Ruud1234 schreef: ↑ma 23 mei 2022, 20:21
Mogelijk is het onderzocht en afgekeurd.
Tijddillatatie in de buurt van een zwart gat lijkt me overigens niet vergelijkbaar met wat er bij de oerknal is gebeurd.
Bij de oerknal betrof de gebeurtenis het hele heelal, een zwart gat is een lokaal verschijnsel binnen het heelal.
Maar ik stel ook maar een vraag.
Je hebt gelijk dat tijddilatatie rond een zwart gat heel wat anders zou zijn dan een eventuele tijddilatatie in het prille heelal, dat zou niet te vergelijken zijn. (Er is wel een hypothese dat het waarneembare heelal een zwart gat is, dus dat we
in een zwart gat leven. Maar dat heeft niet veel aanhang.)
En het is niet echt onderzocht en afgekeurd, maar er wordt rekening mee gehouden.
Maar ten tijde van "de oerknal" (whatever that is eigenlijk); de begintoestand van het heelal (vanaf t=10^-45 volgens het lambda-CDM model, waarbij het ook nog maar de vraag is dit daarwerkelijk zo was. Er zijn natuurlijk verschillende kandidaten voor de geboorte van ons heelal. Een initiële oerknal singulariteit is er maar een van, waar bijvoorbeeld Erik Verlinde helemaal niets van gelooft. Maar goed.), .. toen was de ruimtetijd ook compact. Dus opnieuw totaal niet te vergelijken met een ruimtetijd rond een zwart gat. (Tijddilatatie bij realistische zwarte gaten (roterende Kerr zwarte gaten) is ook heel anders dan met Schwarzschild coördinaten. Namelijk:
\(1−(dτ/dt)^2=2GMr/c^2ρ^2\)
Waar
\(ρ^2=r^2+(J/Mc)^2cos^2θ\) voor een zwart gat met massa M, hoekimpuls J, en een waarnemer op een afstand r en hoek coordinaat θ.)
Waar jij je verder mee bezig houdt/wat je je afvraagt (het mogelijk sneller gaan verlopen van tijd), daar wordt dus rekening mee gehouden. En bestaat niet, althans niet in de zin van "hoe hoger de dichtheid hoe meer tijd dilatatie".
De simpelste manier om dit te beschrijven met enkel woorden is dat de uitdijing wordt beschreven met een ruimtetijd, een metriek: de FLRW metriek. Meestal gaat het bij een metriek in de algemene relativiteitstheorie om een gekromde ruimtetijd, maar bij deze metriek en dus bij de uitdijing van het heelal, is er geen enkele kromming in tijd (in zoverre je mag spreken van ruimte en tijd afzonderlijk in de algemene relativiteitstheorie). Alleen de ruimtelijke coördinaten doen er toe. En in 'simpel speak' is het gekromde tijd gedeelte van een gekromde ruimtetijd, niets anders dan gravitationele tijd dilatatie.
(Waar alle beweging in het Newtonse limiet (=zwakke velden en lage snelheden) toegedicht aan zwaartekracht door veroorzaakt wordt, door gravitationele tijd dilatatie, hoe gek dat ook klinkt. Zijn wel leuke YouTube filmpjes van.)
Of misschien is het als volgt makkelijker te begrijpen:
De leeftijd van het heelal wordt bepaald door elke tijddilatatie "weg te nemen". Alsof het werd gemeten door een klok zonder eigenbeweging met betrekking tot de Hubble flow. Oftewel "comoving time" (wat de verstreken tijd sinds de oerknal volgens een klok van een bewegende waarnemer en is een maat voor de kosmische tijd is) en geen "conformal time" (wat fysisch gezien geen betekenisvolle tijd is (zoveel tijd is eigenlijk nog niet verstreken): maar de "particle horizon" waarmee het is geassocieerd, een conceptueel betekenisvolle afstand is). Dus dit houdt *rekening* met bijdragen als gevolg van "recessiesnelheid", "gravitionele tijd dilatatie" en zelfs de "Lorentz-factor".
Het is een beetje moeilijk om goed en volledig uit te leggen zonder enkele wiskunde, maar uiteindelijk is het antwoord:
De tijd was niet gedilateerd (nul gravitationele tijd dilatatie tov nu) in de buurt van de oerknal toen de dichtheid hoger was, omdat eigentijd per definitie is wat wordt weergegeven op de klok van een met de uitdijing meebewegende waarnemer. Elke meebewegende waarnemer overal zou dus 13,8 miljard jaar sinds de oerknal hebben geregistreerd.
