1 van 1
Didactiek bij een deling
Geplaatst: vr 19 sep 2014, 13:39
door Vinnie Terranova
Hoe kun je de volgende opgave het beste uitleggen aan iemand die bezig is met het oefenen voor de 3F rekentoets (MBO)? Een rekenmachine is niet toegestaan.
(40 x 8,9) : (8 x 8,9) =
Mij valt gelijk op dat in beide factoren het getal 8,9 voor komt. Wat ik dan zelf zou doen, is de deling als breuk noteren, waarbij je vrij snel kunt zien dat je de beide getallen 8,9 tegen elkaar kunt wegdelen. Maar ik merkte wel dat dat voor die persoon behoorlijk abracadabra was.
Is er een andere manier om uit te leggen hoe je deze opgave handig uit kunt rekenen, zonder dat je eerst de haakjes wegwerkt en dan de deling gaat uitvoeren? Want laten we eerlijk zijn: dat laatste kan nooit de bedoeling van deze opgave zijn geweest.
Re: Didactiek bij een deling
Geplaatst: vr 19 sep 2014, 13:49
door aadkr
er staat
\(\frac{40 \cdot 8,9}{8 \cdot 8,9}\)
die 8,9 kunnen we tegen elkaar wegstrepen
\(\frac{40}{8}\)
bedenk dat 40 te schrijven is als 5.8
Re: Didactiek bij een deling
Geplaatst: vr 19 sep 2014, 14:37
door Vinnie Terranova
aadkr, volgens mij heb je m'n vraag niet helemaal goed begrepen. Bovendien klopt je laatste zin niet.
Re: Didactiek bij een deling
Geplaatst: vr 19 sep 2014, 15:08
door aadkr
Vinnie, het spijt me als ik je vraag niet goed begrepen heb.
ik bedoel dat je 40 ook mag schrijven als het produkt van 5 en 8
dus 40 =5 keer 8
als je het goed vindt kom ik er vanavond op terug
vriendelijke groet,
aad
Re: Didactiek bij een deling
Geplaatst: vr 19 sep 2014, 15:37
door dannypje
Vinnie, vraag me af of je het deel achter het deelteken zou kunnen schrijven zonder haakjes, en er dan op wijzen dat de maaltekens tussen de haakjes dan veranderen in deeltekens. Niet echt volledig kosjer indien het meer haakjes zou betreffen, maar hier misschien wel bruikbaar.
Dus (40 x 8,9) : (8 x 8,9) = 40 x 8,9 : 8 : 8,9, en wat dus overblijft is 40 : 8 = 5
Re: Didactiek bij een deling
Geplaatst: vr 19 sep 2014, 16:38
door physicalattraction
De manier van dannypje vind ik zelf nog onduidelijker dan het origineel. Ik zou het bij de breuken die aadkr voorstelt houden.
\((40 \cdot 8,9) : (8 \cdot 8,9) = \frac{40 \cdot 8,9}{8 \cdot 8,9} = \frac{40}{8} \cdot \frac{8,9}{8,9} = \frac{40}{8} \cdot 1 = \frac{40}{8} = 5\)
Ga bij elke stap (elk '='-teken) na of je student die stap snapt. Zo niet, dan moet je die stap nog wat beter uitleggen. Je ziet dan vanzelf waar de bottleneck bij hem of haar ligt.
Re: Didactiek bij een deling
Geplaatst: vr 19 sep 2014, 16:51
door Vinnie Terranova
Aadkr, ik bedoelde meer dat ik wel weet hoe je de opgave als breuk kunt herschrijven en dan de gemeenschappelijke factor eruit kunt delen, maar waar het me meer om gaat, is of je deze opgave ook uit kunt leggen zonder het als breuk te schrijven.
Dannypje, ik denk dat jouw manier veel te lastig is voor m'n leerling. De kans bestaat dat hij hetzelfde trucje ook gaat toepassen bij het gedeelte voor het deelteken. Bovendien, wat zal hij dan gaan doen bij een opgave als (40 x 8,9) : (8 + 8,9)? Gaat hij die '+' dan ook door een '-' vervangen?
Physicalattraction, het nadeel van deze methode is dat je redelijk goed met breuken overweg moet kunnen. En dat kan m'n leerling niet; hij krijgt niet voor niets bijles. Dus ik hoop dat er een andere manier is om deze opgave op te lossen. Maar misschien is die er niet, en zal ik het in hele kleine stapjes moeten uitleggen.
Re: Didactiek bij een deling
Geplaatst: vr 19 sep 2014, 17:35
door aadkr
ik denk dat er geen andere manier is om dit vraagstuk op te lossen.
wat je kunt doen is de leerling enkele eenvoudige formules uit de algebra aanleren , en deze toelichten aan de hand van enkele getallenvoorbeelden.
gebruik voor de deelstreep a.u.b. niet het : teken.
gebruik voor de deelstreep een horizontale streep .
als het om die eenvoudige rekenregels gaat, zit ik aan het volgende te denken
\(\frac{(a \cdot b)}{(c \cdot d)}=\frac{a \cdot b}{c \cdot d}=\frac{a}{c} \cdot \frac{b}{d}\)
laten we dit rekenregel (1) noemen
andere rekenregel:
\(\frac{a}{a}=1\)
geldig voor alle waarden van a die ongelijk aan nul zijn.
laten we deze rekenregel , rekenregel (2) noemen.
