Gebruikersavatar
ukster
Artikelen: 0
Berichten: 4.916
Lid geworden op: za 28 nov 2015, 10:42

innercore pressure

innercore
innercore 1305 keer bekeken
innercore pressure
(155.34 KiB) 95 keer gedownload
in een online video lecture berekend men een (inner core) druk van ca 460.000 atm (pdf)
Internetbronnen hebben het over 3,3....3,6 miljoen atm
dat scheelt meer dan een factor 7
Wat is juist en wat veroorzaakt het grote (ontoelaatbare) verschil?
 
Gebruikersavatar
Michel Uphoff
Moderator
Artikelen: 0
Berichten: 8.167
Lid geworden op: di 01 jun 2010, 00:17

Re: innercore pressure

Ik vrees dat die pakweg 3,5 miljoen bar die je op internet tegenkomt nogal naïef berekend is op basis van gemiddelde dichtheid (5,51) en de kolomhoogte (6.371.000 meter). Dan kom je op ruwweg 3,5 miljoen bar.
 
Maar dat klopt zo niet, want g verloopt (onregelmatig) naar nul, en de Aarde is bij lange na niet homogeen:
 
Infographic inner Earth
Infographic inner Earth 1300 keer bekeken
 
De precieze druk uitrekenen is nogal complex door het dichtheidsverloop. Die 460.000 bar zou misschien kunnen kloppen. Zelf doe ik dat het liefst numeriek. Ik heb ergens nog een Excel sheet met de diepte en de dichtheid per 100 km volgens PREM. Op basis daarvan zou de druk redelijk nauwkeurig te bepalen zijn. Ik zal eens kijken of ik het nog kan vinden.
Gebruikersavatar
ukster
Artikelen: 0
Berichten: 4.916
Lid geworden op: za 28 nov 2015, 10:42

Re: innercore pressure

Gebruikersavatar
Michel Uphoff
Moderator
Artikelen: 0
Berichten: 8.167
Lid geworden op: di 01 jun 2010, 00:17

Re: innercore pressure

Die 460.000 bar kan niet kloppen. Alleen de druk veroorzaakt door de kern is - met een natte vinger geschat - al 2 miljoen bar: De dichtheid daar is ruwweg 10 (wat meer), hoogte 3500 km, g gemiddeld ruwweg 5 m/s2 (middelen kan hier vanwege het lineaire verloop in de kern) levert een kolom op van 35.000.000 cm * 10 gram/cm3 * 5  = 1.750.000.000 gram/cm= 1,75 miljoen bar.
 
Als ik wat preciezer ga rekenen op basis van de Prem data kom ik op 3,525 miljoen bar, wat aardig overeenkomt met de druk in de infographic boven. Dat dit vrijwel gelijk is aan eenvoudigweg 9,81 * kolomhoogte * gemiddelde dichtheid, vind ik nogal opvallend.
 
Hier de Prem data:
 
Image1
Image1 1300 keer bekeken
Image2
Image2 1300 keer bekeken
Gebruikersavatar
ukster
Artikelen: 0
Berichten: 4.916
Lid geworden op: za 28 nov 2015, 10:42

Re: innercore pressure

Gezien het feit dat alles er op wijst dat er in de core een druk >3 miljoen atm heerst trek ik de conclusie dat de docent in de video een compleet verkeerde methode hanteert met een duidelijk fout antwoord als resultaat.
Gevalletje tunnelvisie misschien?
Gebruikersavatar
Professor Puntje
Artikelen: 0
Berichten: 7.570
Lid geworden op: vr 23 okt 2015, 23:02

Re: innercore pressure

Kloppen de gegevens waar de video vanuit gaat eigenlijk wel?
 
De man werkt met de compressiemodulus en de dichtheid van ijzer aan de oppervlakte van de aarde en in de kern van de aarde.
Gebruikersavatar
ukster
Artikelen: 0
Berichten: 4.916
Lid geworden op: za 28 nov 2015, 10:42

Re: innercore pressure

Het kan echt niet goed zijn wat hij doet. immers als de dichtheid van de binnenkern zo hoog zou zijn dat de door hem gebruikte ΔV nadert naar 100%, zou de maximale druk 14.1010/(101325) ≈ 1,4 miljoen atm zijn en dat is pertinent onwaar.
overigens klopt die dichtheid van de binnenkern wel bij benadering, heb ik nagetrokken.
structure of the earth
structure of the earth 1300 keer bekeken
conclusie: hij doet iets wat niet mag om de druk in de kern te berekenen.
ik schat in dat hij een oneigenlijke toepassing heeft bedacht van het begrip bulkmodulus BFe
Gebruikersavatar
ukster
Artikelen: 0
Berichten: 4.916
Lid geworden op: za 28 nov 2015, 10:42

Re: innercore pressure

Dit zal inderdaad de enige juiste manier blijken denk ik.
innercore pressure
innercore pressure 1308 keer bekeken
Gebruikersavatar
Professor Puntje
Artikelen: 0
Berichten: 7.570
Lid geworden op: vr 23 okt 2015, 23:02

Re: innercore pressure

Voor de compressiemodulus κ geldt (bij niet al te hoge drukken!):
 
\( \kappa = - \frac{\;\;\; p \;\;\;}{ \frac{\Delta V}{V}} \)
 
Waarbij p de druk is op een massa m van een zeker materiaal dat als gevolg van die druk van een volume V in een volume V + ΔV overgaat.
 
