De bedoeling is om de DV
\(\frac{dz}{dx}-z\cdot x=1\)
te vermenigvuldigen met een functie r(x) zodanig dat in het linkerlid iets komt te staan dat de vorm heeft van de afgeleide van een product, dus iets van de vorm f'g+fg'.
Vermenigvuldig alvast met de (nog onbekende) factor r(x):
\(\frac{dz}{dx}\cdot r(x)-z\cdot r(x)\cdot x =r(x)\)
Als nu r(x) zó is dat
\(-r(x)\cdot x= \frac{dr(x)}{dx}\)
dan wordt de vergelijking
\(\frac{dz}{dx}\cdot r(x)+z\cdot \frac{dr(x)}{dx} =r(x)\)
Het linkerlid heeft nu de vorm van een afgeleide van een product. We kunnen dus schrijven:
\(\frac{d}{dx}(z\cdot r(x)) =r(x)\)
Met dit laatste gaan we dadelijk verder, eerst zoeken we een r(x) die aan de gezochte voorwaarde voldoet.
\(-r(x)\cdot x= \frac{dr(x)}{dx}\Leftrightarrow \frac{dr(x)}{r(x)}=-xdx\Rightarrow \int\frac{dr(x)}{r(x)}=\int -xdx \Rightarrow\ln(r(x))=-\frac{x^2}{2}+k\)
Kies k=0 en herschrijf als
\(r(x)=e^{-\frac{x^2}{2}}\)
Nu hebben we een goede r(x) gevonden, die kunnen we nu invullen:
\(\frac{d}{dx}(z\cdot e^{-\frac{x^2}{2}}) =e^{-\frac{x^2}{2}}\)
Integreren:
\(\int d(z\cdot e^{-\frac{x^2}{2}}) =\int e^{-\frac{x^2}{2}}dx\)
Nu is die laatste integraal niet met elementaire functies uit te drukken. Daar wordt een nieuwe functie mee gedefinieerd, de zgn 'error functie'. Meer bepaald:
\(erf(x)=\frac{2}{\sqrt{\pi}}\int_0^x e^{-z^2}dz\)
We kunnen dus schrijven
\(\int e^{-\frac{x^2}{2}}dx= \int e^{-(\frac{x}{\sqrt{2}})^2}dx=\sqrt{2}\int e^{-(\frac{x}{\sqrt{2}})^2}d(\frac{x}{\sqrt{2}})\)
\(=\sqrt{\frac{\pi}{2}}\frac{2}{\sqrt{\pi}}\int e^{-(\frac{x}{\sqrt{2}})^2}d(\frac{x}{\sqrt{2}})= \sqrt{\frac{\pi}{2}} erf(\frac{x}{\sqrt{2}})+c\)
Conclusie:
\(z\cdot e^{\frac{-x^2}{2}}=\sqrt{\frac{\pi}{2}} erf(\frac{x}{\sqrt{2}})+c\Rightarrow z=e^{\frac{x^2}{2}}\cdot(\sqrt{\frac{\pi}{2}} erf(\frac{x}{\sqrt{2}})+c)\)
Nu nog de ln van beide leden nemen (en we hadden y=ln z)
\(y=\ln(e^{\frac{x^2}{2}}\cdot(\sqrt{\frac{\pi}{2}} erf(\frac{x}{\sqrt{2}})+c))\)
\(y=\ln(e^{\frac{x^2}{2}})+\ln(\sqrt{\frac{\pi}{2}} erf(\frac{x}{\sqrt{2}})+c)\)
\(y=\frac{x^2}{2}+\ln(\sqrt{\frac{\pi}{2}} erf(\frac{x}{\sqrt{2}})+c)\)