\( \tau_A = \sqrt{(t_2 - t_1)^2 - (x_2 - x_1)^2}\)
\(\)
\( \frac{\mathrm{d} \tau_A}{\mathrm{d} x_2} = \frac{1}{2} \, ((t_2 - t_1)^2 - (x_2 - x_1)^2)^{-1/2} \cdot - 2 (x_2 - x_1) \)
\(\)
\( \frac{\mathrm{d} \tau_A}{\mathrm{d} x_2} = \frac{- (x_2 - x_1)}{\sqrt{(t_2 - t_1)^2 - (x_2 - x_1)^2)}} \)
\(\)
\( \frac{\mathrm{d} \tau_A}{\mathrm{d} x_2} = \frac{- (x_2 - x_1)}{\tau_A} \)
\(\)
\( \tau_B = \sqrt{(t_3 - t_2)^2 - (x_3 - x_2)^2}\)
\(\)
\( \frac{\mathrm{d} \tau_B}{\mathrm{d} x_2} = \frac{1}{2} \, ((t_3 - t_2)^2 - (x_3 - x_2)^2)^{-1/2} \cdot 2 (x_3 - x_2) \)
\(\)
\( \frac{\mathrm{d} \tau_B}{\mathrm{d} x_2} = \frac{x_3 - x_2}{\sqrt{(t_3 - t_2)^2 - (x_3 - x_2)^2)}} \)
\(\)
\( \frac{\mathrm{d} \tau_B}{\mathrm{d} x_2} = \frac{x_3 - x_2}{\tau_B} \)
\(\)
\( \tau = \tau_A + \tau_B \)
\(\)
\( \frac{\mathrm{d} \tau}{\mathrm{d} x_2} = \frac{\mathrm{d} \tau_A}{\mathrm{d} x_2} + \frac{\mathrm{d} \tau_B}{\mathrm{d} x_2} \)
\(\)
\( \frac{\mathrm{d} \tau}{\mathrm{d} x_2} = \frac{- (x_2 - x_1)}{\tau_A} + \frac{x_3 - x_2}{\tau_B} \)
\(\)
Het extremum treedt dan op voor:
\(\)
\( \frac{\mathrm{d} \tau}{\mathrm{d} x_2} = 0 \)
\(\)
\( \frac{- (x_2 - x_1)}{\tau_A} + \frac{x_3 - x_2}{\tau_B} = 0 \)
\(\)
\( \frac{x_2 - x_1}{\tau_A} - \frac{x_3 - x_2}{\tau_B} = 0 \)
\(\)
Laat x
A = x
2 - x
1 en x
B = x
3 - x
2. Dan krijgen we:
\(\)
\( \frac{x_A}{\tau_A} - \frac{x_B}{\tau_B} = 0 \)
\(\)
\( \frac{x_A}{\tau_A} = \frac{x_B}{\tau_B} \)
\(\)
Later verder...