zijtjeszotjes
Artikelen: 0
Berichten: 171
Lid geworden op: za 03 dec 2005, 14:16

[wiskunde] begrensde rij

hee

hier een rij

gedefineerd voor n>=1.

sn= 1/(1*3)+/(2*5)+1/(3*7)+...1/(n(2n+1)

1) toon aan

0.5sn= 1-(1/(n+1)+1/(n+2)+...+1/(2n+1))

en dan nog 2 vraagjes..

maar ik zit vast bij deze!

ik krijg dat 1 gewoon niet weg..

dien ik te bewijzen met inductie?

kan dat niet anderS?

bedankt
PeterPan
Artikelen: 0

Re: [wiskunde] begrensde rij

Hint:

Schrijf alle breuken als een verschil van eenvoudiger breuken

1/k(2k+1) = 1/k - 2/(2k+1) voor k=1...n
zijtjeszotjes
Artikelen: 0
Berichten: 171
Lid geworden op: za 03 dec 2005, 14:16

Re: [wiskunde] begrensde rij

PeterPan schreef:Hint:

Schrijf alle breuken als een verschil van eenvoudiger breuken

1/k(2k+1) = 1/k - 2/(2k+1) voor k=1...n
had ik gedaan..:S

dan volgT?!
PeterPan
Artikelen: 0

Re: [wiskunde] begrensde rij

Dan volgt dat de formule niet klopt.

Probeer maar n=2 (of elke andere waarde voor n>1).
zijtjeszotjes
Artikelen: 0
Berichten: 171
Lid geworden op: za 03 dec 2005, 14:16

Re: [wiskunde] begrensde rij

PeterPan schreef:Dan volgt dat de formule niet klopt.

Probeer maar n=2 (of elke andere waarde voor n>1).
oh zo...

dus die gelijkheid van 0.5sn=1-(...) klopt niet..

dank je. ik begon weer aan mezelf te twijfelen

je hebt me gered...

thank u
Gebruikersavatar
Safe
Pluimdrager
Artikelen: 0
Berichten: 10.058
Lid geworden op: wo 17 nov 2004, 12:37

Re: [wiskunde] begrensde rij

Ik denk dat dit wel klopt!

S1=1/3,

en volgens de formule: 1/2S1=1-(1/2+1/3)=1/6 => S1=1/3!

S2=1/3+1/10=13/30

en volgens de formule: 1/2S2=1-(1/3+1/4+1/5)=1-47/60=13/60 => S2=13/30!
dr. E. Noether
Artikelen: 0
Berichten: 96
Lid geworden op: za 03 dec 2005, 17:38

Re: [wiskunde] begrensde rij

Ik ben het met Safe eens: de opgave klopt. Dit staat trouwens bekend als een telescopische reeks. Je kunt met inductie naar n laten zien dat de gelijkheid klopt. Controleer voor n=1. Je moet dan nog laten zien dat het voor n+1 ook klopt. Neem als inductieveronderstelling dat

0.5s_{n}= 1 - (1/(n+1) + 1/(n+2) + ... + 1/(2n+1)) ... (I.V.)

Dan moet je dus laten zien dat

0.5s_{n+1} = 1 - (1/(n+2) + 1/(n+3) + ... + 1/(2n+1) + 1/(2n+2) + 1/(2n+3)).

Welnu, 0.5s_{n+1} = 0.5[som] {k=1 tot n+1} (1/(k(2k+1)) = (*) = 0.5[som] {k=1 tot n+1} (1/k - 2/(2k+1))

= 0.5[som] {k=1 tot n} (1/k - 2/(2k+1)) + 1/(2n+2) - 1/(2n+3)

Het eerste deel kun je vervangen volgens de I.V. (immers de som loopt nu tot n). Je verkrijgt met I.V. een term 1/(n+1) die je NIET wilt hebben, maar kijk ook eens wat verderop staat! 1/(2n+2) - 1/(n+1) = -1/(2n+2). Een beetje herschrijven en datgene wat je wilde laten zien staat er. Succes ermee!

*) Met de hint van PeterPan.
zijtjeszotjes
Artikelen: 0
Berichten: 171
Lid geworden op: za 03 dec 2005, 14:16

Re: [wiskunde] begrensde rij

oh zo bedankt!

maar als je geen inductie gebruikt.. hoe kan je zo'n formule laten ontstaan...

die '1'.. vind ik heel raar in de formule..

het lijkt alsof het de som is van een eindig breuken ..
PeterPan
Artikelen: 0

Re: [wiskunde] begrensde rij

Zonder inductie:

sn =

1/(1*3)+/(2*5)+1/(3*7)+...1/(n(2n+1) =

(1/1-2/3) + (1/2-2/5) + ... + (1/n-2/(2n+1)) =

(1/1+1/2+...+1/n) - (2/3+2/5+...+2/(2n+1)) =

(1/1+1/2+...+1/n) - (2/2+2/3+2/4+...+2/(2n+1)) + (2/2+2/4+...+2/(2n)) =

2(1/1+1/2+...+1/n) - 2(1/2+1/3+1/4+...+1/(2n+1)) =

2 - 2(1/(n+1)+1/(n+2)+...+1/(2n+1)).

Dus sn/2 = 1-(1/(n+1)+1/(n+2)+...+1/(2n+1)).

Terug naar “Huiswerk en Practica”