Professor Puntje schreef:\( \frac{\lambda}{\mbox{R}} = \frac{\mbox{d} \lambda}{\mbox{d} s} \)
Professor Puntje schreef:\( \lambda = \lambda_0 \, \cdot \, \frac{1}{1 + \frac{\mbox{G} \, \mbox{M}}{c^2 \, r}} \)
Professor Puntje schreef:\( \mbox{d} r = \mbox{d} s \cdot \cos \phi \)
Combinatie van deze resultaten geeft:
\( \frac{\lambda}{\mbox{R}} = \frac{\mbox{d} \lambda}{\mbox{d} s} \)
\( \frac{\lambda}{\mbox{R}} = \frac{\mbox{d} \lambda \cdot \cos \phi}{\mbox{d} s \cdot \cos \phi} \)
\( \frac{\lambda}{\mbox{R}} = \frac{\mbox{d} \lambda \cdot \cos \phi}{\mbox{d} r} \)
\( \frac{\lambda}{\mbox{R}} = \frac{\mbox{d} \lambda}{\mbox{d} r} \cdot \cos \phi \)
\( \frac{1}{\lambda_0} \cdot \frac{\lambda}{\mbox{R}} = \frac{1}{\lambda_0} \cdot \frac{\mbox{d} \lambda}{\mbox{d} r} \cdot \cos \phi \)
\( \frac{\frac{\lambda}{\lambda_0}}{\mbox{R}} = \frac{\mbox{d} \left ( \frac{\lambda}{\lambda_0} \right ) }{\mbox{d} r} \cdot \cos \phi \)
\( \frac{\lambda}{\lambda_0} = \mbox{R} \cdot \frac{\mbox{d} \left ( \frac{\lambda}{\lambda_0} \right ) }{\mbox{d} r} \cdot \cos \phi \)
\( \left ( 1 + \frac{\mbox{G} \, \mbox{M}}{c^2 \, r} \right )^{-1} = \mbox{R} \cdot \frac{\mbox{d} \left (1 + \frac{\mbox{G} \, \mbox{M}}{c^2 \, r} \right )^{-1} }{\mbox{d} r} \cdot \cos \phi \)
\( \left ( 1 + \frac{\mbox{G} \, \mbox{M}}{c^2 \, r} \right )^{-1}= \mbox{R} \cdot - \left (1 + \frac{\mbox{G} \, \mbox{M}}{c^2 \, r} \right )^{-2} \cdot - \frac{ \mbox{G} \, \mbox{M}}{c^2} \, r^{-2} \cdot \cos \phi \)
\( \left ( 1 + \frac{\mbox{G} \, \mbox{M}}{c^2 \, r} \right )^{-1} = \mbox{R} \cdot \left (1 + \frac{\mbox{G} \, \mbox{M}}{c^2 \, r} \right )^{-2} \cdot \frac{ \mbox{G} \, \mbox{M}}{c^2} \, r^{-2} \cdot \cos \phi \)
\( 1 = \mbox{R} \cdot \left (1 + \frac{\mbox{G} \, \mbox{M}}{c^2 \, r} \right )^{-1} \cdot \frac{ \mbox{G} \, \mbox{M}}{c^2} \, r^{-2} \cdot \cos \phi \)
\( 1 + \frac{\mbox{G} \, \mbox{M}}{c^2 \, r} = \mbox{R} \cdot \frac{ \mbox{G} \, \mbox{M}}{c^2 \, r} \, r^{-1} \cdot \cos \phi \)
\( \left (\frac{c^2 \, r}{\mbox{G} \, \mbox{M}} + 1 \right ) \cdot r = \mbox{R} \cdot \cos \phi \)
\( \mbox{R} = \frac{1 + \frac{c^2 \, r}{\mbox{G} \, \mbox{M}}}{\cos \phi} \cdot r \; \; \; \; \; \; \; (^*) \)
De formule (*) bepaalt een lichtbaan zodra een beginpunt en -richting gegeven zijn.