Twoine
Artikelen: 0
Berichten: 13
Lid geworden op: di 22 jan 2008, 18:35

Verdeling horizontale kracht

Volgende situatie is gegeven: zie tekening in bijlage.

Het is een ligger op 2 scharnieren, een hyperstatisch stelsel dus.

De verticale reactiekrachten zijn uit symmetrie gewoon de verticale belasting gedeeld door 2.

Mag ik dit ook zeggen over de horizontale krachten: Ha = Hb? Ik zou anders niet weten hoe ik aan nog een vergelijking moet komen om Ha en Hb te vinden.

Alvast bedankt!
Bijlagen
Vraag
Vraag 1148 keer bekeken
stoker
Artikelen: 0
Berichten: 2.746
Lid geworden op: za 08 jan 2005, 12:04

Re: Verdeling horizontale kracht

ik denk van wel (als het een starre balk is)
priscilla123
Artikelen: 0
Berichten: 2
Lid geworden op: wo 17 jun 2009, 21:27

Re: Verdeling horizontale kracht

ik neem aan van wel, ja.
dirkwb
Artikelen: 0
Berichten: 4.246
Lid geworden op: wo 21 mar 2007, 20:11

Re: Verdeling horizontale kracht

Wat stelt die horizontale groene pijl van links voor?
Quitters never win and winners never quit.
stoker
Artikelen: 0
Berichten: 2.746
Lid geworden op: za 08 jan 2005, 12:04

Re: Verdeling horizontale kracht

al het groene zijn belastingen, het rode de reactiekrachten. zo interpreteer ik het toch.
Gebruikersavatar
jhnbk
Artikelen: 0
Berichten: 6.905
Lid geworden op: za 16 dec 2006, 09:10

Re: Verdeling horizontale kracht

Het is evenwel een hyperstatische structuur. Ik veronderstel even een balk (L, E, A, I) met een horizontale kracht P die aangrijpt op een afstand a van het linker steunpunt.

De structuur is niet op te lossen dus laat ik het rechter steunpunt weg en vervang het door de kracht R1. We krijgen dan de volgende structuur:
balkH
balkH 1136 keer bekeken
Nu is de normaalkrachten lijn als volgt te schrijven
\(N(x) = R_2 + \cdots - P\)


Er geldt dat
\(N(x) = P - R_1 + \cdots - P\)


Passen we de energiemethoden toe:
\(U = \int_L \frac{N^2(x)}{2AE}\mbox{d}x = \int_0^a \frac{(P-R_1)^2}{2AE}\mbox{d}x + \int_a^L \frac{(-R_1)^2}{2AE}\mbox{d}x\)
Toepassen van Castigliano
\(\frac{\partial U}{\partial R_1} = 0\)
geeft
\(R_1 = \frac{a}{L} P\)
waaruit ook R2 volgt.
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.
oktagon
Artikelen: 0
Berichten: 4.502
Lid geworden op: di 21 feb 2006, 12:28

Re: Verdeling horizontale kracht

Ik beschouw dit als een kolom tussen twee scharnieren en belast door P met een door zijdelingse kracht op de as die dus de knik verder opvoert.

Dus je kunt met de knikformule Sigma = P/(alfa*F) + M/W het zaakje oplossen Euler en VonTettmayer hebben daar theorien over ontwikkeld.

De methode van de moderator kan ik niet volgen.
Gebruikersavatar
jhnbk
Artikelen: 0
Berichten: 6.905
Lid geworden op: za 16 dec 2006, 09:10

Re: Verdeling horizontale kracht

De methode van de moderator kan ik niet volgen.
Castigliano stelt dat de verplaatsing van het aangrijpingspunt volgens de richting van een kracht P gegeven wordt door
\(\frac{\partial U}{\partial P}\)
. M.a.w. moet in bovenstaand stelsel de verplaatsing bij kracht R1 nul zijn (of logischer, de balk zal niet verlengen. Je kan dus ook steunen op de sterkteleer om de kracht te bepalen zodat de verlenging nul is).

