Voor drie deeltjes a, b en c met massa's m
a, m
b en m
c en plaatsvectoren
\( \vec{x}_a \),
\( \vec{x}_b \) en
\( \vec{x}_c \) is de totale impuls
\( \vec{p} \) gelijk aan:
\( \vec{p} = \mathrm{m}_a \frac{\mathrm{d} \vec{x}_a}{\mathrm{d} t} + \mathrm{m}_b \frac{\mathrm{d} \vec{x}_b}{\mathrm{d} t} + \mathrm{m}_c \frac{\mathrm{d} \vec{x}_c}{\mathrm{d} t}\)
De tijdsafgeleide van deze totale impuls is:
\( \frac{ \mathrm{d} \vec{p}}{\mathrm{d} t} = \mathrm{m}_a \frac{\mathrm{d}^2 \vec{x}_a}{\mathrm{d} t^2} + \mathrm{m}_b \frac{\mathrm{d}^2 \vec{x}_b}{\mathrm{d} t^2} + \mathrm{m}_c \frac{\mathrm{d}^2 \vec{x}_c}{\mathrm{d} t^2}\)
Laat nu
\( V = V( \vec{x}_a - \vec{x}_b , \vec{x}_a - \vec{x}_c , \vec{x}_b - \vec{x}_c ) \) de totale potentiële energie van het stelsel deeltjes a, b en c zijn. We hebben daarbij wegens de translatie-invariantie als argumenten de verschilvectoren genomen. Om de afleiding voor mijzelf bevattelijk te houden voer ik nog de hulpfunctie u in zodat:
\(\)
\( V = \mathrm{u}(x_a^1 - x_b^1 , x_a^1 - x_c^1 , x_b^1 - x_c^1 \,\, ; \,\, ... \,\, ; \,\, x_a^3 - x_b^3 , x_a^3 - x_c^3 , x_b^3 - x_c^3 ) \)
Dit geeft:
\(\)
\( \begin{eqnarray} \frac{\partial}{\partial x_a^1} V = \partial_1 \mathrm{u} \cdot 1 + \partial_2 \mathrm{u} \cdot 1 + \partial_3 \mathrm{u} \cdot 0 + \partial_4 \mathrm{u} \cdot 0 + \partial_5 \mathrm{u} \cdot 0 \\ + \partial_6 \mathrm{u} \cdot 0 + \partial_7 \mathrm{u} \cdot 0 + \partial_8 \mathrm{u} \cdot 0 + \partial_9 \mathrm{u} \cdot 0 \end{eqnarray} \)
\(\)
\( \begin{eqnarray} \frac{\partial}{\partial x_b^1} V = \partial_1 \mathrm{u} \cdot -1 + \partial_2 \mathrm{u} \cdot 0 + \partial_3 \mathrm{u} \cdot 1 + \partial_4 \mathrm{u} \cdot 0 + \partial_5 \mathrm{u} \cdot 0 \\ + \partial_6 \mathrm{u} \cdot 0 + \partial_7 \mathrm{u} \cdot 0 + \partial_8 \mathrm{u} \cdot 0 + \partial_9 \mathrm{u} \cdot 0 \end{eqnarray} \)
\(\)
\( \begin{eqnarray} \frac{\partial}{\partial x_c^1} V = \partial_1 \mathrm{u} \cdot 0 + \partial_2 \mathrm{u} \cdot -1 + \partial_3 \mathrm{u} \cdot -1 + \partial_4 \mathrm{u} \cdot 0 + \partial_5 \mathrm{u} \cdot 0 \\ + \partial_6 \mathrm{u} \cdot 0 + \partial_7 \mathrm{u} \cdot 0 + \partial_8 \mathrm{u} \cdot 0 + \partial_9 \mathrm{u} \cdot 0 \end{eqnarray} \)
\(\)
\( \begin{eqnarray} \frac{\partial}{\partial x_a^2} V = \partial_1 \mathrm{u} \cdot 0 + \partial_2 \mathrm{u} \cdot 0 + \partial_3 \mathrm{u} \cdot 0 + \partial_4 \mathrm{u} \cdot 1 + \partial_5 \mathrm{u} \cdot 1 \\ + \partial_6 \mathrm{u} \cdot 0 + \partial_7 \mathrm{u} \cdot 0 + \partial_8 \mathrm{u} \cdot 0 + \partial_9 \mathrm{u} \cdot 0 \end{eqnarray} \)