Dus
\(dt = d\tau\) omdat
\(\quad d\vec{x}=0\) voor de waarnemer.
En dus
kan dit niets te maken hebben met kosmologische roodverschuiving.
Wat alleen bestaat sinds de 'surface of last scattering' (de bekende plaatjes van het CMB).
Ook wel eens de kosmische fotosfeer genoemd, naar analogie met het schijnbare 'oppervlak' van de zon waar straling die wordt geproduceerd door kernreacties het laatst wordt verstrooid door het zonnemateriaal. De energiebron voor de fotonen van de zon bevindt zich niet in de fotosfeer: deze komt van kernfusie in het centrum van de zon. Evenzo werden de CMB-fotonen niet gecreëerd aan het 'surface of last scattering': ze werden geproduceerd in een veel vroeger tijdperk in de evolutie van het heelal. Maar ik dwaal wat af.)
PS.
Volgens de Friedmann-Lemaître-Robertson-Walker-metriek, die dus wordt gebruikt om het uitdijende heelal te modelleren, geldt dat als we op dit moment licht ontvangen van een ver object met een roodverschuiving van z, dan is de schaalfactor op het moment dat het object dat licht oorspronkelijk uitstraalde
\({\displaystyle a(t)={\frac {1}{1+z}}}\) is. De maximale roodverschuiving is dus ongeveer z=1089.
Zie verder ook de antwoorden van Mordred hier bijvoorbeeld en eventueel:
https://www.physicsforums.com/threads/w ... se.688708/
Excuses als ik er een aantal dingen bij haal die niet echt nodig zijn. Ik probeer slechts te helpen door zo volledig mogelijk te zijn.
@wnvl1
Gravitationele potentiële energie bestaat eigenlijk niet echt in de ART. Het is alleen nuttig voor zover het verband houdt met een bewegingsconstante van een object die een geodeet volgt, in het geval van een zwaartekrachtpotentiaal, dat deel uitmaakt van de geconserveerde mechanische energie, kinetisch + potentieel.
Zo is er bijvoorbeeld bij een elliptische omloopbaan van een hemellichaam geen uitwisseling meer tussen kinetische- en gravitationele potentiële energie: er is alleen nog de totale mechanische energie (of specifieke orbitale energie).
Gravitatie-energie kan niet expliciet worden opgenomen in de Einstein-veldvergelijkingen vanwege het equivalentieprincipe: er is altijd een lokaal inertiaalstelsel (de vrij vallende) waarin ruimtetijd eruitziet als de gewone, vlakke, ruimtetijd uit de SRT.
Wel zijn de Einstein veldvergelijkingen niet-lineair; zwaartekracht zorgt zelf ook weer voor zwaartekracht (gekromde ruimtetijd), dus in die zin wordt gravitatie-energie wel impliciet inbegrepen.
Maar in de algemene relativiteitstheorie is gravitatie-energie buitengewoon complex, en er is geen eenduidige definitie van het concept.
De zwaartekrachtspotentiaal wordt iig vervangen door de metrische tensor. (Misschien beter voor in een ander topic (?) .. dacht ik.)
@HansH
De Hubble parameter
neemt af. De Hubble parameter wordt gedefinieerd als de veranderingssnelheid van de afstand tussen twee punten in het heelal, gedeeld door de afstand tussen die twee punten. De Hubble parameter wordt kleiner omdat de noemer sneller groter wordt dan de teller.
Maar dit wordt zo wel heel lang.
Over waarom en hoe het heelal uitdijt, in zoverre we dat weten, wordt zelfs mij (die vaak wat moeite heeft met kort en krachtig) een beetje teveel. En is misschien ook beter voor in een ander topic (?).
Maar je kunt hier het e.e.a. lezen:
https://en.m.wikipedia.org/wiki/Expansi ... e_universe
Onder "Topology of expanding space" in dat hoofdstuk.
Maar bijvoorbeeld waarom er waarschijnlijk inflatie was en waarom het nu versnelt uitdijt is niet bekend, voor zover ik weet iig. Donkere energie. Maar ja, wat is dat? Misschien vacuüm energie, de kosmologische constante of misschien hetzelfde mechanisme als bij kosmische inflatie.