Zwep
Artikelen: 0
Berichten: 26
Lid geworden op: zo 08 mar 2009, 09:17

[wiskunde] integreren

Hey mensen. Volgend jaar ga ik het proberen op de TU (kom van het hbo, één jaar propedeuse etc..).

Om mij daar op voor te bereiden maak ik alvast oefeningen uit een geleend VWO-examenboek.

Nu kwam ik de volgende opgave tegen:

"Op de grafiek van y=\sqrt(2x) ligt een punt P(a, \sqrt(2x)), met a>0.

De rechthoek met hoekpunten O(0,0) en P, waarvan twee zijden langs de assen vallen, wordt door de grafiek verdeeld in twee stukken V en W."

(ff voor de duidelijkheid, W wordt ingesloten door \sqrt(2a) en de grafiek y\sqrt(2x). V wordt ingesloten door y=\sqrt(2x) en de x-as)

"V wordt gewenteld om de x-as; W wordt gewenteld om de y-as."

Het gedeelte V is een eitje.. dat is gewoon beetje wentelen om de x-as..

MAAR nu stukkie W. Hier heb je namelijk geen kant en klare formule voor. Uiteindelijk moet je wentelen om de

y-as. Dat wordt gedaan met Vy=2\pi\intx(f(x)dx met grenzen van 0..a

Nu is alleen de vraag wat is f(x)?

Ik dacht.. waarschijnlijk is dat \int\sqrt(2a)-sqrt(2x) (bovenste min onderste functie).

Jammer genoeg kwam hier uiteindelijk geen goed antwoord uit. Mij lijkt het wel één manier om dit vraagstuk op te lossen. Weet iemand wat ik hier fout heb gedaan?

Het antwoord was uiteindelijk a=12.5. Dit hadden ze bereikt door(grof gezegt): de inverse te nemen van W, nu kan je over x-as draaien en tada daar is je antwoord.(De grenzen zijn nu niet 0..a maar 0..\sqrt(2a)
Gebruikersavatar
TD
Artikelen: 0
Berichten: 24.578
Lid geworden op: ma 09 aug 2004, 17:31

Re: [wiskunde] integreren

De opgave is niet duidelijk. Het antwoord dat je geeft voor dat tweede deel staat in de vorm "a=...", maar wat is dan precies de opgave? Blijkbaar niet "bepaal het volume van ...", maar misschien iets zoals "bepaal a zodat het volume ..."?
"Malgré moi, l'infini me tourmente." (Alfred de Musset)
Gebruikersavatar
mathfreak
Pluimdrager
Artikelen: 0
Berichten: 3.505
Lid geworden op: zo 28 dec 2008, 16:22

Re: [wiskunde] integreren

Je weet dat het punt (a,f(a)) met a>0 een punt van de grafiek is. Er is gegeven dat het vlakdeel V wordt begrensd door de grafiek van f en de x-as, en dat het vlakdeel W wordt begrensd door de grafiek van f en de lijn y = f(a). Maak voor het berekenen van de oppervlakte van W gebruik van de volgende regel: als op [a,b] geldt dat g(x)≥f(x), dan is de oppervlakte van het vlakdeel, begrensd door de lijnen x = a en x = b en de grafieken van f en g, gelijk aan
\(\int_a^b (g(x)-f(x))dx\)
.
"Mathematics is a gigantic intellectual construction, very difficult, if not impossible, to view in its entirety." Armand Borel

Terug naar “Huiswerk en Practica”