you can’t have electric fields inside conductors

because the charges will always move to cancel it. More generally, classical conductors

will e↵ectively screen any applied electric field which doesn’t vary much on distances

smaller than �D.

7.7.3 Thomas-Fermi Theory

The Debye-Hückel result describes screening by classical particles. But, as we lower the

temperature, we know that quantum e↵ects become important. Our first pass at this

is called the Thomas-Fermi approximation. It’s basically the same idea that we used in

the Debye-Hückel approach, but with the probability determined by the Fermi-Dirac

distribution rather than the classical Boltzmann distribution.

We work in the grand canonical ensemble, with temperature T and chemical potential

µ. Recall that the probability of finding a fermion in a state |ki with energy Ek is given

by the Fermi-Dirac distribution

f(k) =
1

e(Ek�µ)/kBT + 1
(7.66)
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The chemical potential µ is determined by the requirement that the equilibrium charge

density is ⇢(µ) = ⇢0, where

⇢(µ) = gs

Z
d3k

(2⇡)3
q

e(Ek�µ)/kBT + 1
(7.67)

Here gs is the spin degeneracy factor which we usually take to be gs = 2.

Let’s now place the external charge density ⇢ext(r) in the system. The story is the

same as we saw before: the mobile charges move, resulting in an induced charge density

⇢ind(r), and a total electrostatic potential �(r). The Thomas-Fermi approximation

involves working with the new probability distribution

f(k, r) =
1

e(Ek+q�(r)�µ)/kBT + 1
(7.68)

This can be thought of as either changing the energy to E = Ek+q�(r) or, alternatively,

allowing for a spatially varying chemical potential µ ! µ� q�(r).

The first thing to say about the probability distribution (7.68) is that it doesn’t make

any sense! It claims to be the probability for a state with momentum k and position

r, yet states in quantum mechanics are, famously, not labelled by both momentum

and position at the same time! So what’s going on? We should think of (7.68) as

an approximation that is valid when �(r) is very slowly varying compared to any

microscopic length scales. Then we can look in a patch of space where �(r) is roughly

constant and apply (7.68). In a neighbouring patch of space we again apply (7.68),

now with a slightly di↵erent value of �(r). This idea of local equilibrium underlies the

Thomas-Fermi (and, indeed, the Debye-Hückel) approximations.

Let’s see how this works in practice. The spatially dependent charge density is now

given by

⇢(r;µ) = gs

Z
d3k

(2⇡)3
q

e(Ek+q�(r)�µ)/kBT + 1
(7.69)

We’re interested in computing the induced charge density ⇢ind(r) = ⇢(r)�⇢0. Combin-

ing (7.69) and (7.67), we have

⇢ind(r) = gs

Z
d3k

(2⇡)3


q

e(Ek+q�(r)�µ)/kBT + 1
�

q

e(Ek�µ)/kBT + 1

�

But we can rewrite this using the notation of (7.67) simply as

⇢ind(r) = ⇢ (µ� q�(r))� ⇢(µ) ⇡ �q�(r)
@⇢(µ)

@µ
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where, in the last step, we have Taylor expanded the function which is valid under

the assumption that q�(r) ⌧ µ. But this immediately gives us an expression for the

dielectric function using (7.63),

✏(k) = 1 +
@⇢

@µ

q

✏0k2

We’re almost there. We still need to figure out what @⇢/@µ is. This is particularly easy

if we work at T = 0, where we can identify the chemical potential µ with the Fermi

energy: µ = EF . In this case, the Fermi-Dirac distribution is a step function and the

total charge density is simply given by

⇢(EF ) = q

Z EF

0

dE g(E)

where g(E) is the density of states (we’ll remind ourselves what form the density of

states takes below). We learn that @⇢/@EF = g(EF ) and the dielectric function is given

by

✏(k) = 1 +
q2g(EF )

✏0k2
(7.70)

Note that the functional form of ✏(k) is exactly the same as we saw in the classical case

(7.65). The only thing that’s changed is the coe�cient of the 1/k2 term which, as we

saw before, determines the screening length. Let’s look at a simple example.

