Civilo
Artikelen: 0
Berichten: 15
Lid geworden op: za 22 mar 2008, 20:14

Weerstandsmoment van afwijkende vormen

Hallo,

ik ben nieuw hier. ik heb na herhaaldelijk als gast hier rondgekeken te hebben, toch maar besloten om me te registreren als forummer.

laat ik maar direct met de deur in huis vallen: ten behoeve van het doorrekenen van op druk belaste kolommen, ben ik op zoek naar de weerstandsmomenten van afwijkende vormen. hierbij doel ik speciaal op de fillets van een hoekprofielen. is het handig om deze te berekenen door eerst het weerstandsmoment van de bounding box te berekenen en vervolgens deze verdisconteren met het weerstandsmoment van een kwart cirkel?

Ben ooit wel eens de berekening van een weerstandsmoment van een kwart cirkel tegengekomen maar kan deze me niet meer voor de geest halen, iemand anders misschien wel?

bijvoorbaat dank,

Civilo
oktagon
Artikelen: 0
Berichten: 4.502
Lid geworden op: di 21 feb 2006, 12:28

Re: Weerstandsmoment van afwijkende vormen

Wegens storing herhaald in volgend antwoord! :D
oktagon
Artikelen: 0
Berichten: 4.502
Lid geworden op: di 21 feb 2006, 12:28

Re: Weerstandsmoment van afwijkende vormen

Ik poogde een antwoord te geven,doch kreeg ineens een grote lege ruimte tussen mijn teksten,Paasziekte?

Ik copieerde zo goed mogelijk:

Als ik een simpele kolom van een willekeurig hoekprofiel op drukbelasting bereken,gebruik ik een tabellenboek MCB),waar alle data van oa.hoekprofielen in vermeld staan.

Vervolgens bepaal ik de lambda(=kniklengte/imin) en alpha(=factor * toelaatbare druk-,of trekspanning).

Kniklengtebepaling afhankelijk van bevestiging kolomeinden,ik neem aan dat je daarmee op de hoogte ; kom dan tot een oplossing.

Overigens begrijp ik het begrip "fillet" in dit verband niet goed,behoudens dat het te maken heeft met afrondingen/aansluitingen van rechth.figuren en jezelf iets wil uitdokteren dat niet in tabellen wordt weergegeven!

Nb.
\(\lambda ....... \alpha \)
kon ik eerder niet realiseren!
Civilo
Artikelen: 0
Berichten: 15
Lid geworden op: za 22 mar 2008, 20:14

Re: Weerstandsmoment van afwijkende vormen

Ik ben niet zozeer geinteresseerd in de knikcapaciteit berekening (gesneden koek), meer in de profieleigenschappen. van veel profielen kan ik deze inderdaad uit de tabellenboekjes verkrijgen, ik probeer echter zelf een groot hoekprofiel te ontwerpen met afrondingen (fillets). Ik weet ook dat deze afrondingen over het algemeen niet zo veel invloed hebben op het weerstandsmoment, maar ik probeer een zo compleet mogelijke berekening te maken (ofwel; ik ben een beetje te perfectionistisch :D ).
Gebruikersavatar
jhnbk
Artikelen: 0
Berichten: 6.905
Lid geworden op: za 16 dec 2006, 09:10

Re: Weerstandsmoment van afwijkende vormen

Als je ons een figuur geeft van je profiel kunnen we je wel op weg zetten om het weerstandsmoment te berekenen.
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.
Civilo
Artikelen: 0
Berichten: 15
Lid geworden op: za 22 mar 2008, 20:14

Re: Weerstandsmoment van afwijkende vormen

Bij deze, ik doel op de rood gearceerde vormen.
Bijlagen
hoekprofiel
hoekprofiel 1949 keer bekeken
Civilo
Artikelen: 0
Berichten: 15
Lid geworden op: za 22 mar 2008, 20:14

Re: Weerstandsmoment van afwijkende vormen

Heb het inmiddels gevonden: met steiner theorem!

