Stel ik heb een perfecte holle bol. De binnen kant is een perfecte spiegel voor een zekere golflengte \(\lambda\).
De bol heeft een klein perfect afsluitbaar klepje.
Stel ik doe het klepje open en schijn met een laser licht met golflengte \(\lambda\) in de bol en sluit nadien weer het klepje. Ik schijn slechts gedurende \(\frac{D}{2c}\) seconden met D de diameter van de bol zodat er geen licht uit ontsnapt. De laser heeft een vermogen W dus we weten dat er \(\frac{WD}{2c}\) joule aan energie in de holle bol is gestoken. Als je wil mag je uitrekenen hoeveel de bol nu meer weegt maar daar gaat het niet om .
De vraag is: hoe lang duurt het eer "equilibrium" bereikt wordt. Met andere woorden de tijdsduur eer het licht zich netjes homogeen verspreid in de bol. Dit zal afhangen van de breedte van de laser bundel dus laten we die cirkelvormig maken met straal r.
Omgekeerd eens het licht homogeen verdeeld is, hoe lang duurt het eer al het licht verdwijnt uit de bol als we het gaatje open maken?
Heb het zelf nog niet uitgerekend maar ik heb een aantal vermoedens.
Als de tijd oneindig is om het homogeen veld te bereiken of de bol leeg te laten lopen zou ik graag een formule zien U(t) met U de hoeveelheid energie dat uit de bol is en \(S(r,\theta,\phi,t)\) de stralingsdistributie in de tijd. Dit laatste lijkt me bijzonder moeilijk.