Forumregels
(Middelbare) school-achtige vragen naar het forum "Huiswerk en Practica" a.u.b.
Zie eerst de Huiswerkbijsluiter
PhilipVoets
Artikelen: 0
Berichten: 460
Lid geworden op: za 21 mar 2009, 13:07

Product

Zij Tn = 1 + 2 + 3 + 4 + … + n

Pn = T2/(T2 - 1) x T3/(T3 - 1) x T4/(T4 - 1) x … x Tn/(Tn - 1), dan is P1999 ongeveer?
Gebruikersavatar
wnvl1
Artikelen: 0
Berichten: 3.137
Lid geworden op: di 20 jul 2021, 21:43

Re: Product

hint:
Tn = 1+2+...+n=n(n+1)/2
PhilipVoets
Artikelen: 0
Berichten: 460
Lid geworden op: za 21 mar 2009, 13:07

Re: Product

Ja, zover was ik ook al 👍🏻

Maar dan kom ik uit op:

Pn = n(n+1)/(n(n+1)-1) x (n+1)(n+2)/((n+1)(n+2)-1) x …

En zo snel kreeg ik dat niet vereenvoudigd
PhilipVoets
Artikelen: 0
Berichten: 460
Lid geworden op: za 21 mar 2009, 13:07

Re: Product

Die -1 moet -2 zijn, excuus
RedCat
Artikelen: 0
Berichten: 510
Lid geworden op: zo 21 jul 2019, 16:38

Re: Product

Je hebt P(n) al gegeven als product van factoren:

\(P(n) = \prod_{i=2}^n \frac{i(i+1)}{i(i+1)-2}\)

herschrijf de noemer:

\(P(n) = \prod_{i=2}^n \frac{i(i+1)}{i^2+i-2}\)

ofwel

\(P(n) = \prod_{i=2}^n \frac{i(i+1)}{(i-1)(i+2)}\)

In het product P(n) ontstaan hierdoor gelijke kwadraten in de teller en noemer, die tegen elkaar wegvallen.
Voorbeeld voor n=6:

\(P(6) = \frac{2\cdot 3}{1\cdot 4}\cdot \frac{3\cdot 4}{2\cdot 5}\cdot \frac{4\cdot 5}{3\cdot 6}\cdot\frac{5\cdot 6}{4\cdot 7}\cdot\frac{6\cdot 7}{5\cdot 8}\)

In dit geval vallen beide \(4^2\) in teller en noemer tegen elkaar weg, hetzelfde geldt voor \(5^2\)
Dit levert:

\(P(6) = \frac{2\cdot 3\cdot 3\cdot 6 \cdot 6 \cdot 7}{1\cdot 2 \cdot 3 \cdot 6 \cdot 7 \cdot 8}\)

In het algemeen houden we zo voor P(n) dus over:

\(P(n) = \frac{2\cdot 3\cdot 3\cdot n \cdot n \cdot (n+1)}{1\cdot 2 \cdot 3 \cdot n \cdot (n+1) \cdot (n+2)}\)

en dit nog vereenvoudigd:

\(P(n) = \frac{3n}{n+2}\)

Voor grote n is dit ongeveer 3 (maar je hebt nu ook het exacte antwoord).
PhilipVoets
Artikelen: 0
Berichten: 460
Lid geworden op: za 21 mar 2009, 13:07

Re: Product

Het is grappig; ik vermoedde al dat tellers en noemers in het product tegen elkaar zouden gaan wegvallen tijdens invullen, dus ik zat aanvankelijk op dat spoor, maar mezelf blijkbaar misteld, want dacht dat die vlieger niet opging. Dank!

Terug naar “Wiskunde”