A Simple Example

For non-relativistic particles, the energy is given by E = ~2k2/2m. In three spatial

dimensions, the density of states is given by8

g(E) = gs
1

4⇡2

✓
2m

~2

◆3/2

E1/2

This is kind of a mess, but there’s a neater way to write g(EF ). (This neater way

will also allow for a simple comparison to the Debye screening length as well). At zero

temperature, the total charge density is

⇢0 = q

Z EF

0

dE g(E)

8
See the lecture notes on Statistical Physics for details on how to compute the density of states.

The g(E) we use here di↵ers slightly from that presented in the Statistical Physics lectures because it

does not include an overall volume factor. This is because we want to compute the number density of

particles rather than the total number of particles.
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Using this, we have

g(EF ) =
3

2q

⇢0
EF

and we can write the dielectric function as

✏(k) = 1 +
k2
TF

k2

where k2
TF = 3q⇢0/2✏0EF . This is our expression for the Thomas-Fermi screening length

�TF = 1/kTF .

It’s instructive to compare this screening length with the classical Debye length �D.

We have

�2D
�2TF

=
2

3

T

TF

where TF = kBEF is the Fermi temperature. The classical analysis can only be trusted

at temperature T � TF where �D � �TF . But, for metals, the Fermi temperature

is hot; something like 104, K. This means that, at room temperature, T ⌧ TF and

our quantum result above (which, strictly speaking, was only valid at T = 0) is a

good approximation. Here �D ⌧ �TF . The upshot is that quantum mechanics acts to

increase the screening length beyond that suggested by classical physics.

7.7.4 Lindhard Theory

The Thomas-Fermi approximation is straightforward, but it relies crucially on the po-

tential �(r) varying only over large scales. However, as we will now see, the most

interesting physics arises due to variations of �(r) over small scales (or, equivalently,

large k). For this we need to work harder.

The key idea is to go back to basics where, here, basics means quantum mechanics.

Before we add the impurity, the energy eigenstates are plane waves |ki with energy

E(k) = ~2k2/2m. To determine the dielectric function (7.63), we only need to know

how the mobile charge density ⇢(r) changes in the presence of a potential �(r). We can

do this by considering a small perturbation to the Hamiltonian of the form

�H = q�(r)

The energy eigenstate that is labelled by k now shifts. We call the new state | (k)i.

Ultimately, our goal is to compute the induced charge density. For an electron in state

| (k)i, the probabilty of finding it at position r is simply |hr| (k)i|2. Which means
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that, for this state, the change in the density is |hr| (k)i|2 � |hr|ki|2. The induced

charge density ⇢ind(r) is obtained by summing over all such states, weighted with the

Fermi-Dirac distribution function. We have

⇢ind(r) = qgs

Z
d3k

(2⇡)3
f(k)

⇥
|hr| (k)i|2 � |hr|ki|2

⇤

where f(k) is the Fermi-Dirac distribution (7.66) and we’ve remembered to include the

spin degeneracy factor gs = 2. To make progress, we need to get to work computing

the overlap of states.

To first order in perturbation theory, the new energy eigenstate is given by

| (k)i = |ki+

Z
d3k0

(2⇡)3
hk0

|�H|ki

E(k)� E(k0)
|k0

i

Keeping only terms linear in �H, we can expand this out to read

|hr| (k)i|2 � |hr|ki|2 =

Z
d3k0

(2⇡)3


hr|ki

hk|�H|k0
i

E(k)� E(k0)
hk0

|ri+ hk|ri
hk0

|�H|ki

E(k)� E(k0)
hr|k0

i

�

But we have expressions for each of these matrix elements. Of course, the plane waves

take the form hr|ki = eik·r, while the matrix elements of the perturbed Hamiltonian

are

hk0
|q�(r)|ki =

Z
d3rd3r0 ei(k·r�k0·r0)

hr0|q�(r)|ri = q�(k� k0)

In other words, it gives the Fourier transform of the electrostatic potential. Putting

this together, we arrive at an integral expression for the induced charge,

⇢ind(r) = q2gs

Z
d3k

(2⇡)3
d3k0

(2⇡)3
f(k)


e�i(k0�k)·r�(k� k0)