U wordt berekend zoals hierboven gegeven. Afleiden en oplossing is triviaal. Conclusie: de horizontale kracht wordt verdeeld volgens de afstanden tot de steunpunten.

EDIT: Ik ga op zoek naar een document dat deze theorie in een notendop samenvat.
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.
Gebruikersavatar
jhnbk
Artikelen: 0
Berichten: 6.905
Lid geworden op: za 16 dec 2006, 09:10

Re: Verdeling horizontale kracht

Zie hier en elders in hetzelfde hoofdstuk.
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.
oktagon
Artikelen: 0
Berichten: 4.502
Lid geworden op: di 21 feb 2006, 12:28

Re: Verdeling horizontale kracht

De optredende hor.kracht grijpt aan in het linkerscharnier en niet ergens halverwege en na ampel inzien van de site lijkt me daar de aangeduide theorie op gebaseerd.

Ik vraag me af wat het verschil in resultaat zou zijn tussen de knikberekening als ik beschreef en de methode van

Castigliano.

Blz 360 van de genoemde site (10.5) geeft een soortgelijke oplossingsmethode weer.

De resultaten zouden bij elkaar in de buurt moeten zijn,behoudens het feit dat knikfactoren (veiligheden) aannames zijn en hierdoor verschillen zouden kunnen optreden.
Gebruikersavatar
jhnbk
Artikelen: 0
Berichten: 6.905
Lid geworden op: za 16 dec 2006, 09:10

Re: Verdeling horizontale kracht

Ik ging er van uit dat de last aangrijpt aan de balk en niet gewoon op het steunpunt. In dat geval is mijn methode correct. Je mag de oplossing in meerdere rekenprogramma's invoeren maar je zal op mijn resultaat uitkomen.

Ik zie echter niet waarom je een knik methode zou toepassen als het simpel kan berekend/bewezen worden.
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.
Gebruikersavatar
jhnbk
Artikelen: 0
Berichten: 6.905
Lid geworden op: za 16 dec 2006, 09:10

Re: Verdeling horizontale kracht

oktagon schreef:Blz 360 van de genoemde site (10.5) geeft een soortgelijke oplossingsmethode weer.

De resultaten zouden bij elkaar in de buurt moeten zijn,behoudens het feit dat knikfactoren (veiligheden) aannames zijn en hierdoor verschillen zouden kunnen optreden.
Het is totaal verschillend. Het boek geeft één roloplegging in plaats van twee scharnieren. Tevens is er bij knik geen interesse in de reactiekrachten maar in de uitbuiging en de daar bij horende spanningen e.d.

Als je mij door een uitwerking te geven kan overtuigen dat jouw oplossing via een knik methode dezelfde voor mij goed.
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.
oktagon
Artikelen: 0
Berichten: 4.502
Lid geworden op: di 21 feb 2006, 12:28

Re: Verdeling horizontale kracht

Jij bent de moderator en zult dus wel gelijk hebben;ik ga je niet overtuigen.

In 2007 ( ik meen augustus)emailde ik je al op een vraag over mijn programma's dat ik nogal lui ben op sommige ogenblikken en jij antwoordde dat je aan dezelfde ziekte leed!
Gebruikersavatar
jhnbk
Artikelen: 0
Berichten: 6.905
Lid geworden op: za 16 dec 2006, 09:10

Re: Verdeling horizontale kracht

Jij bent de moderator en zult dus wel gelijk hebben;ik ga je niet overtuigen.
Het is niet omdat ik toevallig moderator ben dat ik altijd gelijk heb hoor ;) Ik ga eens even nadenken of ik nog een andere methode kan vinden om bovenstaande uitwerking anders te bewijzen.
Het vel van de beer kunnen verkopen vraagt moeite tenzij deze dood voor je neervalt. Die kans is echter klein dus moeten we zelf moeite doen.
oktagon
Artikelen: 0
Berichten: 4.502
Lid geworden op: di 21 feb 2006, 12:28

Re: Verdeling horizontale kracht

Doe je best!

Terug naar “Constructie- en sterkteleer”