en deze link: https://seismologie.be/nl/onderzoek/gravimetrie
in de buurt van chimay is het lager, maar als je kijkt naar de variaties dan moet dat wel door locale invloeden komen.
Moderator: physicalattraction
De weegschaal meet effectieve versnelling maar ik vraag me even af wat die landkaarten precies weergeven. is dat ook niet gewoon het aantal g's? dus alles bij elkaar net zoals de weegschaal? en er staat bij gemeten aan het oppervlak. dus is dat dan inclusief de hoogte van het landschap of is het verrekend naar zeenivo?
maar gebruik je dan een andere formule dan G.M/R2 en het feit dat de massa in het zwaartepunt zit? hoe kan het dan dat je op iets anders komt?Xilvo schreef: ↑wo 07 aug 2024, 19:14 Ik heb - door tamelijk primitief numeriek te integreren - de zwaartekracht even boven het oppervlak van een ellipsoïde met dezelfde verhouding tussen equatoriale en polaire diameter (ca 1,0033) berekend.
Het blijkt dat de verhouding tussen g aan de pool en die aan de evenaar ongeveer een factor tien kleiner te zijn dan je op grond van G.M/R2 zou verwachten.
Nee, die gebruik ik natuurlijk, maar dan voor ieder massa-elementje.
Natuurlijk niet.
Blijkbaar omdat een ellipsoïde geen bol is.
Zo natuurlijk is dat niet.
deze formule gaat blijkbaar uit van de aanname dat je de massa van de aarde geconcntreerd mag denken in het zwaartepunt. dan kun je via de 'geocentrische straal' van zeeniveau de zwaartekracht uitrekenen.jkien schreef: ↑vr 02 aug 2024, 21:06 Klopt dat verschil met de theorie? Dan moet eerst de 'geocentrische straal' van zeeniveau, \(R_0\), voor de breedtegraden van Amsterdam en Chimay (\(\varphi\)=52.351° en 50.048°) bepaald worden. Voor breedtegraad \(\varphi\) wordt de straal gegeven door:
\(R_0(\varphi)=\sqrt{\frac{(a^2\cos\varphi)^2+(b^2\sin\varphi)^2}{(a\cos\varphi)^2+(b\sin\varphi)^2}}\),
waar a en b respectievelijk de equatoriale en de polaire straal zijn (wiki). Een calculator rekent de formule uit zonder dat je a en b hoeft op te zoeken.
Ja, dat is het wel. Als ik de zwaartekrachtsversnelling wil weten door te integreren over alle massa-elementjes van het voorwerp (hier een ellipsoïde) dan hoef ik het zwaartepunt niet te weten of in die berekening te stoppen.
Het geldt voor een voorwerp in een homogeen zwaartekrachtsveld.HansH schreef: ↑do 08 aug 2024, 10:51 'Het zwaartepunt van een object is het punt ten opzichte waarvan de massa van dat object in evenwicht is. In dit punt wordt in de natuurkunde de zwaartekracht gedacht aan te grijpen, als zij wordt voorgesteld als een puntlast. '
maar als je verder gaat redeneren dan is het wel logisch denk ik dat deze stelling niet algemeen klopt.
op een ander forum maakte iemand een hele mooie opmerking: