Combinatie van (27) en (33) geeft:
\(\)
\( \frac{ d \varphi}{ d x} = \frac{1}{2} \left (\frac{\partial}{\partial y} \ln \left ( \frac{(1 - \frac{r_s}{r})^2}{ A \, + \, B } \right ) \right )_{y=R_{zon}} \)
\(\)
\( \frac{ d \varphi}{ d x} = \frac{1}{2} \left (\frac{\partial}{\partial y} \left \{ \ln \left ( (1 - \frac{r_s}{r})^2 \right ) \,\, - \,\, \ln (A \, + \, B ) \right \} \right )_{y=R_{zon}} \)
\(\)
\( \frac{ d \varphi}{ d x} = \frac{1}{2} \left (\frac{\partial}{\partial y} \left \{ 2 \ln \left ( 1 - \frac{r_s}{r} \right ) \,\, - \,\, \ln (A \, + \, B ) \right \} \right )_{y=R_{zon}} \)
\(\)
\( \frac{ d \varphi}{ d x} = \frac{1}{2} \left ( 2 \frac{\partial}{\partial y} \ln \left ( 1 - \frac{r_s}{r} \right ) \,\, - \,\, \frac{\partial}{\partial y} \ln (A \, + \, B ) \right )_{y=R_{zon}} \)
\(\)
\( \frac{ d \varphi}{ d x} = \left ( \frac{\partial}{\partial y} \ln \left ( 1 - \frac{r_s}{r} \right ) \,\, - \,\, \frac{1}{2} \frac{\partial}{\partial y} \ln (A \, + \, B ) \right )_{y=R_{zon}} \)
\(\)
\( \frac{ d \varphi}{ d x} = \left ( \frac{\frac{\partial}{\partial y} \left ( 1 - \frac{r_s}{r} \right )}{ 1 - \frac{r_s}{r} } \,\, - \,\, \frac{ \frac{\partial}{\partial y} (A \, + \, B )}{2 (A \, + \, B)} \right )_{y=R_{zon}} \)
\(\)
\( \frac{ d \varphi}{ d x} = \left ( \frac{\frac{r_s y}{r^3} }{ 1 - \frac{r_s}{r} } \,\, - \,\, \frac{ \frac{\partial}{\partial y} A \, + \, \frac{\partial}{\partial y} B }{2 (A \, + \, B)} \right )_{y=R_{zon}} \,\,\,\,\,\,\,\, (34) \)