Toen Duncan Lorimer in 2007 bekend maakte dat hij in data uit 2001 van de Parkes radiotelescoop in Australië bij toeval een extreem korte en energetische flits van onbekende oorsprong ontdekt had, werd algemeen aangenomen dat de oorzaak in de apparatuur gezocht moest worden of wellicht in een stoorsignaal van aardse oorsprong. Het signaal was immers slechts een paar milliseconden lang, en daarna werd het niet meer teruggevonden.
Lorimer dacht daar anders over vooral omdat hij dispersie in het signaal waarnam, maar verzoeken van de ontdekker om intensiever naar deze 'Fast Radio Bursts' te zoeken werden in de jaren er na stelselmatig afgewezen.
De Lorimer Burst met haar dispersie
Bron: Astrobytes / MU
Meer fluke's?
Juni 2013 was het weer raak. In data van dezelfde Parkes telescoop ontdekte een team onder leiding van Dan Thornton nog 4 flitsen. De detailinformatie van de signalen deed ook hier vermoeden dat er iets bijzonders aan de hand moest zijn. Alle bliepjes zijn eenmalig en slechts een paar milliseconden lang. Interessant is dat ook deze signalen een heel specifieke dispersie vertoonden.
Dispersie
Licht heeft in het vacuüm een absolute snelheid, maar in materie niet. Bovendien reizen in materie niet alle frequenties even snel zoals in een vacuüm; energierijke hoogfrequente fotonen worden minder vertraagd. En alhoewel de intergalactische ruimte leeg lijkt, is er toch wat materie aanwezig waardoor langere golven iets later aankomen dan kortere-, en ontstaat dus een spreiding, het signaal wordt 'uitgesmeerd' over de tijd.
De Parkes radiotelescoop in Australië
Onbekende bron
Het gebied waar de radioflitsen vandaan lijken te komen ligt ver buiten het vlak van de Melkweg met haar dikkere stofwolken. Aan de hand van detailanalyse van het signaal, werd ingeschat hoeveel intergalactische materie het signaal gepasseerd moest zijn om deze specifieke dispersie te vertonen als het van extragalactische oorsprong was. Het best passend bij de data was een signaal op 3 tot 10 miljard lichtjaar afstand. De extreem korte duur van de flitsen leidde tot het inzicht dat de bron erg klein moest zijn, hoogstens een paar honderd kilometer in doorsnede.
En dit was ronduit verbazend. Hoe kan een zo kleine bron op zo'n enorme afstand nog waargenomen worden? De vrijgekomen energie moet gigantisch zijn. Er was geen object bekend dat een dergelijk signaal kan uitzenden, en deze fast radio bursts blijken(binnen hun zeer korte levensduur) de meest energierijke radiobronnen die er bekend zijn.
Hypotheses
Deze 4 extra flitsen waren wel een reden om deze FRB's, naar de ontdekker ook wel Lorimer bursts genoemd, wat meer serieus te nemen en diverse bronnen voor het signaal werden geopperd. De onvermijdelijke 'buitenaardse beschaving' fantasie van niet door kennis gehinderde bronnen was er natuurlijk een van (klik). Maar ook serieuzer opties als fuserende neutronensterren, magnetars (klik) en verdampende black holes en Rrat's (klik) in onze melkweg passeerden de revue.
Vervolgwaarnemingen met andere apparatuur leverden niets op. In de richting van waar uit de signalen kwamen was met andere instrumenten niets bijzonders waarneembaar, en er waren geen andere bronnen in de nabijheid bekend die mogelijk een verklaring konden leveren.
Geen fluke
Het was natuurlijk wel problematisch dat alle vijf FRB's door een en hetzelfde instrument gedetecteerd werden, lokale verschijnselen van aardse oorsprong of probleempjes in de apparatuur bij Parkes waren niet zo waarschijnlijk, maar niet uit te sluiten.
