Even een opzetje voor een nadere onderbouwing. Is dit te volgen?
\(\)
\( \frac{ \mathrm{d} \arctan(x)}{\mathrm{d} x} = \frac{1}{1 + x^ 2} \)
\(\)
\( \int_{-\infty}^{\infty} \frac{1}{1 + x^ 2} \, \mathrm{d} x = [ \arctan(x)]_{- \infty}^{\infty} \)
\(\)
\( \int_{-\infty}^{\infty} \frac{1}{1 + x^ 2} \, \mathrm{d} x = \frac{\pi}{2} - \frac{- \pi}{2} \)
\(\)
\( \int_{-\infty}^{\infty} \frac{1}{1 + x^ 2} \, \mathrm{d} x = \pi \)
\(\)
\( \int_{-\infty}^{\infty} \frac{1}{\pi (1 + x^ 2)} \, \mathrm{d} x = 1 \)
\(\)
\( \int_{-\infty}^{\infty} \frac{\epsilon^2}{\pi (\epsilon^ 2 + (\epsilon x)^2)} \, \mathrm{d} x = 1 \,\,\,\,\, (\epsilon > 0) \)
\(\)
\( \int_{-\infty}^{\infty} \frac{\epsilon}{\pi (\epsilon^ 2 + (\epsilon x)^2)} \, \mathrm{d} (\epsilon x) = 1 \)
\(\)
\( \int_{-\infty}^{\infty} \frac{\epsilon}{\pi (\epsilon^ 2 + x^2)} \, \mathrm{d} x = 1 \)
\(\)