1 van 1

Problemen met de Thermodynamica

Geplaatst: di 31 mei 2005, 17:03
door Antoon
Ik heb de hoofdwetten van de thermodynamica wat gelezen maar ik heb nog vragen want ik snap een aantal formule's niet.

"Entropie S. Deze functie is gedefinieerd als S = qreversibel/T"

Wat moet ik me voorstellen bij de toestand functie "Entropie"

En waarom is de formule zo?

"A= U-TS"

Kan ik er dan van maken "A=U-qreversibel"

A is dan de vrije energie.

De formule vind ik zelf wel logisch.

"G= H-TS = U+pV- TS"

mag ik hier weer van TS , qreversibel maken?

zodat:G= U+pV- qreversibel

Of is dat niet goed.

Verder is G de Vrije Enthalpie

Wat is Vrije Enthalpie??

(TS: S=qreversibel/T, dus T*S is : T*qreversibel/T. en dan kun je de T's weg delen.)

Re: Problemen met de Thermodynamica

Geplaatst: di 31 mei 2005, 18:43
door Bart
Ik vind het een beetje vreemde notatie die je gebruikt.

U is bij mij E (totale energie in het syteem)

A is bij mij F (Helmholtz vrije energie)

G is de Gibbs vrije energie.

Voor een reversible process geldt dat dS = dQ / T

voor irreversibele processen geldt dat dS > dQ / T

maar dit zijn geen definities voor S.

Entropie is een kwantitatieve criterium voor de richting waarop een process gaat en daarmee het evenwicht in het systeem.

De algemene definitie voor entropy is

S = -k :shock: pr log(pr)

waarbij pr de Boltzmann distributie is

Re: Problemen met de Thermodynamica

Geplaatst: di 31 mei 2005, 21:12
door Antoon
Bart schreef:Ik vind het een beetje vreemde notatie die je gebruikt.

U is bij mij E (totale energie in het syteem)

A is bij mij F (Helmholtz vrije energie)

G is de Gibbs vrije energie.

Voor een reversible process geldt dat dS = dQ / T

voor irreversibele processen geldt dat dS > dQ / T

maar dit zijn geen definities voor S.

Entropie is een kwantitatieve criterium voor de richting waarop een process gaat en daarmee het evenwicht in het systeem.

De algemene definitie voor entropy is  

S = -k   :shock: pr log(pr)

waarbij pr de Boltzmann distributie is
Dankje wel voor je reactie ik heb het aandachtig gelezen en voor een deel begrepen.

Maar ik heb nog wel een paar vragen.

Wat is de Boltzmann distributie?

En wat zijn de andere variableen in de formule voor S?

Re: Problemen met de Thermodynamica

Geplaatst: di 31 mei 2005, 21:24
door Andy
tgene da ik ervan weet is da

S= k*ln(Omega) met Omega het totaal aantal posities waarin het systeem zich kan bevinden, dusja, moeilijk om uit te leggen eigenlijk die omega... Scienceworld zegt mij "W is the number of states accessible to the system"... Zijt ge ier iets mee?

k is trouwens de Boltzmann constante: R/Na (8.314/ getalvanavogadro)

Re: Problemen met de Thermodynamica

Geplaatst: di 31 mei 2005, 21:30
door Bart
k is de constante van Boltzmann

De Boltzmann distributie functie is gegeven door:

pr exp[- beta.gif Er] / Z

waar beta.gif = 1 / (kT) en Er is de energie van toestand r

pr is in feite de kans dat een systeem op temperatuur T de toestand r met energie Er heeft

Z is hier de partitiefunctie (sommatie over alle mogelijke microtoestanden in het syteem.

Z = :shock: exp[- beta.gif Er

Re: Problemen met de Thermodynamica

Geplaatst: do 02 jun 2005, 15:28
door ZwerfEnVerwonder
Wellicht ten overvloede: de Boltzmann distributie en partitiefuncties (normaalgesproken volgens mij toestandssommen geheten in het Nederlands) zijn concepten uit de statistische thermodynamica. Daarbij wordt uitgegaan van het beeld dat materie bestaat uit enorme aantallen atomen en moleculen, en dat je door statistiek te bedrijven op deze enorme aantallen deeltjes betrouwbare voorspellingen kunt doen (en dat is ook zo).

Maar: ruim voordat het molecuulmodel in beeld kwam, dachten er al mensen na over entropie. De formule waar Andy naar vraagt (S = Q / T) stamt uit die periode, en is totaal niet gebaseerd op het molecuulmodel. Deze formule is een formulering van de Tweede Hoofdwet, die (in klassieke vorm) stelt dat er "iets" is dat alleen maar kan toenemen in de tijd en daarmee in feite de richting van de tijd bepaalt. Dat "iets" werd entropie gedoopt. Pas veel later kwam de statistische interpretatie van toenemende wanorde in beeld.

Uit S = Q / T kan heel eenvoudig worden aangetoond dat warmte niet spontaan van een koud voorwerp naar een warm voorwerp kan stromen, maar wel andersom. Neem een hoeveelheid warmte Q in gedachten die van een koud voorwerp met temperatuur T(koud) naar een warm voorwerp met temperatuur T(warm) stroomt en je zult op grond van deze formule zien dat de totale entropie DAALT - en dat mag niet!