1 van 1

Kinetische energie

Geplaatst: do 05 nov 2009, 22:11
door Dqds
Hallo

Ik ben niet zo bedreven in natuurkunde en ik vroeg me iets af dus heb ik het opgezocht namelijk hoe je de energie van bewegende voorwerpen vindt maar ik kom verschillende dingen tegen.

Oftewel E=mv² oftewel E=1/2mv²

Waarom het E=mv² zou kunnen zijn snap ik perfect maar ik snap die tweede formule niet zo goed waarom zou je massa moeten delen door 2?

Dus zou iemand me kunnen zeggen wat de juiste formule is en als dat het tweede is waarom je massa door 2 deelt?

Alvast bedankt.

Re: Kinetische energie

Geplaatst: do 05 nov 2009, 22:20
door Phys
Waarom het E=mv² zou kunnen zijn snap ik perfect
Ik niet, kun je uitleggen waarom je dit logisch vindt?
maar ik snap die tweede formule niet zo goed waarom zou je massa moeten delen door 2?

Dus zou iemand me kunnen zeggen wat de juiste formule is en als dat het tweede is waarom je massa door 2 deelt?
Je deelt niet specifiek de massa door 2, er staat gewoon een factor 1/2 voor mv^2.

Voor de afleiding (of motivatie voor de definitie, afhankelijk van hoe je het bekijkt), zie hier. Het komt erop neer dat je de arbeid gaat berekenen met een intergraal, en de factor 1/2 komt door eigenschappen van integereren.

Op deze manier is de afgeleide van (1/2)mv^2 naar de snelheid v gelijk aan mv, de impuls. De afgeleide van mv^2 naar v levert 2mv, tweemaal de impuls.

Re: Kinetische energie

Geplaatst: do 05 nov 2009, 22:44
door Dqds
Ik niet, kun je uitleggen waarom je dit logisch vindt?
Euh oke ik vroeg me dit af omdat ik half en half een documentaire was aan het zien waarbij een experiment werd gedaan met twee loden ballen die werden 'gegooid' op een plastesine achtige stof.

De tweede bal werd met dubbel zoveel snelheid gegooid maar liet 4 keer zo'n groot inslagkrater achter als de eerste. Dus vandaar vond ik E=mv² logisch maar toen begonnen ze over E=1/2mv² en vanaf toen begreep ik het niet meer zo goed. Ik begrijp jouw uitleg niet helemaal maar toch wel genoeg om antwoordt op mijn vraag te krijgen.

Bedankt

Re: Kinetische energie

Geplaatst: do 05 nov 2009, 22:55
door Phys
De tweede bal werd met dubbel zoveel snelheid gegooid maar liet 4 keer zo'n groot inslagkrater achter als de eerste. Dus vandaar vond ik E=mv² logisch maar toen begonnen ze over E=1/2mv² en vanaf toen begreep ik het niet meer zo goed.
Dat een dubbele snelheid een 4 keer zo grote inslag achterlaat, suggereert dat de energie E kwadratisch van de snelheid v afhangt. Dat betekent dat E=k.v^2, met een k een of andere constante. Welke constante je ook kiest (k=1, zoals jij deed; of m/2, zoals blijkt te gelden), dit geeft zo'n kwadratisch verband. Als je ook nog zou weten dat de massa evenredig in het spel komt, kun je schrijven E=c.mv^2, met weer c een nog te bepalen constante.
Ik begrijp jouw uitleg niet helemaal maar toch wel genoeg om antwoordt op mijn vraag te krijgen.

Bedankt
Oké, graag gedaan. Theoretisch kun je zeggen dat de factor 1/2 komt doordat je integreert. Praktisch kun je zeggen dat, onder de aanname dat E=c.mv^2 (zoals het experiment met de bal suggereerde), metingen aantonen dat c gelijk is/moet zijn aan c=1/2.

Re: Kinetische energie

Geplaatst: vr 06 nov 2009, 08:53
door mathfreak
Het komt erop neer dat je de arbeid gaat berekenen met een intergraal, en de factor 1/2 komt door eigenschappen van integereren.
Je kunt het zelfs afleiden zonder integreren. Stel dat een voorwerp met massa m onder invloed van een kracht F een weg s aflegt, waarbij de eindsnelheid na t seconden v is, en de versnelling a constant is. De door de kracht verrichte arbeid W vinden we uit

W = Fs = mas = ma·½at² = ½ma²t². Uit v = at volgt:
\(a=\frac{v}{t}\)
, dus
\(W=\frac{1}{2}m\cdot\frac{v^2}{t^2}\cdot t^2=\frac{1}{2}mv^2\)
.

Re: Kinetische energie

Geplaatst: vr 06 nov 2009, 09:17
door dirkwb
Je kunt het zelfs afleiden zonder integreren//
Dus die s=1/2*at^2 komt gewoon uit de lucht vallen? :eusa_whistle:

Re: Kinetische energie

Geplaatst: vr 06 nov 2009, 10:03
door mathfreak
Dus die s=1/2*at^2 komt gewoon uit de lucht vallen? :eusa_whistle:
Voor een eenparig versnelde beweging met beginsnelheid v(0) en een versnelling a geldt: s(t) = v(0)t+½at². Met v(0) = 0 m/s geeft dit: s(t) = ½at².

Re: Kinetische energie

Geplaatst: vr 06 nov 2009, 10:14
door TD
Ik denk dat dirkwb doelt op het feit dat je ook dat resultaat waarschijnlijk bekomt door integratie. Dus als je deze formule als 'gegeven' aanneemt, zit de integraal nog steeds 'verstopt' in die formule.

Re: Kinetische energie

Geplaatst: vr 06 nov 2009, 11:35
door Phys
Inderdaad. Je kunt dat weer proberen uit te leggen door de oppervlakte onder de juiste grafiek te berekenen, bij een constante versnelling is dat gewoon een driehoek, waarvoor de bekende formule (1/2)*basis*hoogte geldt.