1 van 1

[wiskunde] Hoe maak je x vrij in 1/2(cos(4x))=cos(4x)

Geplaatst: zo 09 jun 2024, 14:18
door Luc4s
Ik was dus iets aan het herleiden tot ik kwam bij 1/2(cos(4x))=cos(4x), dus had ik maar gedaan (1/2) *4x = 4x + k*2pi of (1/2) *4x = -4x + k*2pi. Dit bleek echter niet te kloppen (hoewel ik al een sterk vermoeden had). Maar het uitwerkingsboekje snap ik niet.
Schermafbeelding 2024-06-09 141624
Schermafbeelding 2024-06-09 141624 9507 keer bekeken
Wat gebeurd er hier allemaal eigenlijk? Waarom zeggen ze ineens cos(4x)=0?
Heb ik daarvoor een bepaalde rekenregel nodig of de exactewaardecirkel?

Re: [wiskunde] Hoe maak je x vrij in 1/2(cos(4x))=cos(4x)

Geplaatst: zo 09 jun 2024, 15:21
door wnvl1
Breng in de initiële vergelijking alles naar één kant, dan zou het duidelijk moeten zijn.

Re: [wiskunde] Hoe maak je x vrij in 1/2(cos(4x))=cos(4x)

Geplaatst: zo 09 jun 2024, 17:37
door irArjan
Als 1/2 x = x, dan heb je niet heel veel mogelijkheden voor x.

Re: [wiskunde] Hoe maak je x vrij in 1/2(cos(4x))=cos(4x)

Geplaatst: ma 10 jun 2024, 00:00
door Luc4s
wnvl1 schreef: zo 09 jun 2024, 15:21 Breng in de initiële vergelijking alles naar één kant, dan zou het duidelijk moeten zijn.
Alsin
(1/2)x=x
(1/2)x-x=0
x(-1/2)=0
x=0
Zo? of is dit niet helemaal wat er gebeurd? :shock:

Re: [wiskunde] Hoe maak je x vrij in 1/2(cos(4x))=cos(4x)

Geplaatst: ma 10 jun 2024, 15:10
door wnvl1
Correct.

Re: [wiskunde] Hoe maak je x vrij in 1/2(cos(4x))=cos(4x)

Geplaatst: di 11 jun 2024, 15:30
door Luc4s
Danku!