E(k)� E(k0)
+

e�i(k�k0)·r�(k0
� k)

E(k)� E(k0)

�

Of course, what we really want for the dielectric function (7.63) is the Fourier transform

of the induced charge,

⇢ind(k) =

Z
d3r e�ik·r⇢ind(r)

Thankfully, doing the
R
d3r integral gives rise to a delta-function which simplifies our

life rather than complicating it. Performing some relabelling of dummy integration

variables, we have

⇢ind(k)

�(k)
= q2gs

Z
d3k0

(2⇡)3
f(k0)


1

E(k0)� E(|k0 � k|)
+

1

E(k0)� E(|k+ k0|)

�
(7.71)
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These two terms are more similar than they look. If we change the dummy integration

variable in the first term to k0
! k0 + k then we can write

⇢ind(k)

�(k)
= q2gs

Z
d3k0

(2⇡)3
f(|k+ k0

|)� f(k0)

E(|k+ k0|)� E(k0)
(7.72)

The left-hand side is exactly what we want. The right-hand side is an integral. It’s

not too hard to do this integral, but let’s first check that this result gives something

sensible.

Thomas-Fermi Revisited

Let’s first see how we can recover the Thomas-Fermi result for the dielectric function.

Recall that the Thomas-Fermi approximation was only valid when the potential �(r),

and hence the induced charge ⇢ind(r), vary slowly over large distances. In the present

context, this means it is valid at small k. But here we can simply Taylor expand the

numerator and denominator of (7.72).

E(|k+ k0
|)� E(k0) ⇡

@E

@k0 · k

and f(|k+ k0
|)� f(k0) ⇡

@f

@E

@E

@k0 · k

So we have

⇢ind(k)

�(k)
= q2gs

Z
d3k0

(2⇡)3
@f

@E
= q2

Z
dE g(E)

@f

@E

where the last step is essentially the definition of the density of states g(E). But at T =

0, the Fermi-Dirac distribution f(E) is just a step function, and @f/@E = ��(E�EF ).

So at T = 0, we get

⇢ind(k)

�(k)
= q2g(EF ) ) ✏(k) = 1 +

q2g(EF )

✏0k2

which we recognise as the Thomas-Fermi result (7.70) that we derived previously.

The Lindhard Function

While the Thomas-Fermi approximation su�ces for variations over large scales and

small k, our real interest here is in what happens at large k. As we will now show,

quantum mechanics gives rise to some interesting features in the screening when impu-

rities have structure on scales of order ⇠ 1/kF where kF is the Fermi-wavevector. For

this, we need to go back to the Lindhard result

⇢ind(k)

�(k)
= q2gs

Z
d3k0

(2⇡)3
f(|k+ k0

|)� f(k0)

E(|k+ k0|)� E(k0)

Our task is to do this integral properly.
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a) k<2k b) k>2kc)k=2kF F F

k kk

Figure 80: The two Fermi surfaces in momentum space. The integration region ⌃ is shown

shaded in red for a) k < 2kF , b) k = 2kF and c) k > 2kF .

Let’s firstly get a sense for what the integrand looks like. We’ll work at T = 0, so

the Fermi-Dirac distribution function f(k) is a step function with

f(k) =

(
1 k < kF

0 k > kF

This makes the integral much easier. All the subtleties now come from figuring out

which region in momentum space gives a non-vanishing contribution. The filled states

associated to f(k0) form a ball in momentum space of radius kF , centered at the origin.

Meanwhile, the filled states associated to f(|k0 + k|) form a ball in momentum space

of radius kF centered at k0 = �k. These are shown in a number of cases in Figure 80.

Because the integral comes with a factor of f(|k + k0
|) � f(k0), it gets contributions

only from states that are empty in one ball but filled in the other. We call this region

⌃; it is the shaded red region shown in the figures. There is a also a mirror region

in the other ball that also contributes to the integral, but this simply gives an overall

factor of 2. So we have

⇢ind(k)

�(k)
= 2q2gs

Z

⌃

d3k0

(2⇡)3
1

E(|k+ k0|)� E(k0)

The important physics lies in the fact that the nature of ⌃ changes as we vary k. For

k < 2kF , ⌃ is a crescent-shaped region as shown in Figure 80a. But for k � 2kF , ⌃ is

the whole Fermi ball as shown in Figures 80b and 80c.

