\( \left [ \sum\limits_{i=1}^3 \mathfrak{e}_i \otimes \mathfrak{e}_i \right ]( \mathbf{x} , \mathbf{y} ) \, = \, \sum\limits_{i=1}^3 [ \mathfrak{e}_i \otimes \mathfrak{e}_i ]( \mathbf{x} , \mathbf{y} ) \)
\(\)
\( \left [ \sum\limits_{i=1}^3 \mathfrak{e}_i \otimes \mathfrak{e}_i \right ]( \mathbf{x} , \mathbf{y} ) \, = \, \sum\limits_{i=1}^3 \mathfrak{e}_i(\mathbf{x}) \cdot \mathfrak{e}_i(\mathbf{y}) \)
\(\)
\( \left [ \sum\limits_{i=1}^3 \mathfrak{e}_i \otimes \mathfrak{e}_i \right ]( \mathbf{x} , \mathbf{y} ) \, = \, \sum\limits_{i=1}^3 \mathfrak{e}_i( x^j \mathbf{e}_j ) \cdot \mathfrak{e}_i( y^k \mathbf{e}_k ) \)
\(\)
\( \left [ \sum\limits_{i=1}^3 \mathfrak{e}_i \otimes \mathfrak{e}_i \right ]( \mathbf{x} , \mathbf{y} ) \, = \, \sum\limits_{i=1}^3 ( x^j \mathfrak{e}_i( \mathbf{e}_j ) ) \cdot ( y^k \mathfrak{e}_i( \mathbf{e}_k ) ) \)
\(\)
\( \left [ \sum\limits_{i=1}^3 \mathfrak{e}_i \otimes \mathfrak{e}_i \right ]( \mathbf{x} , \mathbf{y} ) \, = \, \sum\limits_{i=1}^3 ( x^j \langle \mathbf{e}_j | \mathbf{e}_i \rangle ) \cdot ( y^k \langle \mathbf{e}_k | \mathbf{e}_i \rangle ) \)
\(\)
\( \left [ \sum\limits_{i=1}^3 \mathfrak{e}_i \otimes \mathfrak{e}_i \right ]( \mathbf{x} , \mathbf{y} ) \, = \, \sum\limits_{i=1}^3 x^j \delta^j_i \cdot y^k \delta^k_i \)
\(\)
\( \left [ \sum\limits_{i=1}^3 \mathfrak{e}_i \otimes \mathfrak{e}_i \right ]( \mathbf{x} , \mathbf{y} ) \, = \, \sum\limits_{i=1}^3 x^i y^i \)
\(\)
Voor de componenten van
\( \sum\limits_{i=1}^3 \mathfrak{e}_i \otimes \mathfrak{e}_i \) ten opzichte van de orthonormale basis {
e1,
e2,
e3 } vinden we:
\(\)
\( \left [ \sum\limits_{i=1}^3 \mathfrak{e}_i \otimes \mathfrak{e}_i \right ]_{j,k} \, = \, \left [ \sum\limits_{i=1}^3 \mathfrak{e}_i \otimes \mathfrak{e}_i \right ]( \mathbf{e}_j \, , \mathbf{e}_k ) \)
\(\)
\( \left [ \sum\limits_{i=1}^3 \mathfrak{e}_i \otimes \mathfrak{e}_i \right ]_{j,k} \, = \, \sum\limits_{i=1}^3 \delta^i_j \delta^i_k \)
\(\)
\( \sum\limits_{i=1}^3 \mathfrak{e}_i \otimes \mathfrak{e}_i \, \widehat{=} \, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \)