Re: Conclusie van het "twee pieken experiment"
Geplaatst: za 18 sep 2021, 10:14
In een ander topic schrijf je dit:
Eens zien of dat klopt...OOOVincentOOO schreef: ↑vr 17 sep 2021, 10:32 Mijn analyse jouw aanpak:
$$\frac{\mathrm{d}\varphi}{\mathrm{d}x} = \left ( \frac{1}{ 1 - \frac{r_s}{r} } \, - \, \frac{1}{2} \frac{- 3 \frac{x^2}{r^2} + 1 }{ \frac{r_s}{r} \frac{x^2}{r^2} + 1 - \frac{r_s}{r} } \right ) \cdot r_s \frac{R}{r^3} \,\,\,\,\,\,\, (9)$$
Mijn input:Code: Selecteer alles
phi=(1/(1-Rs/r)-0.5*(-3*(x**2/r**2)+1)/((x**2/r**2) *Rs/r +1 -Rs/r))*Rs*R/r**3
Puntje.pngCode: Selecteer alles
#Open pyplot in separate interactive window from IPython import get_ipython get_ipython().run_line_magic('matplotlib', 'qt5') #https://www.mathpages.com/rr/s8-09/8-09.htm #https://www.mathpages.com/rr/s6-03/6-03.htm import numpy as np import matplotlib.pyplot as plt from matplotlib import rcParams rcParams['axes.titlepad'] = 20 widths = [10,10] heights = [10] fig= plt.figure(figsize=(20,10)) gs=fig.add_gridspec(1,2,width_ratios=widths, height_ratios=heights) ax1=fig.add_subplot(gs[0,0]) ax2=fig.add_subplot(gs[0,1]) #Physical constants M=1.989e30 G=6.67408e-11 c=3e8 R=696340000 #schwarzschild Radius Rs=4*M*G/c**2 #Function c(r) def fdphidr1(r,x): phi=(1/(1-Rs/r)-0.5*(-3*(x**2/r**2)+1)/((x**2/r**2) *Rs/r +1 -Rs/r))*Rs*R/r**3 return phi y=R x=np.linspace(-10,10,10000) x=x*R r=np.sqrt(y**2+x**2) #Angular Distribution dphidr=fdphidr1(r,x) ax1.plot(x/R,dphidr,color="red", linewidth=0.5, label=r"(9)") ax1.set_xlabel(r'$x$',fontsize=15) ax1.set_ylabel(r'$d \phi /dx$',fontsize=15) #Integrated deflection agngle deflection=np.cumsum(dphidr)*(x[10]-x[9]) deflection=np.degrees(deflection)*3600 ax2.plot(x/R,deflection,color="red", linewidth=0.5, label=r"(9)") ax2.set_xlabel(r'$x$',fontsize=15) ax2.set_ylabel(r'$\int \phi dx$',fontsize=15) ax1.legend(loc="upper right") ax2.legend(loc="upper right")
Mijn obervatie:
- Er zijn twee pieken.
- Totale deflectiehoek krijg ik niet kloppende.