We’ll work with non-relativistic fermions with E = ~2k2/2m. While the graphical

picture above will be useful to get intuition for the physics, to do the integral it’s
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actually simpler to return to the form (7.71). At zero temperature, we have

⇢ind(k)

�(k)
= q2gs

Z

kkF

d3k0

(2⇡)3


1

�k2 + 2k · k0 +
1

�k2 � 2k · k0

�

= �q2gs
2m

~2

Z

k0kF

d3k0

(2⇡)3
2

k2 � 2k0 · k

where the two terms double-up because rotational symmetry ensures that the physics

is invariant under k ! �k. Now the integration domain remains fixed as we vary

k, with the graphical change of topology that we saw above buried in the integrand.

For k  2kF , the denominator in the integrand can vanish. This reflects the fact

that transitions between an occupied and unoccupied state with the same energy are

possible. It corresponds to the situation depicted in Figure 80a. But for k > 2kF , the

denominator is always positive. This corresponds to the situation shown in Figure 80c.

To proceed, we work in polar coordinates for k0 with the z-axis aligned with k. We

have

⇢ind(k)

�(k)
= �

4mq2gs
(2⇡)2~2

Z ⇡

0

d✓ sin ✓

Z kF

0

dk0 k0 2

k2 � 2kk0 cos ✓

=
2mq2gs
(2⇡)2~2

1

k

Z kF

0

dk0 k0 log

����
k2 + 2kk0

k2 � 2kk0

����

But this is now an integral that we can do; the general form is
Z

dy y log

✓
ay + b

�ay + b

◆
=

by

a
+

1

2

✓
y2 �

b2

a2

◆
log

✓
ay + b

�ay + b

◆

We then have

⇢ind(k)

�(k)
= �

2mq2gs
(2⇡)2~2

1

k


kkF
2

+
1

2

✓
k2
F �

k2

4

◆
log

����
2kkF + k2

�2kkF + k2

����

�

This gives our final expression, known as the Lindhard dielectric function,

✏(k) = 1 +
k2
TF

k2
F

✓
k

2kF

◆

where all the constants that we gathered along our journey sit in k2
TF = q2g(EF )/✏0 =

gsq2mkF/2⇡2~2✏0. This is the Thomas-Fermi wave result that we saw previously, but

now it is dressed by the function

F (x) =
1

2
+

1� x2

4x
log

����
x+ 1

x� 1

����

At small k we have F (x ! 0) = 1 and we recover the Thomas-Fermi result.
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For variations on very small scales, we’re interested in the large k regime where

x ! 1 and F (x) ! 1/3x2. (You have to go to third order in the Taylor expansion of

the log to see this!). This means that on small scales we have

✏(k) ! 1 +
4k2

TFk
2
F

3k4

However, the most interesting physics occurs at near k = 2kF .

7.7.5 Friedel Oscillations

We saw above that there’s a qualitative di↵erence in the accessible states when k < 2kF
and k > 2kF . Our goal is to understand what this means for the physics. The dielectric

function itself is nice and continuous at k = 2kF , with F (x = 1) = 1/2. However, it is

not smooth: the derivative of the dielectric function su↵ers a logarithmic singularity,

F 0(x ! 1+) !
1

2
log

✓
x� 1

2

◆

This has an important consequence for the screening of a point charge.

As we saw in Section 7.7.2, a point charge gives rise to the external potential

�ext(k) =
Q

✏0k2

and, after screening, the true potential is �(k) = �ext(k)/✏(k). However, the Fourier

transform back to real space is now somewhat complicated. It turns out that it’s easier

to work directly with the induced charge density ⇢ind(r). From the definition of the

dielectric function (7.63), the induced charge density in the presence of a point charge

�ext(k) = Q/✏0k2 is given by,

⇢ind(k) = �Q
✏(k)� 1

✏(k)

where, for k ⇡ 2kF , we have

✏(k)� 1

✏(k)
=

k2
TF

8k2
F

✓
1 +

k � 2kF
2kF

log

✓
k � 2kF
4kF

◆
+ . . .

