1 van 1

Vallende bollen van verschillende diameter

Geplaatst: vr 11 nov 2011, 23:10
door Coiske60
hallo,

Ik ben in discussue met iemand over voorwerpen die vallen mét luchtweerstand;

Ik beweer dat van 2 bollen van 't zelfde materiaal maar met verschillende diameter, het de grootste is die eerst de grond zal raken

Volgens mij is de luchtweerstand afhankelijk van de doorsnede van de bol, en dat is een kwadraatsfunctie (s = pi x r²)

(volgens ene G. Stokes zelfs van de straal alleen, dus een lineaire functie)

De kracht waarmee de bollen versneld worden tijdens hun val hangt echter van hun massa af, en dus van hun volume (de dichtheid is immers gelijk).

en het volume ( V = 4/3 x pi x r³ ) is een derdemachtsfunctie.

Het volume groeit dus sneller aan dan de doorsnede als de straal vergroot.

De luchtweerstand is dus minder belangrijk (t.o.v de massa) bij de grootste bol, waardoor hij minder afgeremd wordt en sneller de grond raakt.

Ik heb op een site gewijd aan G. Stokes zelfs een filmpje gezien waar 3 bollen van verschillende diameter tegelijk in een bak water gegooid worden, en waar de grootste duidelijk eerst de bodem raakt, maar er staat geen verdere uitleg bij)

Maar mijn discussie-tegenstander zegt dat water zich anders gedraagt dan lucht, en dat in de lucht beide bollen gelijk zullen vallen...

Wie heeft er nu gelijk?

Re: Vallende bollen van verschillende diameter

Geplaatst: vr 11 nov 2011, 23:32
door Fred F.
Jij hebt gelijk: de grootste bol zal zowel in water als in lucht sneller vallen.

In lucht zal het effect echter erg klein zijn en daarom bij massieve bollen met het oog waarschijnlijk niet waar te nemen.

Re: Vallende bollen van verschillende diameter

Geplaatst: za 12 nov 2011, 07:33
door Neutra
Ik ben het met geen van beiden eens.

1) De valversnelling is voor beide bollen in vacuüm hetzelfde.

2) Volgens Stokes ondervindt de grootste bol de grootste weerstand.

3) De grootste bol ondervindt bovendien de grootste Archimedes kracht, opwaartse kracht.

Resulterend zal de grotere bol vanaf dezelfde valhoogte het laatst aankomen.

Re: Vallende bollen van verschillende diameter

Geplaatst: za 12 nov 2011, 09:05
door Marko
Het zou fijn zijn als een en ander onderbouwd werd met bronnen. Een filmpje op een site, daar kan niemand iets mee. Het er niet mee eens zijn, kan ook niemand iets mee.

Hoe dan ook, met betrekking tot het laatste bericht: De grootste bol ondervindt ook de grootste zwaartekracht. En die schaalt met de derde macht van de straal.

Re: Vallende bollen van verschillende diameter

Geplaatst: za 12 nov 2011, 12:59
door Fred F.
Het is precies zoals topicstarter Coiske60 zelf al beredeneerde: een grote bol zal relatief minder luchtweerstand hebben omdat bolgewicht evenredig is met straal (of diameter) tot de derde macht terwijl luchtweerstand evenredig is met straal (of diameter) tot de tweede macht.

Een grote bol valt in lucht of vloeistof sneller dan een kleine bol. In vacuum vallen ze natuurlijk precies even snel.

Re: Vallende bollen van verschillende diameter

Geplaatst: za 12 nov 2011, 22:18
door Coiske60
over bronnen:

inderdaad, ik had die site moeten vernoemen, hier is hij:

http://nl.wikipedia.org/wiki/Wet_van_Stokes

De link naar het filmpje staat onderaan in die tekst.

Nog een opmerking: als ik de tekst niet diagonaal gelezen had, dan wist ik direkt dat de stelling: "de weerstand is recht evdenredig met de straal van het balletje" enkel opgaat bij heel kleine voorwerpen (diameter 0,1 mm of minder)

bedankt voor de antwoorden. Die "archimedeskracht" heeft me even doen schrikken, maar ik denk dat die wegvalt tov. de massa.

