Een variabele rechte lijn met helling 3 snijdt de hyperbool yx-y=2x+1 in twee punten.
Wat zijn de opeenvolgende stappen om de locus van punt P te vinden dat het lijnsegment tussen de twee snijpunten verdeeld in de verhouding 1:2 ?
Ja, volgens mij is jouw uiteenzetting correct!
Voor bijvoorbeeld b= -9 geldt dan voor punt P de coördinaten: (x3, b+3 x3)→ (16/9 , -32/3) en (26/9 , -1/3)
Rest alleen nog de verzameling van alle punten P (=Locuscurve) te vinden, waarvan de locatie voldoet aan de voorwaarde 3(x3 – x1)=x2 – x1