Sjaak de Lange schreef: ↑wo 12 jun 2024, 15:28
ok bedankt, wellicht dat er iemand een link weet naar de toelichting op de afleiding van deze formule? kan deze niet vinden in mn boek en niet online
bedoel je de afleiding waarom de fourier integraal is zoals die is? de basisgedachte is dat het product van 2 sinussen met verschillende frequentie een signaal oplevert met oppervlak onder de totale curve (= integraal), dus van -oneindig tot + oneindig of evt van 0 tot oneindig (dus positief oppervlak- negatief oppervlak) altijd op 0 uitkomt. behalve voor 2 sinussen met dezelfde frequentie.
Dus als je een willekeurig signaal opgebouwd denkt uit een som van simussen met frequentie en fase en dan vermenigvuldigt het de sinus waarvan je de amplitude in het signaal wilt weten dan levert dat altijd een oppervlak van 0 op behalve voor de frequentiecomponent van de sinus waarmee je vermenigvuldigt. dus op die manier kun je voor elke frequentie die in het samengestelde signaal zit de betreffende amplitude bepalen.