1 van 1
Hoe bepaal ik of de vierkantswortel uit een getal irrationaal is?
Geplaatst: ma 24 dec 2018, 22:42
door Patrick4WF
Een <b>rationaal getal </b><b>kan geschreven worden als</b> het quotiënt van twee gehele <b>getallen </b>waarvan de noemer niet nul is.
Voor een irrationaal getal kan dat dus niet. We kunnen het NIET schrijven als een breuk van twee gehele getallen.
Maar hoe kan je dat op een eenvoudige manier uitmaken?
Bv bij √34.
Hoe kun je met zekerheid zeggen dat dit een irrationaal getal is?
Door een rekenmachine te gebruiken kan je daar toch niet voor 100 % zeker van zijn.
En zonder rekenmachine?
Dank voor uw welwillende medewerking
Re: Hoe bepaal ik of de vierkantswortel uit een getal irrationaal is?
Geplaatst: di 25 dec 2018, 11:49
door mathfreak
Stel √34 is te schrijven als het quotiënt van 2 gehele getallen p en q, waarbij p en q geen gemeenschappelijke delers hebben. Er moet dan gelden dat
\(\sqrt{34}=\frac{p}{q}\)
Kwadrateren levert:
\(34=\frac{p^2}{q^2}\)
Links en rechts met q² vermenigvuldigen levert: p² = 34q², dus p² is een veelvoud van 34. Omdat p en q geen gemeenschappelijke delers hebben is q een oneven getal dat niet deelbaar is door 17.
Stel q = 2n+1, dan geldt dat p² = 34(2n+1)². Veronderstel p is een veelvoud van 34, zeg p = 34m, dan geldt dat p² = 34²m², dus 34²m² = 34(2n+1)², dus 34m² = (2n+1)², dus q² = 34m². Dit zou echter betekenen dat q ook een veelvoud van 34 is. Dit is echter in tegenspraak met het gegeven dat p en q geen gemeenschappelijke delers hebben. Daaruit volgt dus dat √34 irrationaal is, wat te bewijzen was.
Re: Hoe bepaal ik of de vierkantswortel uit een getal irrationaal is?
Geplaatst: di 25 dec 2018, 14:50
door Benm
Puur uit nieuwsgierigheid: is het zo dat alle wortels irrationeel zijn als het geen geheel getal betreft?
Re: Hoe bepaal ik of de vierkantswortel uit een getal irrationaal is?
Geplaatst: di 25 dec 2018, 16:17
door mathfreak
Benm schreef:
Puur uit nieuwsgierigheid: is het zo dat alle wortels irrationeel zijn als het geen geheel getal betreft?
Als het getal onder het wortelteken geen kwadraat is, is de wortel een irrationaal getal. Voor √2 werd indertijd bij de oude Grieken al bewezen dat dit een irrationaal getal is.
Re: Hoe bepaal ik of de vierkantswortel uit een getal irrationaal is?
Geplaatst: di 25 dec 2018, 18:00
door Patrick4WF
mathfreak schreef:
Omdat p en q geen gemeenschappelijke delers hebben is q een oneven getal dat niet deelbaar is door 17.
Kun je die conclusie wat meer verduidelijken?
Heeft het te maken met het feit dat 34 = 2 * 17 enn 2 en 17 priemgetallen zijn?...
Re: Hoe bepaal ik of de vierkantswortel uit een getal irrationaal is?
Geplaatst: di 25 dec 2018, 18:21
door mathfreak
Patrick4WF schreef:
Kun je die conclusie wat meer verduidelijken?
Heeft het te maken met het feit dat 34 = 2 * 17 enn 2 en 17 priemgetallen zijn?...
Daar heeft het inderdaad mee te maken.
Re: Hoe bepaal ik of de vierkantswortel uit een getal irrationaal is?
Geplaatst: za 29 dec 2018, 23:56
door TD
Benm schreef:
Puur uit nieuwsgierigheid: is het zo dat alle wortels irrationaal zijn als het geen geheel getal betreft?
mathfreak schreef:
Als het getal onder het wortelteken geen kwadraat is, is de wortel een irrationaal getal. Voor √2 werd indertijd bij de oude Grieken al bewezen dat dit een irrationaal getal is.
Voor de duidelijkheid: de vierkantswortel van een getal is enkel rationaal als dat getal zelf een
kwadraat van een geheel getal is. Alle positieve getallen zijn immers kwadraten (van hun eigen vierkantswortel); ook irrationale getallen.
Re: Hoe bepaal ik of de vierkantswortel uit een getal irrationaal is?
Geplaatst: zo 30 dec 2018, 02:13
door Benm
Ik vind het altijd wel bijzonder hoe dit soort dingen bewezen worden.