Coiske60

Re: Vallende bollen van verschillende diameter

Geplaatst: za 12 nov 2011, 23:07
door Neutra
Neutra schreef:Ik ben het met geen van beiden eens.

1) De valversnelling is voor beide bollen in vacuüm hetzelfde.

2) Volgens Stokes ondervindt de grootste bol de grootste weerstand.

3) De grootste bol ondervindt bovendien de grootste Archimedes kracht, opwaartse kracht.

Resulterend zal de grotere bol vanaf dezelfde valhoogte het laatst aankomen.
Ik heb het filmpje gezien en geconstateerd, dat de grootste en dus zwaarste het eerst beneden was.

Kan iemand mij uitleggen, wat mijn fout is?

Re: Vallende bollen van verschillende diameter

Geplaatst: za 12 nov 2011, 23:49
door 317070
<object width="425" height="350"></param></param><embed src="" type="application/x-shockwave-flash" wmode="transparent" width="425" height="350"></embed></object>
\(a = F / m\)
\(F_{totaal} = F_{gewicht} + F_{wrijving} + F_{archimedes}\)
\(F_{wrijving} = 6 \pi r \mu v\)
\(F_{archimedes} = V g {\rho}_l\)
\(F_{gewicht} = g m\)
\(m = V {\rho}_s \)
\(V = \frac{4}{3} \pi r^3 \)
Dus
\(a = g + \frac{9 \mu v }{ 2 {\rho}_s r^2 } + \frac{g \rho_l}{\rho_s}\)
De kleinste bol heeft de grootste versnelling, dus de kleinste bol zal het vlugst versnellen. Neutra zijn redenering is juist. De kleinste bol is sneller.

MAAAAAAAR

De terminussnelheid van de bol is
\(v = \frac{2}{9} r^2 g \frac{({\rho}_s - {\rho}_l)}{\mu} \)
Dus de kleinste bol heeft ook de kleinste terminussnelheid! Dat wil dus zeggen, de grootste bol kan een grotere snelheid halen, en haalt de kleinste bol dus sowieso uiteindelijk in! Fred is ook juist.

Het hangt er dus van af, hoe ver de grond precies is! ;) Als beide bollen vertrekken vanuit stilstand, dan zal eerst de kleinste het snelst wegschieten, en later worden ingehaald door grotere bollen.

Bron voor alle formules

Edit: domme fout in de berekening... zie post van ZVdP

Re: Vallende bollen van verschillende diameter

Geplaatst: za 12 nov 2011, 23:55
door klazon
Kan iemand mij uitleggen, wat mijn fout is?
Even het hele draadje goed doorlezen en je komt er vanzelf achter waar je redeneerfout zit.

Re: Vallende bollen van verschillende diameter

Geplaatst: zo 13 nov 2011, 00:23
door ZVdP
De kleinste bol heeft de grootste versnelling, dus de kleinste bol zal het vlugst versnellen. Neutra zijn redenering is juist. De kleinste bol is sneller.
Je bent vergeten rekening te met de richting van die extra krachten. De luchtwrijving is inderdaad groter voor een kleine bol, maar laat het nu juist zo zijn dat die krachten in de verkeerde richting werken, waardoor de netto versnelling dus kleiner is voor een kleine bol.
\(a = g - \frac{9 \mu v }{ 2 {\rho}_s r^2 } - \frac{g \rho_l}{\rho_s} < g\)

Re: Vallende bollen van verschillende diameter

Geplaatst: zo 13 nov 2011, 01:37
door 317070
ZVdP schreef:Je bent vergeten rekening te met de richting van die extra krachten. De luchtwrijving is inderdaad groter voor een kleine bol, maar laat het nu juist zo zijn dat die krachten in de verkeerde richting werken, waardoor de netto versnelling dus kleiner is voor een kleine bol.
\(a = g - \frac{9 \mu v }{ 2 {\rho}_s r^2 } - \frac{g \rho_l}{\rho_s} < g\)
Er zijn zo van die momenten... ;)