Forumregels
(Middelbare) school-achtige vragen naar het forum "Huiswerk en Practica" a.u.b.
Zie eerst de Huiswerkbijsluiter
Gebruikersavatar
Michel Uphoff
Moderator
Artikelen: 0
Berichten: 8.167
Lid geworden op: di 01 jun 2010, 00:17

0,999... = 1 ?

Is 0,999..  gelijk aan 1, en mag je dat zo bewijzen?

De drie puntjes (ellipsis) staan voor een oneindige herhaling.

Stel x = 0,999...
 
10 x = 9,999...

   x = 0,999... -

---------------

9  x = 9,000...

>> x = 1,000...
Gebruikersavatar
Flisk
Artikelen: 0
Berichten: 1.264
Lid geworden op: vr 02 mar 2012, 14:21

Re: 0,999... = 1 ?

Tuurlijk. Een andere manier:
\(0,999...=0,333...+0,333...+0,333...=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)
Je leest maar niet verder want je, je voelt het begin van wanhoop.
Gebruikersavatar
Michel Uphoff
Moderator
Artikelen: 0
Berichten: 8.167
Lid geworden op: di 01 jun 2010, 00:17

Re: 0,999... = 1 ?

M.i. moet je dan eerst bewijzen dat 0,333... gelijk is aan 1/3:
 
10 x = 3,333...

   x = 0,333... -

---------------

9  x = 3,000...
>> x = 3,000... / 9

 
Gebruikersavatar
tempelier
Artikelen: 0
Berichten: 4.388
Lid geworden op: zo 08 jan 2012, 00:59

Re: 0,999... = 1 ?

Het eerste bewijs wat ik leerde was met een meetkundige reeks.
 
x=9/10 + 9/100 + 9/1000 + 9/10000 + .....................................
 
De eerste term a=9/10
De rede is 1/10
 
Via de limietsom volgt x=1
In de wiskunde zijn er geen Koninklijke wegen Majesteit.
Gebruikersavatar
Flisk
Artikelen: 0
Berichten: 1.264
Lid geworden op: vr 02 mar 2012, 14:21

Re: 0,999... = 1 ?

1/3=0,333... kan je ook aantonen a.d.h.v. staartdeling en inductie. 

 
Je leest maar niet verder want je, je voelt het begin van wanhoop.
Gebruikersavatar
tempelier
Artikelen: 0
Berichten: 4.388
Lid geworden op: zo 08 jan 2012, 00:59

Re: 0,999... = 1 ?

Michel Uphoff schreef: Is 0,999..  gelijk aan 1, en mag je dat zo bewijzen?

De drie puntjes (ellipsis) staan voor een oneindige herhaling.

Stel x = 0,999...
 
10 x = 9,999...

   x = 0,999... -

---------------

9  x = 9,000...

>> x = 1,000...
Het mag zo voor alle repeterende breuken dat is me bekend.
 
PS.
Er zit wel een addertje onder het gras, ze zijn beide op te vatten als oneindig lange reeksen.
Die mogen niet zomaar in elkaar geschoven worden daar zijn voorwaarden voor.
Hier is echter dik aan voldaan.
In de wiskunde zijn er geen Koninklijke wegen Majesteit.
Anton_v_U
Artikelen: 0
Berichten: 1.617
Lid geworden op: za 18 mei 2013, 00:05

Re: 0,999... = 1 ?

Mag het ook zo? Lijkt mij niets mis mee maar echte wiskundigen zijn weleens onredelijk streng op onverwachte momenten  ;)
 
1 - 0,999.... = 1,000 ... - 0,999 ... =  0,000 ... = 0
Gebruikersavatar
Lx
Artikelen: 0
Berichten: 52
Lid geworden op: vr 05 aug 2005, 18:26

Re: 0,999... = 1 ?

Is 0,999..  gelijk aan 1
 
In principe nooit. Het resultaat nadert 1. Je kunt wel met inductie bewijzen, dat 1.00 - 0.{9}n  van boven nadert tot 0, naarmate n toeneemt.. en dat de benadering (dus) beter is, naarmate je 9's toevoegt !
 
1. neem aan dat 0.{9}n < 1 blijft voor alle n
2. en dat 0.{9}n+1 > 0.{9}n
=> het verschil 1.0-0.{9}n nadert 0 als n toeneemt
 
Ik ben overigens programmeur, geen wiskundige, maar dit is wat ik me van school herinner voor inductieve bewijzen..
Gebruikersavatar
jkien
Moderator
Artikelen: 0
Berichten: 5.716
Lid geworden op: ma 15 dec 2008, 14:04

Re: 0,999... = 1 ?

Michel Uphoff schreef:Is 0,999..  gelijk aan 1, en mag je dat zo bewijzen?

De drie puntjes (ellipsis) staan voor een oneindige herhaling.

Stel x = 0,999...

