Gebruikersavatar
aadkr
Pluimdrager
Artikelen: 0
Berichten: 6.649
Lid geworden op: vr 13 jan 2006, 20:41

Ongelijkheid van Chebyshev

Ik ben bezig om de afleiding van de ongelijkheid van Chebyshev te snappen.
Tik bij google in:
https://users.ugent.be>files>statbio>studslidesh3.pdf
IK wil zondag Uw hulp inroepen als ik de afleiding niet helmaal snap.
Hoogachtend
aad
Gebruikersavatar
aadkr
Pluimdrager
Artikelen: 0
Berichten: 6.649
Lid geworden op: vr 13 jan 2006, 20:41

Re: Ongelijkheid van Chebyshev

img277
Hebben we hier te maken met een open interval of met een segment.
Voor elke waarde van een positief getal k zou het moeten gelden.
Lijkt mij grote onzin.
Neem maar k=0,2
Dan wordt het een fractie van ( -24) van alle meetwaarden. Dit kan nooit !!!!!
CoenCo
Technicus
Artikelen: 0
Berichten: 1.207
Lid geworden op: di 18 okt 2011, 00:17

Re: Ongelijkheid van Chebyshev

Gebruikersavatar
wnvl1
Artikelen: 0
Berichten: 2.944
Lid geworden op: di 20 jul 2021, 21:43

Re: Ongelijkheid van Chebyshev

(1) Een gesloten interval.
(2) Er staat een fractie van minstens ..., dus dan is er geen probleem.
De werkelijke fractie is positief en dus minstens -24.
Gebruikersavatar
aadkr
Pluimdrager
Artikelen: 0
Berichten: 6.649
Lid geworden op: vr 13 jan 2006, 20:41

Re: Ongelijkheid van Chebyshev

Geachte Coenco
Inderdaad, dat is de goede pdf.
Geachte wnvl1
U zegt dat de werkelijke fractie is positief ( dat klopt) maar U schrijft ""minstens -24"" maar dat kan toch niet want (-24) is negatief.
Gebruikersavatar
aadkr
Pluimdrager
Artikelen: 0
Berichten: 6.649
Lid geworden op: vr 13 jan 2006, 20:41

Re: Ongelijkheid van Chebyshev

Volgens het van Dale woordenboek
fractie: slechts door een breuk weer te geven.
Gebruikersavatar
Xilvo
Moderator
Artikelen: 0
Berichten: 10.698
Lid geworden op: vr 30 mar 2018, 16:51

Re: Ongelijkheid van Chebyshev

aadkr schreef: zo 29 jan 2023, 14:08 U zegt dat de werkelijke fractie is positief ( dat klopt) maar U schrijft ""minstens -24"" maar dat kan toch niet want (-24) is negatief.
"Minstens -24" beteken groter of gelijk aan -24. Ieder positief getal voldoet aan die eis.
Gebruikersavatar
tempelier
Artikelen: 0
Berichten: 4.345
Lid geworden op: zo 08 jan 2012, 00:59

Re: Ongelijkheid van Chebyshev

aadkr schreef: zo 29 jan 2023, 16:55 Volgens het van Dale woordenboek
fractie: slechts door een breuk weer te geven.
Taalkundigen zijn maar zelden technisch aangelegd. ;)

Bij sorteren naar korrelgrootte door opvolgende zeven spreekt men vaak van eerste , tweede , derde , ........ fractie.
Gebruikersavatar
aadkr
Pluimdrager
Artikelen: 0
Berichten: 6.649
Lid geworden op: vr 13 jan 2006, 20:41

Re: Ongelijkheid van Chebyshev

Hartelijk dank Tempelier
aad
Gebruikersavatar
aadkr
Pluimdrager
Artikelen: 0
Berichten: 6.649
Lid geworden op: vr 13 jan 2006, 20:41

Re: Ongelijkheid van Chebyshev

Ik heb naar aanleiding van de ongelijkheid van Tchebycheff een rekenvoorbeeld gemaakt naar aanleiding van de uitleg op die site van de ugent.
Klop dit voorbeeld of maak ik een denkfout.
Stel: de stochast X heeft de waarden ( 2,2,3,3,3,3,4,4,5,5,5,5,5,6,6,6,7,7,8,9)
Het rekenkundig gemiddelde mu = 2 .2/20 + 3. 4/20 + 4. 2/20 +.........9 . 1/20=4,9
Var(X)=algebraische optelling van i=1 t/m i=20 van (x(i)-(mu))^2 . f(x(i))
Var(X)=( 2-4,9)^2 . 2/20 +( 3-4,9)^2 . 4/10 + ........+ (9-4,9)^2 . 1/20=
Var(X)=
0,841+1,444+0,081+0,0025+0,1815+0,441+0,4805+0,8405=4,312
Standaardafwijking (sigma)(x)=Vierkantswortel uit 4,312=2,076
Stel:k=wortel(2)
Dan zal minstens 50 % of meer van de 20 waarnemingsgetallen vallen in het open interval
<4,9-2. 2,076 , 4,9+ 2. 2,076 >=
< 0,747 , 9,053>
Ik weet niet wat het nut is van deze berekening, het kan zijn dat ik er niets van begrijp.
Gebruikersavatar
wnvl1
Artikelen: 0
Berichten: 2.944
Lid geworden op: di 20 jul 2021, 21:43

Re: Ongelijkheid van Chebyshev

<4,9-wortel(2). 2,076 , 4,9+ wortel(2). 2,076 > moet het zijn.
Chebychev geeft voeling bij een verdeling zonder dat je een geavanceerd rekentoestel nodig hebt of z-tabellen.
Gebruikersavatar
aadkr
Pluimdrager
Artikelen: 0
Berichten: 6.649
Lid geworden op: vr 13 jan 2006, 20:41

Re: Ongelijkheid van Chebyshev

wnvl1 U heeft gelijk.
<1,96409 , 7,83590 >
Maar is 50 % of meer van de 20 waarnemingsgetallen vallen in dat open interval. Is dat wel goed??
Gebruikersavatar
wnvl1
Artikelen: 0
Berichten: 2.944
Lid geworden op: di 20 jul 2021, 21:43

Re: Ongelijkheid van Chebyshev

Is juist.
Gebruikersavatar
aadkr
Pluimdrager
Artikelen: 0
Berichten: 6.649
Lid geworden op: vr 13 jan 2006, 20:41

Re: Ongelijkheid van Chebyshev

img330
wordt vervolgt
Gebruikersavatar
aadkr
Pluimdrager
Artikelen: 0
Berichten: 6.649
Lid geworden op: vr 13 jan 2006, 20:41

Re: Ongelijkheid van Chebyshev

img332

Terug naar “Kansrekening en Statistiek”