Als afgesproken substitueren we jω voor
s. Dan is H
ol dus een functie van jω. Zodat:
\( H_{ol}(j \omega) = H_r(j \omega) \cdot H_p(j \omega) \)
\( H_{ol}(j \omega) = \frac{\mbox{K}_r ( 1 + \frac{1}{2 j \omega}) (2 j \omega + 1)}{0,1 \, j \omega + 1} \cdot \frac{\mbox{A}}{( j \omega )^2} \)
\( H_{ol}(j \omega) = \frac{- \mbox{A} \cdot \mbox{K}_r ( 1 + \frac{1}{2 j \omega}) (2 j \omega + 1)}{\omega^2 \cdot (0,1 \, j \omega + 1)} \)
\( H_{ol}(j \omega) = \frac{- 10 \cdot \mbox{A} \cdot \mbox{K}_r ( 2 \omega - j) (2 j \omega + 1)}{2 \omega^3 \cdot (j \omega + 10)} \right \)
\( H_{ol}(j \omega) = \frac{- 5 \cdot \mbox{A} \cdot \mbox{K}_r }{ \omega^3 } \cdot \frac{( 2 \omega - j) (2 j \omega + 1)}{ j \omega + 10} \)
\( H_{ol}(j \omega) = \frac{- 5 \cdot \mbox{A} \cdot \mbox{K}_r }{ \omega^3 } \cdot \frac{( 2 \omega - j) (2 j \omega + 1)}{ j \omega + 10} \cdot \frac{- j \omega + 10}{- j \omega + 10} \)
\( H_{ol}(j \omega) = \frac{- 5 \cdot \mbox{A} \cdot \mbox{K}_r }{ \omega^3 } \cdot \frac{( 2 \omega - j) (2 j \omega + 1) (- j \omega + 10)}{ \omega^2 + 100} \)
\( H_{ol}(j \omega) = \frac{- 5 \cdot \mbox{A} \cdot \mbox{K}_r }{ \omega^3 \cdot (\omega^2 + 100) } \cdot ( 2 \omega - j) (2 j \omega + 1) (- j \omega + 10) \)
\( H_{ol}(j \omega) = \frac{- 5 \cdot \mbox{A} \cdot \mbox{K}_r }{ \omega^3 \cdot (\omega^2 + 100) } \cdot ( 4 j \omega^2 + 2 \omega + 2 \omega - j ) (- j \omega + 10) \)
\( H_{ol}(j \omega) = \frac{- 5 \cdot \mbox{A} \cdot \mbox{K}_r }{ \omega^3 \cdot (\omega^2 + 100) } \cdot ( 4 \omega + (4 \omega^2 - 1) j ) (- j \omega + 10) \)
\( H_{ol}(j \omega) = \frac{- 5 \cdot \mbox{A} \cdot \mbox{K}_r }{ \omega^3 \cdot (\omega^2 + 100) } \cdot ( -4 j \omega^2 + 40 \omega + \omega (4 \omega^2 - 1) + (40 \omega^2 - 10) j) \)
\( H_{ol}(j \omega) = \frac{- 5 \cdot \mbox{A} \cdot \mbox{K}_r }{ \omega^3 \cdot (\omega^2 + 100) } \cdot ( (36 \omega^2 - 10) j + 39 \omega + 4 \omega^3) \)
En dus:
\( \mbox{Re}(H_{ol}(j \omega)) = \frac{- 5 \cdot \mbox{A} \cdot \mbox{K}_r }{ \omega^3 \cdot (\omega^2 + 100) } \cdot (39 \omega + 4 \omega^3) \)
\( \mbox{Im}(H_{ol}(j \omega)) = \frac{- 5 \cdot \mbox{A} \cdot \mbox{K}_r }{ \omega^3 \cdot (\omega^2 + 100) } \cdot ( 36 \omega^2 - 10) \)
Waardoor:
\( \tan ( \arg(H_{ol}(j \omega)) ) = \frac{\mbox{Im}(H_{ol}(j \omega))}{\mbox{Re}(H_{ol}(j \omega))} \)
\( \tan ( \arg(H_{ol}(j \omega)) ) = \frac{36 \omega^2 - 10}{39 \omega + 4 \omega^3} \)