Dus:
 
\( p = - \kappa \cdot \frac{\Delta V}{V} \)
 
\( p = - \kappa \cdot \frac{(V + \Delta V) - V}{V} \)
 
\( p = - \kappa \cdot \left ( \frac{V + \Delta V}{V} - 1 \right ) \)
 
\( p = - \kappa \cdot \left ( \frac{\frac{1}{V}}{\frac{1}{V + \Delta V}} - 1 \right ) \)
 
\( p = - \kappa \cdot \left ( \frac{\frac{m}{V}}{\frac{m}{V + \Delta V}} - 1 \right ) \)
 
\( p = - \kappa \cdot \left ( \frac{\rho_{Fe}}{\rho_{CORE}} - 1 \right ) \)
 
\( p = \kappa \cdot \left ( 1 - \frac{\rho_{Fe}}{\rho_{CORE}} \right ) \)
 
Dus bij niet al te hoge drukken (maar wat is "niet al te hoog"?) en bij verwaarlozing van temperatuurverschillen. 
Gebruikersavatar
ukster
Artikelen: 0
Berichten: 4.916
Lid geworden op: za 28 nov 2015, 10:42

Re: innercore pressure

inderdaad, bij verwaarlozing van het effect van 6000ºC kerntemperatuur geeft deze expressie ingevuld met de gegevens uit de video het (foute) antwoord 460000 atm
Waar ligt de grens van niet al te hoge druk, waarbij deze expressie nog wel een enigszins betrouwbare resultaat geeft?
Niet dat we daar nu wat aan hebben, maar het geeft dan wel de beperking van deze toepassing aan.
De docent in kwestie had zich dit wel terdege moeten realiseren vind ik.
Gebruikersavatar
Professor Puntje
Artikelen: 0
Berichten: 7.570
Lid geworden op: vr 23 okt 2015, 23:02

Re: innercore pressure

ukster schreef: Waar ligt de grens van niet al te hoge druk, waarbij deze expressie nog wel een enigszins betrouwbare resultaat geeft?
Niet dat we daar nu wat aan hebben, maar het geeft dan wel de beperking van deze toepassing aan.
 
Juist - dat is wat uitzoekwerk. Maar dat moet wel ergens op internet te vinden zijn. En als de druk in de kern van de aarde daar dan ruim boven ligt hebben we de fout in de video gevonden.
Gebruikersavatar
ukster
Artikelen: 0
Berichten: 4.916
Lid geworden op: za 28 nov 2015, 10:42

Re: innercore pressure

opgelost.
Ik geloof dat Michell nog even op zoek is naar een excell toepassing,waarmee de binnenkerndruk (numeriek) kan worden berekend met de formule van #8 waarbij de Prem data per 100km wordt ingevoerd/aangepast.  
Gebruikersavatar
Michel Uphoff
Moderator
Artikelen: 0
Berichten: 8.167
Lid geworden op: di 01 jun 2010, 00:17

Re: innercore pressure

Het bleken stapjes van 200 km te zijn. Maar ook dat lijkt mij voldoende voor een redelijk nauwkeurig resultaat. De PREM data zijn voor zover mij bekend de meest nauwkeurige gegevens, maar ook die hebben een redelijke marge.
 
Image1
Image1 1299 keer bekeken
 
[edit]
De originele en nauwkeuriger PREM tabellen gevonden. Hier een uitsnede. Ik ziet er niet ver naast:
 
Prem uitgebreide data
Prem uitgebreide data 1299 keer bekeken
Bron: Dziewonski en Anderson Harvard (pdf)
Gebruikersavatar
Professor Puntje
Artikelen: 0
Berichten: 7.570
Lid geworden op: vr 23 okt 2015, 23:02

Re: innercore pressure

ukster schreef: Dit zal inderdaad de enige juiste manier blijken denk ik.
Afbeelding innercore pressure.jpg
 
Waar komt die formule vandaan? De dimensies kloppen niet.
Gebruikersavatar
ukster
Artikelen: 0
Berichten: 4.916
Lid geworden op: za 28 nov 2015, 10:42

Re: innercore pressure

pressure
pressure 1299 keer bekeken
dit valt zeker onder numeriek integreren met meerdere veranderlijken?

Terug naar “Klassieke mechanica”