Forumregels
(Middelbare) school-achtige vragen naar het forum "Huiswerk en Practica" a.u.b.
Zie eerst de Huiswerkbijsluiter
romanv
Artikelen: 0
Berichten: 10
Lid geworden op: do 30 jan 2014, 16:18

wortel of macht van sommige kommagetallen

bijv x^0,5 kan makkelijk berekent worden door √x
maar met x^0,233 ≈ 4,291√x maar hoe wordt dit berekend?
Gebruikersavatar
Safe
Pluimdrager
Artikelen: 0
Berichten: 10.058
Lid geworden op: wo 17 nov 2004, 12:37

Re: wortel of macht van sommige kommagetallen

romanv schreef: bijv x^0,5 kan makkelijk berekent worden door √x
maar met x^0,233 ≈ 4,291√x maar hoe wordt dit berekend?
 
Staat er:
 
\(x^{0,233}\approx 4,291\sqrt{x}\)
 
Zo ja, deel links en rechts door de macht van x links ...
romanv
Artikelen: 0
Berichten: 10
Lid geworden op: do 30 jan 2014, 16:18

Re: wortel of macht van sommige kommagetallen

Safe schreef:  
Staat er:
 
\(x^{0,233}\approx 4,291\sqrt{x}\)
 
Zo ja, deel links en rechts door de macht van x links ...
ik bedoelde eigenlijk hoe bijv een rekenmachine 3^0,233 uitrekent, omdat ik altijd heb geleerd dat machten met hele getallen gaat.
maar dit kan natuurlijk herscheven worden als (1000√3)^233
Gebruikersavatar
317070
Artikelen: 0
Berichten: 5.609
Lid geworden op: za 28 feb 2009, 17:05

Re: wortel of macht van sommige kommagetallen

romanv schreef: ik bedoelde eigenlijk hoe bijv een rekenmachine 3^0,233 uitrekent, omdat ik altijd heb geleerd dat machten met hele getallen gaat.
maar dit kan natuurlijk herscheven worden als (1000√3)^233
Dat klopt, maar dat is niet hoe een rekenmachine het doet. Een rekenmachine maakt hiervoor gebruik van logaritmes. (Maar als je die nog niet gezien hebt, geen nood, dat komt nog wel) ;)
 
 
 
* Method: Let x = 2 * (1+f)

*    1. Compute and return log2(x) in two pieces:

*        log2(x) = w1 + w2,

*     where w1 has 53-24 = 29 bit trailing zeros.

*    2. Perform y*log2(x) = n+y' by simulating muti-precision

*     arithmetic, where |y'|<=0.5.

*    3. Return x**y = 2**n*exp(y'*log2)
http://www.netlib.org/fdlibm/e_pow.c
What it all comes down to, is that I haven't got it all figured out just yet

And I've got one hand in my pocket and the other one is giving the peace sign

-Alanis Morisette-
Gebruikersavatar
physicalattraction
Moderator
Artikelen: 0
Berichten: 4.165
Lid geworden op: do 30 mar 2006, 15:37

Re: wortel of macht van sommige kommagetallen

Safe schreef:
\(x^{0,233}\approx 4,291\sqrt{x}\)
Dit is niet waar voor willekeurige
\(x\)
, gemakkelijk in te zien door
\(x=1\)
in te vullen. Ik vraag me daarom af waar deze uitspraak vandaan komt.
Gebruikersavatar
Safe
Pluimdrager
Artikelen: 0
Berichten: 10.058
Lid geworden op: wo 17 nov 2004, 12:37

Re: wortel of macht van sommige kommagetallen

physicalattraction schreef: Dit is niet waar voor willekeurige
\(x\)
, gemakkelijk in te zien door
\(x=1\)
in te vullen. Ik vraag me daarom af waar deze uitspraak vandaan komt.
 
Ik maak bezwaar tegen de onvolledige en daardoor foutieve quote ... , er staat:
 
 
Safe schreef:  
Staat er:
 
\(x^{0,233}\approx 4,291\sqrt{x}\)
 
Zo ja, deel links en rechts door de macht van x links ...
 
Als dat er staat is het een 'gewone' verg die oplosbaar is.
romanv
Artikelen: 0
Berichten: 10
Lid geworden op: do 30 jan 2014, 16:18

Re: wortel of macht van sommige kommagetallen

ik bedoelde 4,291 machtswortel van x = x^0,233 voor domein 0 en verder. gewoon 2 dezelfde formules
sorry ik moet mij even verdiepen in latex
Gebruikersavatar
Safe
Pluimdrager
Artikelen: 0
Berichten: 10.058
Lid geworden op: wo 17 nov 2004, 12:37

Re: wortel of macht van sommige kommagetallen

Ok, je bedoelt;
 
\(x^{0,233}=\sqrt[\frac{1000}{233}]{x}\)
 
Deze formule is correct mits 0,233 exact is.
 
Bedoel je verder de berekening mbv een RM?
Zodra je voor x een getal kiest is deze macht mbv een RM te benaderen ... , alleen zou ik dan voor de eerste vorm kiezen!

Terug naar “Wiskunde”