Mag ik nu aannemen dat ik voor het dubbele aantal liters van de oven. het aantal meters van de weerstanden met 2 vermenigvuldig om tot de juiste oven temperatuur te komen?
Nee, ze worden dan juist korter of moeten dikker gemaakt worden. Wat je zou kunnen schatten is dat bij dubbele inhoud maar gelijke vorm de afmetingen met
3√2 = 1,26 toenemen, en dus het oppervlak van de wanden met 1,26
2 is ongeveer 60 procent toeneemt. Bij gelijke isolatie zou je dan ongeveer 60% meer energie nodig hebben. In jouw voorbeeld (9,9 kW voor 80 liter) wordt dat dan ruwweg 15,8 kW. Dat vind ik overigens wel erg hoog. Mogelijk is die 80 liter oven niet zo best geïsoleerd. Ik zie op internet 150 liter ovens 1320 graden met 9-11 kW, 130 liter ovens met 9 kW, maar ook 130 liter ovens met 7,5 kW. De Toma tsd 150 verbruikt 9,9 kW (
klik)
Naarmate het vermogen hoger wordt, moet de stroomsterkte omhoog en dus weerstand van de verwarmingsdraad lager, en wordt de draad juist korter (of moet dikker worden). In dit voorbeeld met 60% meer vermogen moet de stroomsterkte toenemen tot bijna 23 ampère per draad (3*23A*230V=15,87 kW). De weerstand van de draad moet dan ongeveer 230V/23A= 10 Ohm worden. Bij genoemde 1mm
2 draad van 1,45 Ohm per meter wordt de lengte dus 10Ω/1,45Ω/m= 6,9 meter. Overigens is jouw aansluiting (40A max) dan te gering, er is dan 69A nodig.
In de oven zitten spiralen van 1,6 mm
Diameter of doorsnedeoppervlak?
Als ik uitga van 1,6 mm diameter, dan is het oppervlak van die draad 2 mm
2. Gaan we uit van 10 kW over drie spiralen bij 230V, dan krijgen we ongeveer het volgende:
3,33 kW per spiraal
230 V spanning
14,5 A stroomsterkte per draad (3.333W / 230V)
15,9 Ω weerstand per draad (230V / 14,5A)
Weerstand draad 0,725 Ω per meter (2mm
2)
Lengte per spiraal 21,93 meter (15,9Ω / 0,725Ω per meter)
Maar, nogmaals, het is sterk afhankelijk van de mate van isolering. Als je een bestaand model nabouwt (zelfde type, materialen, afmetingen), dan zou je denk ik wel uit kunnen gaan van de gegevens bij die oven.