descheleschilder schreef:
Wat betreft jouw eerste vraag: Is de verzameling (4s,0,-s) (s een willekeurig reëel getal) een deelruimte van R3? Kijk eens naar de y-component van de vector. Die is 0, hetgeen betekent dat de verzameling van die vectoren in het xz-vlak (y is altijd 0) ligt en dus tweedimensionaal (R2) is. De vectoren "spannen" een tweedimensionale ruimte op, en ik denk dat je wel inziet dat dit een deelruimte van R3 is.
Die verzameling vectoren ligt inderdaad in het xz-vlak. Het is echter geen vlak, maar een rechte. Er is slechts 1 variabele, namelijk s. Probeer maar eens een getal s te vinden zodat je de vector (1,0,1) krijgt, dit is onmogelijk. Het xz-vlak was iets van deze vorm geweest: (s,0,t), met dus twee variabelen. (4s,0,-s) is wel een deelruimte van
\(\mathbb{R}^3\)
Dat kan je trouwens nagaan door naar de definitie van een
deelruimte en
vectorruimte te kijken.
descheleschilder schreef:
Hetzelfde geldt voor de verzameling vectoren (4s,0,3-s). Dat er in plaats van -s, 3-s staat maakt niet uit want ook nu kun je alle waarden voor de x- en z-coördinaat. Ook nu weer vormt de verzameling vectoren een tweedimensionale ruimte die in het xz-vlak ligt, en dus een deelruimte van R3 is.
De nulvector is steeds een element van een vectorruimte. De meeste cursussen definiëren een 'deelruimte' als een vectorruimte die ook een deelverzameling is. In dat geval is (4s,0,3-s) géén deelruimte. Het volgende stelsel heeft immers geen oplossing (m.a.w. er is geen nulvector in die verzameling):
\(\begin{cases}4s=0\\3-s=0\end{cases}\)
\(\begin{cases}s=0\\3=0\Rightarrow strijdig!\end{cases}\)
Je leest maar niet verder want je, je voelt het begin van wanhoop.