Gebruikersavatar
ukster
Artikelen: 0
Berichten: 4.917
Lid geworden op: za 28 nov 2015, 10:42

Geinverteerde slinger

Het opzetten van de basisvergelijking in φ(t) uitgaande van versnellingsevenwicht is mij niet echt duidelijk. ik neem aan dat hierin de grootheden gravitatieversnelling g, hoekversnelling α(t) hoek φ(t), (cart)versnelling a(t), staaflengte L en massa m moeten voorkomen  maar hoe precies….
Basisvergelijking in φ(t)
a(t).cosφ(t) =g.sinφ(t) ???
Inverted Pendulum
Inverted Pendulum 1439 keer bekeken
robertus58a
Artikelen: 0
Berichten: 216
Lid geworden op: do 18 nov 2010, 17:21

Re: Geinverteerde slinger

De eenvoudigste manier is het opstellen van de bewegingsvergelijkingen via Lagrange.  Je stelt dan de lagrangiaan, L=T-V, op waarin T de kinetische energie and V de pot. energie is van het system. Stel dat L in x is uitgedrukt dan kan je de bewegingsvergelijkingen kan je oplossen via
                      
\(\frac{\text{d}x}{\text{d}t}(\frac{\partial L}{\partial \dot{x}})=\frac{\partial L}{\partial x}\)
 
In jouw geval zal L in de verplaatsing en de hoek worden uitgedrukt. Je zal dan ook 2 vergelijkingen krijgen).
 
Ter inspiratie zie ook: https://en.wikipedia.org/wiki/Lagrangian_mechanics  (zie Pendulum on a movable support).
 
Je kan ook alle componenten scheiden en newton toepassen. Maar de method van lagrange is eleganter en directer. Je zal wel naw een niet oplosbaar stelsel van niet lineaire DV's krijgen.
 
Als je lagrange wilt toepassen en je bent niet bekend met de method dan zou ik deze method eerst eens op een simple massa-veersysteem toepassen
 
robertus58a
Artikelen: 0
Berichten: 216
Lid geworden op: do 18 nov 2010, 17:21

Re: Geinverteerde slinger

Ik heb  je opgave niet goed genoeg gelezen: massa's kunnen worden verwaarloosd. dwz. kan eea via een statisch krachtenevenwicht oplossen.
Gebruikersavatar
ukster
Artikelen: 0
Berichten: 4.917
Lid geworden op: za 28 nov 2015, 10:42

Re: Geinverteerde slinger

Ik zie nu pas (voortschrijdend inzicht na een tijd piekeren),dat ik een zeer belangrijke versnelling niet heb meegenomen in de vergelijking voor versnellingsevenwicht, namelijk de tangentiële versnelling L.α(t) ter plekke van de massa.
tangentiele versnelling
tangentiele versnelling 1432 keer bekeken
Om de eerder genoemde vergelijking geen geweld aan te doen zal L.α(t) zowel in het het rechter lid als het linkerlid moeten worden toegevoegd denk ik.
L.α(t) +a(t)cosφ(t)=L.α(t)+g.sinφ(t)
L.α(t) = L.α(t) + g.sinφ(t)- a(t)cosφ(t)
α(t)=d2(φ(t)/dt
L.d2(φ(t)/dt=L.α(t) + g.sinφ(t)- a(t)cosφ(t)  (niet-lineaire Differentiaalvergelijking in φ(t))
de massa m zie ik hierin niet expliciet terug,maar deze zal in de versnelling van het karretje verwerkt zijn neem ik aan. (1e wet van Newton) 
 
Gebruikersavatar
Michel Uphoff
Moderator
Artikelen: 0
Berichten: 8.167
Lid geworden op: di 01 jun 2010, 00:17

Re: Geinverteerde slinger

Voor evenwicht moet de versnelling α(t) van massa m in horizontale richting m.i. eenvoudigweg gelijk zijn aan tan φ * g
Staaflengte L doet er niet toe, massa m doet er niet toe.
 

Opmerking moderator

Verplaatst naar klassieke mechanica
Gebruikersavatar
ukster
Artikelen: 0
Berichten: 4.917
Lid geworden op: za 28 nov 2015, 10:42

Re: Geinverteerde slinger

dat is waar.
In het later toegevoegde (tangentiële versnelling) stukje in de vergelijking zit wel de staaflengte L verwerkt.
Gevoelsmatig veronderstel ik dat de staaflengte L een belangrijke invloed heeft op mate van oscillatie als de staaf door het regelsysteem in evenwicht wordt gebracht.   
Gebruikersavatar
Michel Uphoff
Moderator
Artikelen: 0
Berichten: 8.167
Lid geworden op: di 01 jun 2010, 00:17

