Lewis95
Artikelen: 0
Berichten: 45
Lid geworden op: vr 27 dec 2013, 15:21

Signaal Reconstructie

Ik vraag me af hoe ik aan een dergelijke oefening moet beginnen:
 
Bereken op basis van een gegeven Directe Fouriertransformatie het bijhorende periodieke tijdssignaal.
 
Ik heb al een eind gezocht naar alle mogelijke websites waar een voorbeeld uitgewerkt wordt, maar ik heb niets gevonden.
Kan iemand me uitleggen hoe hij/zij dit probleem zou aanpakken?
 
(Hoe je bvb. van [ 32 0 8+16i 0 24-8i 0 0 0 0 0 0 0 24+8i 0 8-16i 0 ] komt tot x(t) = 2 + cos(2π6t) - 2sin(2π6t) + 3cos(4π6t) + sin(4π6t) of zoiets)
 
Ik hoop dat mijn vraag duidelijk is? :)
Alvast bedankt!
Gebruikersavatar
Xenion
Artikelen: 0
Berichten: 2.609
Lid geworden op: za 21 jun 2008, 10:41

Re: Signaal Reconstructie

X[k] = [ 32 0 8+16i 0 24-8i 0 0 0 0 0 0 0 24+8i 0 8-16i 0 ]
 
Welke formule heb je geleerd om van X[k] naar x[n] te gaan? Inverse DFT?
Lewis95
Artikelen: 0
Berichten: 45
Lid geworden op: vr 27 dec 2013, 15:21

Re: Signaal Reconstructie

Ja, ik verwacht dat het met de inverse DFT moet gebeuren, maar ik weet niet precies hoe dat in zijn werk gaat  :(
Is het de toepassing van 
\( x[n] = \frac{1}{N}\sum_{k=0}^{N-1}X[k]e^{j\frac{2\pi}{N}kn}\)
Gebruikersavatar
Xenion
Artikelen: 0
Berichten: 2.609
Lid geworden op: za 21 jun 2008, 10:41

Re: Signaal Reconstructie

Kijk eens hoe het spectrum van het signaal eruit ziet.
[ 32 0 8+16i 0 24-8i 0 0 0 0 0 0 0 24+8i 0 8-16i 0 ]
 
N = 16
 
Je hebt volgende componenten:
32
8+16i en 8-16i
24+8i en 24-8i
 
32 (k=0) hoort bij
\(e^{\frac{2\pi}{16}0n}\)
8+16i (k=2) hoort bij 
\(e^{\frac{2\pi}{16}2n}\)
...
 
De som van de individuele x[n] signalen van alle componenten geeft je het totale signaal, dus
\(x(t) = 32 + (8+16j)e^{\frac{2\pi}{16}2t} + ...\)
 
Dan moet je nog wat verder rekenen en de complexe exponentialen naar sinussen/cosinussen omzetten.
Lewis95
Artikelen: 0
Berichten: 45
Lid geworden op: vr 27 dec 2013, 15:21

Re: Signaal Reconstructie

Het is dus echt zo eenvoudig?
Bedankt voor je tijd!
Gebruikersavatar
Xenion
Artikelen: 0
Berichten: 2.609
Lid geworden op: za 21 jun 2008, 10:41

Re: Signaal Reconstructie

Jep het is inderdaad zo eenvoudig :)
Wel ook nog de 1/N factor niet vergeten.
Lewis95
Artikelen: 0
Berichten: 45
Lid geworden op: vr 27 dec 2013, 15:21

Re: Signaal Reconstructie

Xenion schreef: Wel ook nog de 1/N factor niet vergeten.
Die zal ik niet over het hoofd zien  :D

Terug naar “Elektrotechniek”