\(a \cdot 1 =a \)
laten we dit rekenregel (3) noemen.
Re: Didactiek bij een deling
Geplaatst: vr 19 sep 2014, 18:31
door mathfreak
aadkr schreef:
gebruik voor de deelstreep a.u.b. niet het : teken.
En gebruik voor het begrip vereenvoudigen alsjeblieft niet het woord wegstrepen. Dit leidt onder andere tot fouten als
\(\frac{5+2}{6}=\frac{5}{3}\)
,
\(\frac{2}{8+3}=\frac{0}{7}=0\)
,
\(\frac{\sin x}{x}=\sin 1\)
en
\(\frac{\log a}{\log b}=\frac{a}{b}\)
.
*ontleend aan Wiskundeonderwijs nu van Bram Lagerwerf*
Re: Didactiek bij een deling
Geplaatst: vr 19 sep 2014, 19:29
door Typhoner
ik ken de betreffende scholier natuurlijk niet, maar het lijkt me een redelijke optie om het concept wegstrepen eerst helder aan te brengen a.d.h.v. eenvoudigere voorbeelden, die veel simpeler na te rekenen zijn. ((2*3)/(4*3) of zoiets)
Re: Didactiek bij een deling
Geplaatst: vr 19 sep 2014, 21:53
door dannypje
Vinnie Terranova schreef:
Aadkr, ik bedoelde meer dat ik wel weet hoe je de opgave als breuk kunt herschrijven en dan de gemeenschappelijke factor eruit kunt delen, maar waar het me meer om gaat, is of je deze opgave ook uit kunt leggen zonder het als breuk te schrijven.
Dannypje, ik denk dat jouw manier veel te lastig is voor m'n leerling. De kans bestaat dat hij hetzelfde trucje ook gaat toepassen bij het gedeelte voor het deelteken. Bovendien, wat zal hij dan gaan doen bij een opgave als (40 x 8,9) : (8 + 8,9)? Gaat hij die '+' dan ook door een '-' vervangen?
Physicalattraction, het nadeel van deze methode is dat je redelijk goed met breuken overweg moet kunnen. En dat kan m'n leerling niet; hij krijgt niet voor niets bijles. Dus ik hoop dat er een andere manier is om deze opgave op te lossen. Maar misschien is die er niet, en zal ik het in hele kleine stapjes moeten uitleggen.
@Vinnie en physicalattraction: mijn methode kan misschien onduidelijk overkomen qua schrijfwijze, maar het is wel wat er gebeurt he. De rekenregels zeggen trouwens dat je delen en vermenigvuldigen van links naar rechts moet uitwerken. De haakjes veranderen hier de voorrang van de bewerkingen een beetje, maar als je die dus weglaat krijg je 40 x 8,9/8/8,9. Werk dat gewoon van links naar rechts uit, en je krijgt de juiste oplossing.
Maar Vinnie, als jij zegt dat jouw leerling niet voor niks bijles krijgt, zou ik beginnen met hem breuken te leren
En de rekenregels natuurlijk, zodat hij weet dat die + niet door een - vervangen mag worden want anders krijg je van die grappig/trieste situaties zoals de voorbeelden in de posts hierboven.
Re: Didactiek bij een deling
Geplaatst: za 20 sep 2014, 07:32
door rwwh
ik ken de betreffende scholier natuurlijk niet, maar het lijkt me een redelijke optie om het concept wegstrepen eerst helder aan te brengen a.d.h.v. eenvoudigere voorbeelden, die veel simpeler na te rekenen zijn. ((2*3)/(4*3) of zoiets)
Dit lijkt me een prima oplossing. En dan concreet maken: in plaats van te praten over abstracte getallen helpt het mensen die moeite hebben mer wiskunde nog wel eens om het over appels of taarten te hebben. "Als je twee taarten met de hele klas van 20 kinderen deelt, dan krijgt iedereen evenveel als wanneer je de helft van die twee taarten deelt met de helft van de klas. Of acht taarten met de hele school"
Re: Didactiek bij een deling
Geplaatst: za 20 sep 2014, 16:35
door Safe
Je moet met een eenvoudiger vb beginnen, bv:
\(\frac 6 {10}=\frac{3\cdot 2}{5\cdot 2}\)
maw je moet 'opbouwen' ...
Re: Didactiek bij een deling
Geplaatst: ma 22 sep 2014, 13:48
door physicalattraction
dannypje schreef:
Maar Vinnie, als jij zegt dat jouw leerling niet voor niks bijles krijgt, zou ik beginnen met hem breuken te leren
Hier ben ik het helemaal mee eens. Als hij moeite heeft met breuken, is het beter hem dat fatsoenlijk aan te leren, dan allerlei trucjes om breuken maar te vermijden.