Blijkbaar is er geen enkele situatie waarbij een worten van een getal (dat geen kwadraat is van een geheel getal) geschreven kan worden als een breuk.
Vooral de implicatie de andere kant op vind ik interessant: het is dus niet mogelijk een breuk (die geen geheel getal is, dus 8/2 telt niet, maar 7/2 wel) te vinden waarvan het kwadraat een geheel getal is?
Re: Hoe bepaal ik of de vierkantswortel uit een getal irrationaal is?
Geplaatst: zo 30 dec 2018, 10:24
door TD
Benm schreef:
Vooral de implicatie de andere kant op vind ik interessant: het is dus niet mogelijk een breuk (die geen geheel getal is, dus 8/2 telt niet, maar 7/2 wel) te vinden waarvan het kwadraat een geheel getal is?
Ja en nee: een breuk met noemer 1 is natuurlijk ook rationaal. Maar inderdaad, een niet-geheel getal kan geen geheel getal als kwadraat hebben. Er staat wel een fout in mijn vorig bericht (maar ik kan dat niet meer corrigeren
), twee zaken worden gemengd:
TD schreef:
Voor de duidelijkheid: de vierkantswortel van een getal is enkel rationaal als dat getal zelf een kwadraat van een geheel getal is. Alle positieve getallen zijn immers kwadraten (van hun eigen vierkantswortel); ook irrationale getallen.
Dat klopt natuurlijk niet want de vierkantswortel van het rationale getal 9/4 is zelf rationaal, namelijk 3/2. Het moet zijn:
De vierkantswortel van een getal is enkel geheel als dat getal zelf een kwadraat van een geheel getal is.
Voor rationale getallen geldt dat de breuk, wanneer vereenvoudigd (dus p/q met ggd(p,q) = 1), een geheel kwadraat als teller en noemer moet hebben, dus van de vorm m²/n².
Re: Hoe bepaal ik of de vierkantswortel uit een getal irrationaal is?
Geplaatst: zo 30 dec 2018, 16:14
door Benm
Dat is inderdaad waar ik op doelde: vierkantswortels van gehele getallen die geen kwadraat van een geheel getal zijn.
Ik vroeg me vooral af -waarom- zo'n wortel nooit een breuk kan zijn, is daar een eenvoudig te begrijpen redenatie voor?
Re: Hoe bepaal ik of de vierkantswortel uit een getal irrationaal is?
Geplaatst: zo 30 dec 2018, 16:37
door mathfreak
Benm schreef:
Dat is inderdaad waar ik op doelde: vierkantswortels van gehele getallen die geen kwadraat van een geheel getal zijn.
Ik vroeg me vooral af -waarom- zo'n wortel nooit een breuk kan zijn, is daar een eenvoudig te begrijpen redenatie voor?
Dat hangt er van af wat je precies onder een eenvoudig te begrijpen redenatie verstaat. Het bewijs verloopt volgens het principe van het indirecte bewijs, ook wel bewijs uit het ongerijmde of reductio ad absurdum genoemd. Het bewijs dat ik voor de irrationaliteit van √34 gaf is een voorbeeld van een dergelijk bewijs.
Re: Hoe bepaal ik of de vierkantswortel uit een getal irrationaal is?
Geplaatst: zo 30 dec 2018, 17:46
door Patrick4WF
mathfreak schreef:
Het bewijs dat ik voor de irrationaliteit van √34 gaf is een voorbeeld van een dergelijk bewijs.
De vierkantswortel uit een priemgetal is irrationaal. Dat kan bewezen worden op de basis van een "bewijs uit het ongerijmde", hiervoor vermeld. Is in dit forum al aangetoond, denk ik.
Een manier om al van heel wat getallen te stellen dat de vierkantswortel irrationaal is kan zijn om te kijken of ze kunnen ontbonden worden in priemgetallen.
Dat is bv het geval voor 34, wat gelijk is aan 2 * 17, zijnde twee priemgetallen.
Het product van de wortel uit priemgetallen moet ook een priemgetal zijn, zijnde √34 = √2 . √17 Is ook te bewijzen maar ook niet zo onlogisch, zelfs zonder bewijs...
Op die manier kan je al heel wat getallen onderscheiden...
Re: Hoe bepaal ik of de vierkantswortel uit een getal irrationaal is?
Geplaatst: zo 30 dec 2018, 18:12
door TD
Zie
hier voor het meer algemene geval van een n
e-machtswortel uit een geheel getal; dat is zelf geheel (als het getal een n
e-macht van een geheel getal was) en anders noodzakelijk irrationaal.