Re: Geinverteerde slinger

L een belangrijke invloed heeft
 
Zolang alleen m een massa heeft en er is geen sprake is van enige wrijving, zie ik dat niet in. Er is louter al dan niet krachtenevenwicht en de krachten hebben niets van doen met de lengte van de massaloze staaf, bijgevolg zijn ook de versnellingen onafhankelijk van L.
Wel is het zo, dat als m uit evenwicht is en dus een radiale snelheid heeft die gecompenseerd moet worden, de reactietijd bij een korte staaf ook korter moet zijn. De valversnelling blijft immers gelijk, dan is de hoekverandering bij een korte staaf groter per tijdseenheid.
Gebruikersavatar
ukster
Artikelen: 0
Berichten: 4.917
Lid geworden op: za 28 nov 2015, 10:42

Re: Geinverteerde slinger

Op dat punt verschillen we van mening. De tangentiële versnellingscomponent a die later in de vergelijking is toegevoegd (het is immers een vergelijking voor versnellingsevenwicht) is afhankelijk van staaflengte L en de hoekversnelling α(t)    de formule is: a=L.α(t)    
Gebruikersavatar
Michel Uphoff
Moderator
Artikelen: 0
Berichten: 8.167
Lid geworden op: di 01 jun 2010, 00:17

Re: Geinverteerde slinger

Ik had kort na plaatsing nog een tweede alinea toegevoegd, waarschijnlijk doelen we op hetzelfde.
Gebruikersavatar
ukster
Artikelen: 0
Berichten: 4.917
Lid geworden op: za 28 nov 2015, 10:42

Re: Geinverteerde slinger

Inderdaad,
de omgekeerde slinger is het toppunt van instabiel gedrag,dus is het van belang de system dynamics te kennen en de daarbij behorende overdrachtfunctie
In dit onderhavige geval met de aangegeven verwaarlozingen zal dit nog redelijkerwijs te doen zijn...maar ik besef dat de werkelijke overdracht een stuk ingewikkelder wordt......
Gebruikersavatar
Professor Puntje
Artikelen: 0
Berichten: 7.575
Lid geworden op: vr 23 okt 2015, 23:02

Re: Geinverteerde slinger

Ik zie nog niet waarom de twee door mij omcirkeltje a(t)'s gelijk zouden moeten zijn:
 
a(t)
a(t) 1429 keer bekeken
Gebruikersavatar
ukster
Artikelen: 0
Berichten: 4.917
Lid geworden op: za 28 nov 2015, 10:42

Re: Geinverteerde slinger

a(t) is de horizontale versnelling die aan het karretje wordt gegeven,zodat een stabiele verticale stand van de staaf mogelijk wordt (evenwicht).
De versnellingscomponent (a(t).cos φ) maakt dan evenwicht met de zwaartekrachtversnellingscomponent  g.sin φ(t)+ de tangentiële versnelling L.α(t) samen.
Gebruikersavatar
Professor Puntje
Artikelen: 0
Berichten: 7.575
Lid geworden op: vr 23 okt 2015, 23:02

Re: Geinverteerde slinger

Aha - je bekijkt het systeem dus vanuit een referentiestelsel dat een momentane horizontale versnelling a(t) heeft, zodanig dat het karretje gemeten in dat versnellende stelsel momentaan stilstaat. Omdat dat stelsel geen inertiaalstelsel is moet je dan als schijnkracht op massa m de horizontale kracht -m.a(t) invoeren. Vervolgens eis je krachtenevenwicht (inclusief de schijnkracht) in dat versnellende referentiestelsel, wat betekent dat de slinger ten opzichte van het versnellende karretje momentaan in evenwicht blijft. Is dat de bedoeling?
 
Verder is de betekenis van de versnelling α mij nog niet helemaal duidelijk. Geldt onderstaande?
\( \alpha(t) = \ddot{\varphi}(t) \)
Gebruikersavatar
ukster
Artikelen: 0
Berichten: 4.917
Lid geworden op: za 28 nov 2015, 10:42

Re: Geinverteerde slinger

De servomotor oefent een kracht F uit op het karretje. hierdoor wordt de benodigde horizontale versnelling a(t)gegenereerd.
de basisvergelijking voor evenwicht is dus een versnellingsvergelijking.
L.d2φ(t)/dt=L.α(t)+g.sinφ(t)- a(t).cosφ(t)    
inderdaad met hoekversnelling α=d2φ(t)/dt 
de tangentiële versnelling aan de top van de staaf is a=L.α 
tangentiele versnelling
tangentiele versnelling 1428 keer bekeken
Overigens zal dit uiterst instabiele systeem waarschijnlijk alleen stabiel gemaakt kunnen worden voor kleine hoekveranderingen φ(t),dus moet voor deze niet-lineaire basis Differentiaalvergelijking ook nog de gelineariseerde vorm worden gevonden.
Gebruikersavatar
Professor Puntje
Artikelen: 0
Berichten: 7.575
Lid geworden op: vr 23 okt 2015, 23:02

Re: Geinverteerde slinger

Het eigenaardige van dit vraagstuk is dat de verstoring niet in de vorm van een kracht maar van een versnelling is gegeven:
 
vreemd
vreemd 1429 keer bekeken
 

Als dan ook nog geldt dat:
\( \alpha(t) = \ddot{\varphi}(t) \)
Dan vind je φ(t) dan door twee keer integreren.

Terug naar “Klassieke mechanica”