((9π^2 – 64)/(144π))*r^4 + A*y^2

Nu nog even controleren met autocad of het klopt!
Gebruikersavatar
jhnbk
Artikelen: 0
Berichten: 6.905
Lid geworden op: za 16 dec 2006, 09:10

Re: Weerstandsmoment van afwijkende vormen

Als de ronde vormen niet te groot zijn raad ik je aan om ze gewoon te verwaarlozen. Het resultaat zal amper verschillen.
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.
Civilo
Artikelen: 0
Berichten: 15
Lid geworden op: za 22 mar 2008, 20:14

Re: Weerstandsmoment van afwijkende vormen

ze zijn te verwaarlozen, dat wist ik al, maar het verhaal van het naadje en de kous speelt me regelmatig parten.
oktagon
Artikelen: 0
Berichten: 4.502
Lid geworden op: di 21 feb 2006, 12:28

Re: Weerstandsmoment van afwijkende vormen

Als aanvulling op I-berekening: Eigen I van de ronding en Opp * afstand tot zwaartelijn in het kwadraat,theoretisch dus van elke ronding het zwaartepunt bepalen.Heb je het totale traagheidsmoment,dan kun je daaruit het W-moment berekenen als je de uiterste vezelafstand in een z,y of z-richting weet.

Ik maakte een aantal jaren geleden voor een ontw.werker eens een programma,waardoor hij uit plaatstaal met afgeronde hoeken geprof.balkjes kon maken met simpele hulpmiddelen! (QB)
Civilo
Artikelen: 0
Berichten: 15
Lid geworden op: za 22 mar 2008, 20:14

Re: Weerstandsmoment van afwijkende vormen

Ik heb inmiddels een sheetje in elkaar geknutseld en gecontroleerd aan autocad. klopt exact!
oktagon
Artikelen: 0
Berichten: 4.502
Lid geworden op: di 21 feb 2006, 12:28

Re: Weerstandsmoment van afwijkende vormen

Hier nog een resultaat van het programma,waarmee je uit staalplaat gevormde profielen kunt berekenen,een doosprofiel b 30 mm h 100 mm en plaatdikte 2 mm met afrondingen.

Object no:1

03-24-2008

Profielno:1

Programma PROFIEL-berek. dd.27.10.1996

****************************************

voorl. correctie dd.29.10.1996

laatste correctie dd.23.05.1999

Eigen gewalste plaatprofielen en fabrieksprofielen

*********************************************************************

#-koker-profiel

profielbreedte b1 in mm : 30

profielhoogte h1 in mm : 100

wanddikte d1 in mm : 2

Profieldoorsnede in mm2 : 502.0686

Gewicht in kg/m : 3.941238

Traagheidsmoment om x-as in mm4 : 578106.3

Weerstandsmoment Wx in mm3 : 11562.13

Ingevoerde veiligheidsfactor : 1.2

Balklengte in mtr : 3

Zelfstandig dragende balk

Eigen gewicht balk in kN/m1 : .02 (start-taxatie e.g.)

Vloeispanning staal in N/mm2 : 235

Puntlast in het midden van de balk in kN : 3.018999

Berekend op sterkte en opgegeven belastingfactor

Gelijkmatige belasting op sterkte in kN/m1: 2.012666

Materiaal-spanning bij sterkte (+lim.) in N/mm2: 195.8333 limiet

Gelijkmatige belasting;max.doorb.L/500 in kN/m1: .6888866

Gelijkmatige belasting;max.doorb.L/333 in kN/m1: 1.034364

Gelijkmatige belasting;max.doorb.L/250 in kN/m1: 1.377773

Materiaal-spanning bij doorb.L/500 in N/mm2: 67.02898

Materiaal-spanning bij doorb.L/333 in N/mm2: 100.6441

Materiaal-spanning bij doorb.L/250 in N/mm2: 134.058

Alle belasting-uitkomsten zijn inclusief eigen gewicht !

Terug naar “Klassieke mechanica”