\(\)
\( \begin{eqnarray} \frac{\partial}{\partial x_b^2} V = \partial_1 \mathrm{u} \cdot 0 + \partial_2 \mathrm{u} \cdot 0 + \partial_3 \mathrm{u} \cdot 0 + \partial_4 \mathrm{u} \cdot -1 + \partial_5 \mathrm{u} \cdot 0 \\ + \partial_6 \mathrm{u} \cdot 1 + \partial_7 \mathrm{u} \cdot 0 + \partial_8 \mathrm{u} \cdot 0 + \partial_9 \mathrm{u} \cdot 0 \end{eqnarray} \)
\(\)
\( \begin{eqnarray} \frac{\partial}{\partial x_c^2} V = \partial_1 \mathrm{u} \cdot 0 + \partial_2 U \cdot 0 + \partial_3 U \cdot 0 + \partial_4 U \cdot 0 + \partial_5 U \cdot -1 \\ + \partial_6 U \cdot -1 + \partial_7 U \cdot 0 + \partial_8 U \cdot 0 + \partial_9 U \cdot 0 \end{eqnarray} \)
\(\)
\( \begin{eqnarray} \frac{\partial}{\partial x_a^3} V = \partial_1 \mathrm{u} \cdot 0 + \partial_2 \mathrm{u} \cdot 0 + \partial_3 \mathrm{u} \cdot 0 + \partial_4 \mathrm{u} \cdot 0 + \partial_5 \mathrm{u} \cdot 0 \\ + \partial_6 \mathrm{u} \cdot 0 + \partial_7 \mathrm{u} \cdot 1 + \partial_8 \mathrm{u} \cdot 1 + \partial_9 \mathrm{u} \cdot 0 \end{eqnarray} \)
\(\)
\( \begin{eqnarray} \frac{\partial}{\partial x_b^3} V = \partial_1 \mathrm{u} \cdot 0 + \partial_2 \mathrm{u} \cdot 0 + \partial_3 \mathrm{u} \cdot 0 + \partial_4 \mathrm{u} \cdot 0 + \partial_5 \mathrm{u} \cdot 0 \\ + \partial_6 \mathrm{u} \cdot 0 + \partial_7 \mathrm{u} \cdot -1 + \partial_8 \mathrm{u} \cdot 0 + \partial_9 \mathrm{u} \cdot 1 \end{eqnarray} \)
\(\)
\( \begin{eqnarray} \frac{\partial}{\partial x_c^3} V = \partial_1 \mathrm{u} \cdot 0 + \partial_2 \mathrm{u} \cdot 0 + \partial_3 \mathrm{u} \cdot 0 + \partial_4 \mathrm{u} \cdot 0 + \partial_5 \mathrm{u} \cdot 0 \\ + \partial_6 \mathrm{u} \cdot 0 + \partial_7 \mathrm{u} \cdot 0 + \partial_8 \mathrm{u} \cdot -1 + \partial_9 \mathrm{u} \cdot -1 \end{eqnarray} \)
Volgens de bewegingsvergelijkingen krijgen we dan:
\(\)
\( \frac{ \mathrm{d} \vec{p}}{\mathrm{d} t} = - \nabla_a V - \nabla_b V - \nabla_c V \)
\(\)
\( \frac{ \mathrm{d} \vec{p}}{\mathrm{d} t} = - \left ( \begin{array}{c} \frac{\partial}{\partial x_a^1} V \\ \frac{\partial}{\partial x_a^2} V \\ \frac{\partial}{\partial x_a^3 } V \end{array} \right ) - \left ( \begin{array}{c} \frac{\partial}{\partial x_b^1} V \\ \frac{\partial}{\partial x_b^2} V \\ \frac{\partial}{\partial x_b^3 } V \end{array} \right ) - \left ( \begin{array}{c} \frac{\partial}{\partial x_c^1} V \\ \frac{\partial}{\partial x_c^2} V \\ \frac{\partial}{\partial x_c^3 } V \end{array} \right ) \)
\(\)
\( \frac{ \mathrm{d} \vec{p}}{\mathrm{d} t} = \vec{0} \)
\(\)