 
10 x = 9,999...

   x = 0,999... -

---------------

9  x = 9,000...

>> x = 1,000...
 
Hier wordt uitgelegd dat je bewijs niet klopt omdat je niet zegt wat je met decimaal geschreven getallen bedoelt. De lezer kan het interpreteren als de verzameling van 'pseudoreele' getallen waarvoor 0.999.. = 1 niet geldt, en de distributieve eigenschap 10·x - x = (10-1)·x ook niet.
Gebruikersavatar
Michel Uphoff
Moderator
Artikelen: 0
Berichten: 8.167
Lid geworden op: di 01 jun 2010, 00:17

Re: 0,999... = 1 ?

Hier wordt uitgelegd
 
Mijn ideetje blijkt dus verre van origineel, zoals vaker. :|
Maar is 0,999... nu wel of niet gelijk aan 1, of is daar geen consensus over?
Gebruikersavatar
mathfreak
Pluimdrager
Artikelen: 0
Berichten: 3.505
Lid geworden op: zo 28 dec 2008, 16:22

Re: 0,999... = 1 ?

Michel Uphoff schreef:  
Mijn ideetje blijkt dus verre van origineel, zoals vaker. :|
Maar is 0,999... nu wel of niet gelijk aan 1, of is daar geen consensus over?
Indien je uitsluitend binnen de reële getallen werkt is 0,999... inderdaad gelijk aan 1.
"Mathematics is a gigantic intellectual construction, very difficult, if not impossible, to view in its entirety." Armand Borel
Anton_v_U
Artikelen: 0
Berichten: 1.617
Lid geworden op: za 18 mei 2013, 00:05

Re: 0,999... = 1 ?

Ze zijn echt gelijk.
 
Misschien is het volgende bewijs wiskundig acceptabel:
 
Als 0,999... ongelijk is aan 1, dan moet er een verschil zijn tussen 1 en 0,999... dat groter is dan nul. Geef me het verschil, en noem het delta.  
 
Ik geef je dan het aantal 9's achter de komma, bijv. N = -10 log(delta) +1. Met zoveel 9's is het verschil altijd kleiner. Dat kan altijd want voor elke delta groter dan nul is -log(delta) een reëel getal.
 
Als het verschil bestaat dan is het te groot. Dus het verschil bestaat niet. Dus ze zijn gelijk.
Gebruikersavatar
Flisk
Artikelen: 0
Berichten: 1.264
Lid geworden op: vr 02 mar 2012, 14:21

Re: 0,999... = 1 ?

jkien schreef:  De lezer kan het interpreteren als de verzameling van 'pseudoreele' getallen waarvoor 0.999.. = 1 niet geldt, en de distributieve eigenschap 10·x - x = (10-1)·x ook niet.
Dat vind ik wel wat vergezocht van de lezer  ;) 

Voor een rigoureus bewijs moet je natuurlijk eerst strakke definities hebben voor de begrippen 'reëel getal' en 'gelijkenis tussen reële getallen'. Daarnaast moet je ook definiëren wat een getal met oneindig repeterende decimalen precies is.
Je leest maar niet verder want je, je voelt het begin van wanhoop.
Gebruikersavatar
tempelier
Artikelen: 0
Berichten: 4.388
Lid geworden op: zo 08 jan 2012, 00:59

Re: 0,999... = 1 ?

Flisk schreef: Dat vind ik wel wat vergezocht van de lezer  ;) 

Voor een rigoureus bewijs moet je natuurlijk eerst strakke definities hebben voor de begrippen 'reëel getal' en 'gelijkenis tussen reële getallen'. Daarnaast moet je ook definiëren wat een getal met oneindig repeterende decimalen precies is.
In de definitie van repeteren zit het begrip oneindig al ingebakken.
Beter lijkt me om het begrip ""komma getal"" wat beter duidelijk te maken dan kan simpel via meetkundige  reeksen.
 
PS.
Repeteren is geen eigenschap van een getal,
het hangt van het talstelsel af of een getal al dan niet repeteert.
In de wiskunde zijn er geen Koninklijke wegen Majesteit.
Gebruikersavatar
Lx
Artikelen: 0
Berichten: 52
Lid geworden op: vr 05 aug 2005, 18:26

Re: 0,999... = 1 ?

Michel Uphoff schreef:  
Mijn ideetje blijkt dus verre van origineel, zoals vaker. :|
Maar is 0,999... nu wel of niet gelijk aan 1, of is daar geen consensus over?
 
De snelle consensus hier is er in elk geval wel. Ik sputterde nog wat. Ik denk dat er een verschil is tussen naderen tot en gelijk zijn aan.
 
Het zal wel de notatiewijze zijn met de drie puntjes, die me op het verkeerde been zette.
Voor elk aantal negens n hou ik een fout over van 0.1*10-n-1
 
Bij negens wordt de fout
0.1*10--1 =10-= 0

Terug naar “Wiskunde”