Forumregels
(Middelbare) school-achtige vragen naar het forum "Huiswerk en Practica" a.u.b.
Zie eerst de Huiswerkbijsluiter
PhilipVoets
Artikelen: 0
Berichten: 460
Lid geworden op: za 21 mar 2009, 13:07

Vraag m.b.t. vereenvoudiging

Een afgeknotte kegel wordt door een vlak evenwijdig met het gronden bovenvlak in twee gelijkvormige delen verdeeld. Het grondvlak heeft oppervlakte A en het bovenvlak oppervlakte B. Wat is de oppervlakte van de doorsnede O?

Dit lijkt me de oplossing (met h = hoogte van afgeknotte piramide):
0,5 x (A-B)h/3 = (O-B)x/3 = (A-O)(h-x)/3
h/x = 2(O-B)/(A-B) = (A-B)/(A-O) --> (A-B)^2 = 2(O-B)(A-O) = -2O^2 + 2(A+B)O - 2AB
2O^2 - 2(A+B)O + A^2 + B^2 = 0
En dan deze vierkantsvergelijking oplossen voor O middels discriminant, maar om een of andere reden krijg ik die uitkomst niet verder vereenvoudigd.

Suggesties?
Gebruikersavatar
Xilvo
Moderator
Artikelen: 0
Berichten: 10.976
Lid geworden op: vr 30 mar 2018, 16:51

Re: Vraag m.b.t. vereenvoudiging

Wegens de gelijkvormigheid zou ik zeggen dat \(\frac{A}{O}=\frac{O}{B}\).
Dan \(O=\sqrt{A.B}\)

Of begrijp ik de vraag verkeerd?
PhilipVoets
Artikelen: 0
Berichten: 460
Lid geworden op: za 21 mar 2009, 13:07

Re: Vraag m.b.t. vereenvoudiging

Ik had de vraag gelezen als gelijke volumina, maar volgens mij staat er inderdaad gelijkvormigheid… My bad

Terug naar “Wiskunde”