1 van 1
[wiskunde] goniometrische functie van een cyclometrische functie
Geplaatst: za 23 mei 2009, 12:34
door In physics I trust
IK weet dat de sinus van de Bgtan gelijk is aan \(\frac{x}{\sqrt{1+x^2}}\), en weet eveneens wat de tangens van de sinus is. Nu vraag ik me af hoe je deze gelijkheid kan beredeneren. (Ik ken hem nu gewoon van buiten.)
Ik vraag me ook af hoe je de Bgtan, Bgcos etc. van de sinus, cosinus etc. berekent...
Kan iemand me aub een hint geven?
Re: [wiskunde] goniometrische functie van een cyclometrische functie
Geplaatst: za 23 mei 2009, 12:38
door TD
Ofwel beschouw je een gepaste rechthoekige driehoek, ofwel reken je wat met goniometrische identiteiten.
Bijvoorbeeld sin(bgtan(x)). Neem een rechthoekige driehoek met overstaande zijde x en aanliggende zijde 1, die heeft een tangens van x. Je wil de sinus van de hoek die daarbij hoort, maar in deze driehoek volgt dat de sinus gelijk is aan x gedeeld door de schuine zijde, en die volgt uit Pythagoras als sqrt(1+x²).
Re: [wiskunde] goniometrische functie van een cyclometrische functie
Geplaatst: za 23 mei 2009, 12:54
door Phys
Re: [wiskunde] goniometrische functie van een cyclometrische functie
Geplaatst: za 23 mei 2009, 13:58
door In physics I trust
Bedankt, ik heb het nu begrepen!
Zo is de tan(Bgsin(x)) = x/sqrt(1-x²)
Bestaat er een soortgelijke redenering om bv. de Bgtan van de sinus te berekenen?
Alvast bedankt!
PS: ik heb een verkeerde topictitel genomen: het gaat over goniometrische functies van cyclometrische functies en andersom, niet om goniometrische functies van goniometrische functies...
Re: [wiskunde] goniometrische functie van een cyclometrische functie
Geplaatst: zo 24 mei 2009, 10:15
door TD
PS: ik heb een verkeerde topictitel genomen: het gaat over goniometrische functies van cyclometrische functies en andersom, niet om goniometrische functies van goniometrische functies...
Blijkbaar al aangepast.
Je vraag herhalen is niet nodig, bumpen is niet toegelaten (bericht verwijderd).
In de andere richting heb je geen gelijkaardige formules.