◆
(7.73)

Now we want to Fourier transform this back to real space. We repeat the steps that

we took in Section 7.7.2 for the Debye-Hückel model to get

⇢ind(r) = �Q

Z
d3k

(2⇡)3
eik·r

✓
✏(k)� 1

✏(k)

◆
= �

Q

2⇡2

1

r

Z 1

0

dk

✓
k✏(k)� k

✏(k)

◆
sin kr
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At this stage, it’s useful if we integrate by parts twice. We have

⇢ind(r) =
Q

2⇡2

1

r3

Z 1

0

dk
d2

dk2

✓
k✏(k)� k

✏(k)

◆
sin kr

Of course, the Fourier integral requires us to know ✏(k) at all values of k, rather than

just around k = 2kF . Suppose, however, that we’re interested in the behaviour a long

way from the point charge. At large r, the sin kr factor oscillates very rapidly with

k, ensuring that the induced charge at large distances is essentially vanishing. This

was responsible for the exponential behaviour of the screening that we saw in both the

Debye-Hückel and Thomas-Fermi models. However, at k = 2kF the other factor in the

integrand diverges,

d2

dk2

✓
k✏(k)� k

✏(k)

◆
⇡

k2
TF

4k2
F

1

k � 2kF

This will now give rise to a long-range contribution. Therefore, if we only care about

this long-distance behaviour, we need only integrate over some small interval I about

k = 2kF ,

⇢ind(r) ⇡
Qk2

TF

8⇡2k2
F

1

r3

Z

I

dk
sin kr

k � 2kF

=
Qk2

TF

8⇡2k2
F

1

r3

Z

I

dk


cos(2kF r) sin((q � 2kF )r)

k � 2kF
+

sin(2kF r) cos((k � 2kF )r)

k � 2kF

�

where we’ve used a little trigonometry. The second term above vanishes on parity

grounds (contributions from either side of k = kF cancel). We can approximate the

first term by extending the range of the integral to all k (because, as we’ve just argued,

the main contribution comes from the interval I anyway). Using
R +1
�1 dx sin x/x = ⇡,

we get our final expression for the long-distance charge density induced by a point

charge,

⇢ind(r) ⇡
Qk2

TF

8⇡k2
F

cos(2kF r)

r3
(7.74)

We learn that the e↵ect of the Fermi surface is to dramatically change the screening

of electric charge. Instead of the usual exponential screening, we instead find a power-

law fall o↵, albeit weaker than the Coulomb force in vacuum (i.e. 1/r3 instead of 1/r).

Moreover, the sign of the induced charge oscillates. These are called Friedel oscillations.

They provide a very visual way to see the edge of the Fermi surface. This figure shows

some Friedel oscillations on a two-dimensional surface9. You can make out a bright
9
The figure is taken from Direct Observation of Friedel Oscillations around Incorporated SiGa

Dopants in GaAs by Low-Temperature Scanning Tunneling Microscopy by M van der Wielen, A van

Roij and H. van Kempen, Physical Review Letters 76, 7 (1996).
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central region, surrounded by a black ring, surrounded by another white ring. This

corresponds to a Fermi wavelength of around �F ⇠ 10�8 m.

Heuristically, what’s going on here is that the wave-

Figure 81: Friedel oscilla-

tions in GaAs doped with Sil-

icon.

function of the electrons has a finite size.. At zero tem-

perature, the states with lowest energy have wavelength

� = 1/kF . These modes enthusiastically cluster around

the impurity, keen to reduce its charge but, unaware

of their own cumbersome nature, end up overscreening.

Other electrons have to then respond to undo the dam-

age and the story is then repeated, over exuberance piled

upon over exuberance. The end result is a highly inef-

ficient screening mechanism and the wonderful rippling

patterns of charge that are seen in scanning tunnelling

microscopes.
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