Ik heb zelf ook de berekening gedaan; dat was alweer een tijdje geleden
Je kunt het inderdaad het makkelijkst met de integraalvorm van de Poissonvergelijking doen (Gauss), maar wat je ook kunt doen is een testdeeltje met massa m op afstand z boven de plaat houden. Vervolgens kies je poolcoördinaten op de plaat, en ga je kijken wat het effect is van concentrische ringen die hun invloed uitoefenen op de testmassa. Vanwege symmetrie zullen alleen de loodrechte componenten bijdragen aan de kracht.
Dus, we plaatsen een testmassa m boven de plaat die massadichtheid sigma heeft. De afstand van de ring tot de massa noemen we r, en de straal van de ring (vanaf het punt op de plaat loodrecht onder de testmassa) noemen we R. De hoek theta is dan tussen r en z:
\( dF = \frac{Gm\sigma}{z^2 + R^2} 2 \pi R dR \cos{(\theta)} = \frac{Gm\sigma}{(z^2 + R^2)^{3/2}} 2 \pi R dR \)
Hierbij gebruiken we dat
\(\cos{(\theta)} = \frac{z}{r} = \frac{z}{\sqrt{z^2 + R^2}} \)
De totale kracht wordt dan
\( F = 2 \pi G m \sigma z \int_{0}^{\infty} \frac{R dR}{(z^2 + R^2)^{3/2}} \)
en deze integraal los je op met een substutie:
\( \int \frac{R dR}{(z^2 + R^2)^{3/2}} = \frac{-1}{\sqrt{z^2 + R^2}}\)
Je krijgt dan dus
\(\int_{0}^{\infty} \frac{R dR}{(z^2 + R^2)^{3/2}} = \frac{1}{z} \)
De totale kracht wordt
\( \pi G m \sigma \)
en dus
\( g = \pi G \sigma \)
waarbij de afhankelijkheid van z inderdaad wegvalt.
Ik lijk er een factor 2 naast te zitten; zal wel ergens een factor 2 in de integraal verkeerd hebben gedaan. Maar het punt is dat wanneer je de plaat oneindig groot neemt, de z-afhankelijkheid van de kracht wegvalt.