Gebruikersavatar
king nero
Artikelen: 0
Berichten: 1.294
Lid geworden op: zo 14 nov 2004, 11:08

Opstellen d en m-lijn

Zie bijlage:

q: homogene belasting van 200 N/m

F1 = puntlast van 10 kN juist in het midden van de balk

lengte balk = 5 m

daaruit volgt:

Fa = Fb = 5.5 kN

opstellen van de D-lijn:

D: -Fa + qx ... + F1

opstellen van de M-lijn:

M: -Fa x + 0.5 q x² ... + F1 ( x-2.5)...

zijn deze twee reeds correct?

Moment waar Mmax optreedt is waar dM/dx=0

dM/dx= 0 = -Fa + qx + F1

asa x = -(F1 - Fa) / q = -(10 000N - 5 500N) / 200N/m = -22.5 m

Kan er mij iemand zeggen waar mijn rekenfout zit? Dit is stof van heel lang geleden, en dit is ongeveer alles wat ik mij nog kan herinneren...

Vind ik ergens cursussen waar dit nog eens wordt uitgelegd, of kan er mij iemand op weg helpen?
Gebruikersavatar
jhnbk
Artikelen: 0
Berichten: 6.905
Lid geworden op: za 16 dec 2006, 09:10

Re: Opstellen d en m-lijn

Je maakt het jezelf moeilijk door de definitie
\(\frac{\mbox{d^2}{M}}{\mbox{d}x^2}=-q(x)\)
te willen gebruiken. Deze definities zijn interessant voor controle achteraf en andere toepassingen.

Zoals altijd; bereken eerst de reactiekrachten. Maak dan een snede op het punt waar je het moment wilt berekenen.
moment_snede
moment_snede 1246 keer bekeken
Schrijf an het rotatie-evenwicht uit rond het punt van de snede.

Je zal zo per stuk waar de belasting anders is (hier 2) een vergelijking moeten opstellen.
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.
Gebruikersavatar
king nero
Artikelen: 0
Berichten: 1.294
Lid geworden op: zo 14 nov 2004, 11:08

Re: Opstellen d en m-lijn

jhnbk schreef:Je maakt het jezelf moeilijk door de definitie
\(\frac{\mbox{d^2}{M}}{\mbox{d}x^2}=-q(x)\)
te willen gebruiken. Deze definities zijn interessant voor controle achteraf en andere toepassingen.

Zoals altijd; bereken eerst de reactiekrachten. Maak dan een snede op het punt waar je het moment wilt berekenen.

[attachment=3012:moment_snede.png]

Schrijf an het rotatie-evenwicht uit rond het punt van de snede.

Je zal zo per stuk waar de belasting anders is (hier 2) een vergelijking moeten opstellen.
reactiekrachten = krachten van de oplegging? Fa en Fb zijn toch reeds bekend, niet?

snede maken, daar waar je het moment wil berekenen => ik wil het grootste moment berekenen, hoe kan ik dan op dit punt reeds zien waar ik die snede dien te tekenen (gezien dat dit nog een simpel geval is... wat dan bij moeilijkere gevallen, waar het niet direct zichtbaar is?)

Ik zit hier even vast, kun je dit aub. even verduidelijken?

Rotatie-evenwicht = som van de momenten?

zoals ik zie wat jij bedoelt:

1e deel: oplegkracht Fa, homogene belasting q,

sigma Ma = -qx

2e deel: oplegkracht Fa, homogene belasting q, puntbelasting F1

sigma Ma = -qx + 2.5m * F1

correct?
Gebruikersavatar
jhnbk
Artikelen: 0
Berichten: 6.905
Lid geworden op: za 16 dec 2006, 09:10

Re: Opstellen d en m-lijn

Grootste moment zal in dit geval in het midden zijn.

Je zoekt het moment dat nodig is om in de snede het evenwicht van het beschouwde deel te bewaren. Dus
\(M_{snede}=R_a \cdot x - q\frac{x^2}{2}\)
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.
Gebruikersavatar
king nero
Artikelen: 0
Berichten: 1.294
Lid geworden op: zo 14 nov 2004, 11:08

Re: Opstellen d en m-lijn

king nero schreef:opstellen van de M-lijn:

M: -Fa x + 0.5 q x² ... + F1 ( x-2.5)...


op het teken na (en nog een term), was ik daar ook...

Maar hoe bepaal ik nu analytisch op welke plaats het moment maximaal is?

Dit is nu een eenvoudige opgave, maar wat bij deze wanneer het niet op het zicht duidelijk is?
Gebruikersavatar
jhnbk
Artikelen: 0
Berichten: 6.905
Lid geworden op: za 16 dec 2006, 09:10

Re: Opstellen d en m-lijn

Je bent dan op zoek naar max(|M|) (deze zijn interessante punten voor de berekeningen)

In elk veld kan dat zijn en op elk steunpunt.
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.
Gebruikersavatar
king nero
Artikelen: 0
Berichten: 1.294
Lid geworden op: zo 14 nov 2004, 11:08

Re: Opstellen d en m-lijn

jhnbk schreef:Je bent dan op zoek naar max(|M|) (deze zijn interessante punten voor de berekeningen)

In elk veld kan dat zijn en op elk steunpunt.
inderdaad...

voor zover ik me kan herinneren, bepaalt men de maxima door af te leiden: dM/dx

Nu, wanneer ik dat probeer, kom ik op -22.5m uit (zie eerste post).

Ofwel zie ik iets flagrants over het hoofd, ofwel ben ik pertinent mis.

Ik hoop dat het morgen allemaal duidelijker zal zijn...
Gebruikersavatar
jhnbk
Artikelen: 0
Berichten: 6.905
Lid geworden op: za 16 dec 2006, 09:10

Re: Opstellen d en m-lijn

\(M_{max} = \frac{ql^2}{8}+\frac{Fl}{4}\)
Door superpositie van twee bekende maxima.
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.
Gebruikersavatar
Rofah
Artikelen: 0
Berichten: 1
Lid geworden op: do 23 dec 2010, 11:37

Re: Opstellen d en m-lijn

jhnbk schreef:
\(M_{max} = \frac{ql^2}{8}+\frac{Fl}{4}\)
Door superpositie van twee bekende maxima.
Dit is inderdaad een goede oplossing.

Als je het wiskundig bekijkt is het maximum van de M-lijn daar waar de D-lijn de nullijn/x-as snijd. De D-lijn kun je namelijk zien als de afgeleide functie van de M-lijn.

Stel het is niet zo'n fraai standaard geval als deze, dan is de oplossing te vinden door:

Dx = 0 want voor Dx = 0 is Mx = Mmax

groet,

Rofah
groet,

Rofah

Terug naar “Constructie- en sterkteleer”