Aan de twijfel is kortgeleden een einde gekomen met de aankondiging van een team wetenschappers dat in de data van de Arecibo radiotelescoop in Puerto Rico een nieuwe heftige flits van 3 miliseconde lang ontdekte: FRB 121102. (zie bijlage).
Een FRB gedetecteerd met een ander instrument, op een ander continent, komend vanuit een andere richting, en met een dispersie die een afstand van 3 miljard lichtjaar of meer doet vermoeden; het lijkt nu heel waarschijnlijk dat Lorimer inderdaad op een onbekend kosmisch fenomeen is gestuit.
Blitzar?
Inmiddels is mede door Heino Falcke van de Radboud Universiteit in Nijmegen een nieuwe hypothetische bron geopperd, de zogenoemde Blitzar (bijlage):
Een zeer zware ster stort aan het eind van zijn leven direct na de supernovafase ineen tot een neutronenster, of als de ster extreem zwaar is tot een black hole. Maar als een tot zwart gat gedoemde ster na de ineenstorting zeer snel roteert, ontstaat mogelijk eerst een pulsar die zo ongelofelijk snel roteert dat de centrifugaalkrachten voorkomen dat de neutronenster verder tot een black hole ineen stort. Die snelle rotatie is een heel normaal verschijnsel, en het gevolg van behoud van impulsmoment.
Zo'n rondtollende pulsar, meer in het bijzonder een speciaal type; de magnetar (klik), veroorzaakt een extreem krachtig snel draaiend magnetisch veld, waarin continue rotatie-energie verloren gaat. Het afnemen van de omwentelingssnelheid gaat naar kosmische maatstaven zeer snel. Als na enige honderden tot duizenden jaren het 'toerental' van zo'n pulsar voldoende is afgenomen en de centrifugaalkrachten verminderen, stort de neutronenkern alsnog in tot een zwart gat. Het magneetveld is plotseling losgebroken van haar bron en klapt in. De vrijkomende energie wordt in een extreem felle radioflits de ruimte in gezonden. Dit zou ook kunnen verklaren waarom er op de plaats van de FRB's aan de hemel niets waargenomen wordt; alle straling is immers verdwenen in het black hole.
Tegen deze hypothese spreekt echter de calculatie van het aantal FRB's dat ontdekt zou kunnen worden als het gehele firmament 24/7 met instrumenten als die van Parkes geobserveerd zou worden. Zeer grove schattingen (want gebaseerd op slechts 7 FRB's) geven aan dat het totaal aantal FRB's dan op zou moeten lopen tot 10.000 per dag, ruwweg 1 per 10 seconden. Het is nauwelijks voor te stellen dat het heelal zoveel Blitzars kan bevatten.
Verder onderzoek
Shrinivas Kulkarni een astronoom bij CalTech meldt aan Scientific American: 'The discovery of fast radio bursts at the Parkes Observatory could be a monumental discovery, comparable to that of cosmological gamma-ray bursts and even pulsars.'
Inmiddels zijn de meeste astronomen het er over eens dat FRB's serieus genomen moeten worden, en worden de eerste pogingen gedaan een gecoördineerd onderzoeksprogramma naar deze enigmatische signalen en de bijbehorende bron op te zetten.
FRB | OtherName | ObsWidth(ms) | Redshift,z | Distance(Gpc) | EnergyReleased(J) |
010724 | LorimerBurst | 4.6 | ~0.1 | ~0.5 | ~10^33 |
010621 | J1852-08 | 8.3 | ~0.1 | ~0.5 | ~10^31 |
110220 | x | 5.6 | 0.81 | 2.8 | ~10^33 |
110627 | x | 1.4 | 0.61 | 2.2 | ~10^31 |
110703 | x | 4.3 | 0.96 | 3.2 | ~10^32 |
120127 | x | 1.1 | 0.45 | 1.7 | ~10^31 |
121102 | x | 3.0+/-0.5 | 0.26 | ~1 | ~10^30 |
Wetenschappelijk paper over de ontdekking van FRB 121102: Wetenschappelijk paper over de Blitzar van Falcke en Rezzolla: